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NAVIER-STOKES EQUATIONS IN THE HALF-SPACE IN
VARIABLE EXPONENT SPACES OF CLIFFORD-VALUED

FUNCTIONS
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Communicated by Vicentiu Radulescu

Abstract. In this article, we study the steady generalized Navier-Stokes
equations in a half-space in the setting of variable exponent spaces. We first

establish variable exponent spaces of Clifford-valued functions in a half-space.

Then, using this operator theory together with the contraction mapping prin-
ciple, we obtain the existence and uniqueness of solutions to the stationary

Navier-Stokes equations and Navier-Stokes equations with heat conduction in

a half-space under suitable hypotheses.

1. Introduction

Since Kováčik and Rákosńık [24] first studied the spaces Lp(x) and W k,p(x), more
and more attention are paid to Lebesgue and Sobolev variable exponent spaces and
their applications to differential equations. See [7, 8] for basic properties of variable
exponent spaces and [21, 33] for recent overviews of differential equations with
variable growth. It is well-known that one of the reasons that forced the rapid
expansion of the theory of variable exponent function spaces has been the models
of electrorheological fluids introduced by Rajagopal and Růžička [29, 30], which
can be described by the boundary-value problem for the generalized Navier-Stokes
equations. In the setting of variable exponent spaces, Diening et al. [5] proved
the existence and uniqueness of strong and weak solutions of the Stokes system
and Poisson equations for bounded domains, the whole-space and the half-space,
respectively.

In the previous decades, the study of these spaces has been stimulated by prob-
lems in elastic mechanics, calculus of variations and differential equations with
variable growth conditions, see [9, 12, 31, 32, 34, 35, 36] and references therein.

As a powerful tool for solving elliptic boundary value problems in the plane, the
methods of complex function theory play an important role. One way to extend
these ideas to higher dimension is to begin with a generalization of algebraic and
geometrical properties of the complex numbers. In this way, Hamilton studied the
algebra of quaternion in 1843. Further generalizations were introduced by Clifford
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in 1878. He initiated the so-called geometric algebras or Clifford algebras, which are
generalizations of the complex numbers, the quaternions, and the exterior algebras,
see [19]. After that, Clifford algebras have important applications in a variety of
fields including geometry, theoretical physics and digital image processing. Clifford
analysis as an active branch of mathematics concerned with the study of Dirac
equation or of a generalized Cauchy-Riemann system, in which solutions are de-
fined on domains in the Euclidean space and take values in Clifford algebras, see
the monograph of Brackx et al. [1]. It is worthy mentioning that Gürlebeck and
Sprößig [14, 15] developed an operator calculus, which is analogous to the known
complex analytic approach in the plane and based on three operators: a Cauchy-
Riemann-type operator, a Teodorescu transform, and a generalized Cauchy-type
integral operator, to investigate elliptic boundary value problems of fluid dynam-
ics over bounded and unbounded domains, especially the Navier-Stokes equations
and related equations. Of course, there are a number of unsolved basic problems
involving the Navier-Stokes equations. This is mainly due to the problem concern-
ing the solvability of the corresponding linear Stokes equations over domains, see
[2, 16]. As Galdi [20] pointed out, the study of the Stokes problem in the half-space
possesses an independent interest and it will be fundamental for the treatment of
other linear and nonlinear problems when the region of flow is either an exterior
domain or a domain with a suitable unbounded boundary.

On the one hand, Diening et al. [4] studied the following model introduced in
[29, 30] to describe motions of electrorheological fluids:

−divM(Du) + (u · ∇)u+∇π = f x ∈ Ω
div u = 0 x ∈ Ω
u = 0 x ∈ ∂Ω,

(1.1)

where Ω is a bounded domain with Lipschitz boundary ∂Ω, f ∈ (W 1,p(x)
0 (Ω))∗ =

W−1,p′(x)(Ω), 2n/(n + 2) < p− ≤ p+ < ∞ and the operator M satisfies certain
natural variable growth conditions. The authors obtained the existence of weak
solutions in (W 1,p(x)

0 (Ω))n×Ls0(Ω), here s := min
{

(p+)′, np−/2(n−p−)
}

if p− < n

and s := (p+)′ otherwise, Ls0(Ω) := {π ∈ Ls(Ω) :
∫

Ω
πdx = 0}. Diening et al.

[5] studied the Stokes and Poisson problem in the context of variable exponent
spaces in bounded domains and in the whole space. In the half-space case, the
authors employed a localization technique to reduce the interior and the boundary
regularity to regularity results on the half-space. While it should be pointed out
that our attempt is to give a unified approach to deal with physical problems
modelled by the generalized Navier–Stokes equations, which is quite different with
approaches of some authors, for example, we refer to the monograph [3].

On the other hand, it is natural to focus on the A-Dirac equations if one interests
in extending the classical Dirac equations. In [26, 27], Nolder first introduced the
general nonlinear A-Dirac equations DA(x,Du) = 0 which arise in the study of
many phenomena in physical sciences. Moreover, he developed some tools for the
study of weak solutions to nonlinear A-Dirac equations in the space W 1,p

0 (Ω,C`n).
Inspired by his works, Fu and Zhang in [10, 11] were devoted to the the existence
of weak solutions for the general nonlinear A-Dirac equations with variable growth.
For this purpose, the authors established a theory of variable exponent spaces of
Clifford-valued functions with applications to homogeneous and non-homogeneous
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A-Dirac equations, see also [37]. Recently, Fu et al. [9, 28, 38] established a Hodge-
type decomposition of variable exponent Lebesgue spaces of Clifford-valued func-
tions with applications to the Stokes equations, the Navier-Stokes equations and
the A-Dirac equations DA(Du) = 0. By using the Hodge-type decomposition and
variational methods, Molica Bisci et al. [25] studied the properties of weak solutions
to the homogeneous and nonhomogeneous A-Dirac equations with variable growth.

Motivated by the above works, we study of Navier-Stokes equations in a half-
space in variable exponent spaces of Clifford-valued functions. To the best of our
knowledge, this is the first time to investigate Navier-Stokes equations over un-
bounded domains in such spaces. To this end, we first establish variable expo-
nent spaces of Clifford-valued functions in the half-space. Then, using an iteration
method which requires the solution of a Stokes-problem in every step of iteration,
we study the existence and uniqueness of Navier-Stokes equations in a half-space.
There is no doubt that we encounter serious difficulties, for instance, the Sobolev
embedding is not compact in a half-space, and operator theory in variable exponent
spaces of Clifford-valued functions in a half-space is still unknown. Anyway, our
attempt would be a meaningful exploration in the study of fluid dynamics, and the
whole treatment applies to a much larger class of elliptic problems.

This article is organized as follows. In Section 2, we start with a brief summary of
basic knowledge of Clifford algebras and then investigate basic properties of variable
exponent spaces of Clifford-valued functions in a half-space. In Section 3, with the
help of the results of Diening et al. [5], we prove the existence and uniqueness of
the Stokes equations in the context of variable exponent spaces in a half-space. In
Section 4, we present an iterative method for the solution of the stationary Navier-
Stokes equations. Using the contraction mapping principle, we prove the existence
and uniqueness of solutions to the Navier-Stokes equations in W

1,p(x)
0 (RN+ ,C`n)×

Lp(x)(RN+ ,R) under certain hypotheses. In Section 5, using the contracting mapping
principle, we obtain the existence and uniqueness of solutions for the Navier-Stokes
problem with heat conduction under some appropriate assumptions.

2. Preliminaries

2.1. Clifford algebras. We first recall some related notions and results concerning
Clifford algebras. For a detailed account we refer to [14, 15, 26, 27].

Let C`n be the real universal Clifford algebras over Rn. Denote C`n by

C`n = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 · · · en}

where e0 = 1(the identity element in Rn), {e1, e2, . . . , en} is an orthonormal basis
of Rn with the relation eiej +ejei = −2δije0. Thus the dimension of C`n is 2n. For
I = {i1, . . . , ir} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < · · · < in ≤ n, put eI = ei1ei2 · · · eir ,
while for I = ∅, e∅ = e0. For 0 ≤ r ≤ n fixed, the space C`rn is defined by

C`rn = span{eI : |I| := card(I) = r}.

The Clifford algebras C`n is a graded algebra as

C`n = ⊕rC`rn.

Any element a ∈ C`n may thus be written in a unique way as

a = [a]0 + [a]1 + · · ·+ [a]n
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where [ ]r : C`n → C`rn denotes the projection of C`n onto C`rn. In particular, by
C`2n = H we denote the algebra of real quaternion. It is customary to identify R
with C`0n and identify Rn with C`1n respectively. This means that each element x
of Rn may be represented by

x =
n∑
i=1

xiei.

For u ∈ C`n, we denotes by [u]0 the scalar part of u, that is the coefficient of the
element e0. We define the Clifford conjugation as follows:

ei1ei2 · · · eir = (−1)
r(r+1)

2 ei1ei2 · · · eir .
We denote

(A,B) =
[
AB
]
0
.

Then an inner product is thus obtained, giving to the norm | · | on C`n given by

|A|2 =
[
AA
]
0
.

From [15], we know that this norm is submultiplicative: |AB| ≤ C(n)|A‖B|,
where C(n) is a positive constant depending only on n and no more than 2n/2.

In what follows, we let Rn+ = {(x1, . . . , xn) ∈ Rn : xn > 0} and Σ = ∂Rn+. A
Clifford-valued function u : Rn+ → C`n can be written as u = ΣIuIeI , where the
coefficients uI : Rn+ → R are real-valued functions.

The Dirac operator on the Euclidean space used here is introduced by

D =
n∑
j=1

ej
∂

∂xj
:=

n∑
j=1

ej∂j .

If u is a real-valued function defined on Rn+, then Du = ∇u = (∂1u, ∂2u, . . . , ∂nu).
Moreover, D2 = −∆, where ∆ is the Laplace operator which operates only on
coefficients. A function is left monogenic if it satisfies the equation Du(x) = 0 for
each x ∈ Rn+. A similar definition can be given for right monogenic function. An
important example of a left monogenic function is the generalized Cauchy kernel

G(x) =
1
ωn

x

|x|n
,

where ωn denotes the surface area of the unit ball in Rn. This function is a funda-
mental solution of the Dirac operator. Basic properties of left monogenic functions
one can refer to [11, 17] and references therein.

2.2. Variable exponent spaces of Clifford-valued functions. Next we recall
some basic properties of variable exponent spaces of Clifford-valued functions. In
what follows, we use the short notation Lp(x)(RN+ ), W 1,p(x)(RN+ ), etc., instead of
Lp(x)(RN+ ,R), W 1,p(x)(RN+ ,R), etc. Throughout this paper we always assume (un-
less declared specially)

p ∈ P log(Rn+)and1 < p− := inf
x∈Rn

+

p(x) ≤ p(x) ≤ sup
x∈Rn

+

p(x) =: p+ <∞. (2.1)

where P log(Rn+) is the set of exponent p satisfying the so-called log-Hölder conti-
nuity, i.e.,

|p(x)− p(y)| ≤ C

log(e+ |x− y|−1)
, |p(x)− p(∞)| ≤ C

log(e+ |x|−1)



EJDE-2017/98 NAVIER-STOKES EQUATIONS 5

hold for all x, y ∈ RN+ , where p(∞) = lim|x|→∞ p(x), see [3, 5]. Let P(Rn+) be the
set of all Lebesgue measurable functions p : Rn+ → (1,∞). Given p ∈ P(Rn+) we
define the conjugate function p′(x) ∈ P(Rn+) by

p′(x) =
p(x)

p(x)− 1
for each x ∈ RN+ .

The variable exponent Lebesgue space Lp(x)(Rn+) is defined by

Lp(x)(Rn+) =
{
u ∈ P(Rn+) :

∫
Rn

+

|u|p(x)dx <∞
}
,

with the norm

‖u‖Lp(x)(Rn
+) = inf

{
t > 0 :

∫
Rn

+

|u
t
|p(x)dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(x)(Rn+) in a half-space is defined by

W 1,p(x)(Rn+) =
{
u ∈ Lp(x)(Rn+) : |∇u| ∈ Lp(x)(Rn+)

}
,

with the norm

‖u‖W 1,p(x)(Rn
+) = ‖∇u‖Lp(x)(Rn

+) + ‖u‖Lp(x)(Rn
+). (2.2)

Denote W 1,p(x)
0 (Rn+) by the completion of C∞0 (Rn+) in W 1,p(x)(Rn+) with respect

to the norm (2.2). The space W−1,p(x)(Rn+) is defined as the dual of the space

W
1,p′(x)
0 (Rn+). For more details we refer to [3, 7, 8] and reference therein.
In the following, we say that u ∈ Lp(x)(Rn+,C`n) can be understood coordi-

nate wise. For example, u ∈ Lp(x)(Rn+,C`n) means that {uI} ⊂ Lp(x)(Rn+) for
u = ΣIuIeI ∈ C`n with the norm ‖u‖Lp(x)(Rn

+,C`n) =
∑
I ‖uI‖Lp(x)(Rn

+). In the

same way, spaces W 1,p(x)(Rn+,C`n), W 1,p(x)
0 (Rn+,C`n), C∞0 (Rn+,C`n), etc., can be

understood similarly. In particular, the space L2(Rn+,C`n) can be converted into
a right Hilbert C`n-module by defining the following Clifford-valued inner product
(see [14, Definition 3.74]) (

f, g
)

C`n
=
∫

Rn
+

f(x)g(x)dx. (2.3)

Remark 2.1. Following the same arguments as in [10, 37], we can calculate easily
that ‖u‖Lp(x)(Rn

+,C`n) is equivalent to the norm ‖|u|‖Lp(x)(Rn
+). Furthermore, we also

prove that for every u ∈W 1,p(x)
0 (Rn+,C`n), ‖Du‖Lp(x)(Rn

+,C`n) is an equivalent norm
of ‖u‖

W
1,p(x)
0 (Rn

+,C`n)
.

Lemma 2.2 ([10]). Assume that p(x) ∈ P(Rn+). Then∫
Rn

+

|uv|dx ≤ C(n, p)‖u‖Lp(x)(Rn
+,C`n)‖v‖Lp′(x)(Rn

+,C`n)

for every u ∈ Lp(x)(Rn+,C`n) and v ∈ Lp′(x)(Rn+,C`n).

Lemma 2.3 ([10, 11]). If p(x) ∈ P(Rn+), then Lp(x)(Rn+,C`n) and W 1,p(x)(Rn+,C`n)
are reflexive Banach spaces.
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Based on the Cauchy kernel G(x) we can introduce the Teodorescu operator.
There exist a number of applications and methods based on the properties of this
Teodorescu operator. But in our case of considering the domain Ω as an unbounded
domain, the main problem in applying this operator is that the Cauchy kernel
does not have good enough behaviour near infinity. For example, the Teodorescu
operator is an unbounded operator over the usual function spaces on Ω. In this
paper, we will follow the idea from [2, 18] by using add-on terms to the Cauchy
kernel. More precisely, we choose a fixed point z lying in the complement of RN+ .
Then we consider the following operators.

Definition 2.4 ([2, 14, 15]). (i) Let u ∈ C(Rn+,C`n). The Teodorescu operator is
defined by

Tu(x) =
∫

Rn
+

Kz(x, y)u(y)dy,

where Kz(x, y) = G(x − y) − G(y − z), G(x) is the above-mentioned generalized
Cauchy kernel.

(ii) Let u ∈ C1(Rn+,C`n) ∩ C(Rn+,C`n). The boundary operator is defined by

Fu(x) =
∫

Σ

Kz(x, y)α(y)u(y)dSy,

where α(y) denotes the outward normal unit vector at y.
(iii) Let u ∈ L1

loc(Rn). Then the Hardy-Littlewood maximal operator is defined
by

Mu
(
x
)

= sup
x∈Q

1
|Q|

∫
Q

|u(y)|dy.

for all x ∈ Rn, where the supremum is taken over all cubes (or ball) Q ⊂ Rn which
contain x.

The Teodorescu operator was first introduced in [18] and the operator properties
in the scale of W k,2-spaces were given in [23], see also [2] for the corresponding op-
erator properties in the W k,q-spaces over unbounded domains. Its main advantage
is a faster decay to infinity of the kernel.

Lemma 2.5. (see [3]) Let x ∈ Rn, δ > 0 and u ∈ L1
loc(Rn). Then∫

B(x,δ)

1
|x− y|n−1

|u(y)|dy ≤ C(δ)Mu(x).

where C(δ) > 0 is a positive constant. Moreover, if u ∈ Lp(x)(Rn) with ‖u‖p(x) ≤ 1,
then ∫

Rn\B(x,δ)

1
|x− y|n−1

|u(y)|dy ≤ C(n, p, δ, |B|).

where C(n, p, δ, |B|) is a positive constant.

Lemma 2.6 ([3]). Let p(x) satisfy (2.1). Then M is bounded in Lp(x)(Rn).

Lemma 2.7 ([18]). Let u ∈ C1(Rn+,C`n). Then

∂kTu(x) =
1
ωn

∫
Rn

+

∂

∂xk
G(x− y)u(y)dy +

u(x)
n

ek.

Lemma 2.8 ([3]). Let Φ be a Calderón-Zygmund operator with Calderón-Zygmund
kernel K on Rn × Rn. Then Φ is bounded on Lp(x)(Rn).
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Lemma 2.9. The following operators are continuous linear operators:
(i) T : Lp(x)(Rn+,C`n)→W 1,p(x)(Rn+,C`n).

(ii) T̃ : W−1,p(x)(Rn+,C`n)→ Lp(x)(Rn+,C`n).

Proof. (i) We divide the proof into two parts:
Step 1: The operator ∂kT : Lp(x)(Rn+,C`n) → Lp(x)(Rn+,C`n) is continuous. By
Lemma 2.7 we have for u ∈ C∞0 (Rn+,C`n)

∂kTu(x) =
1
ωn

∫
Rn

+

∂

∂xk
Kz(x, y)u(y)dy +

u(x)
n

ek.

Let K(x, y) = 1
ωn

∂
∂xk

Kz(x, y). Since 1
ωn

∂
∂xk

Kz(x, y) = 1
ωn

∂
∂xk

G(x− y) and

∂

∂xk
G(x− y) =

1
|x− y|n

(
ek − n

n∑
i=1

(xk − yk)(xi − yi)
|x− y|2

ei

)
,

we obtain ∣∣ ∂
∂xk

G(x− y)
∣∣ ≤ n2 + 1
|x− y|n

, (k = 1, . . . , n).

Notice that ∫
S1

(
ek − n

n∑
i=1

(xk − yk)(xi − yi)
|x− y|2

ei

)
dS = 0,

where S1 = {y ∈ Rn+ : |x − y| = 1}. Then it is easy to verify that K(x, y) satisfies
the following properties:

(a) |K(x, y)| ≤ C|x− y|−n;
(b) K

(
t(x, y)

)
= t−nK(x, y), t > 0;

(c)
∫
S1
K(x, y)dS = 0.

Now we define u(x) = 0 for x ∈ Rn \ Rn+. Then K(x, y) satisfies the conditions of
Calderón-Zygmund kernal on Rn × Rn. By Theorem 2.13, we know the inequality
can be extended to Lp(x)(Rn+,C`n). Therefore, we obtain by Lemma 2.5 and Lemma
2.6

‖ 1
ωn

∫
Ω

∂k,xG(x− y)u(y)dy‖Lp(x)(Rn
+,C`n) ≤ C(n, p)‖u‖Lp(x)(Rn

+,C`n) (2.4)

On the other hand,

‖u(x)
n

ek‖Lp(x)(Rn
+,C`n) ≤

1
n
‖u‖Lp(x)(Rn

+,C`n) (2.5)

Combining (2.3) with (2.5), we obtain

‖∂kTu‖Lp(x)(Rn,Cln) ≤ C(n, p)‖u‖Lp(x)(Rn
+,C`n).

Step 2: The operator T : Lp(x)(Rn+,C`n) → Lp(x)(Rn+,C`n) is continuous. We
define u(x) = 0 for x ∈ Rn \ Rn+. Since

|G(x− y) +G(y − z)| ≤ 1
ωn

( 1
|x− y|n−1

+
1

|y − z|n−1

)
,

we have

|Tu(x)| ≤ C(n)
∫

Rn
+

(|G(x− y)|+ |G(y − z)|) |u(y)|dy
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≤ C
(∫

Rn
+

1
|x− y|n−1

|u(y)|dy +
∫

Rn
+

1
|y − z|n−1

|u(y)|dy
)
.

Then by Lemmas 2.5 and 2.6, we obtain

‖Tu‖Lp(x)(Rn
+,C`n) ≤ C(n, p)‖u‖Lp(x)(Rn

+,C`n).

Finally, combining Step 1 with Step 2, we have

‖Tu‖W 1,p(x)(Rn
+,C`n) = ‖Tu‖Lp(x)(Rn

+,C`n) +
n∑
k=1

‖∂kTu‖Lp(x)(Rn
+,C`n)

≤ C(n, p)‖u‖Lp(x)(Rn
+,C`n).

Then we obtain the desired conclusion (i).
(ii) In view of [3, Proposition 12.3.2], we know that for each f ∈W−1,p(x)(Rn+),

there exists fk ∈ Lp(x)(Rn+), k = 0, 1, . . . , n, such that

〈f, ϕ〉 =
n∑
k=0

∫
Rn

+

fk
∂ϕ

∂xk
dx, (2.6)

for all ϕ ∈W 1,p′(x)
0 (Rn+). Moreover, ‖f‖W−1,p(x)(Rn

+) is equivalent to
∑n
k=0 ‖fk‖Lp(x)(Rn

+).

Obviously, for every f ∈ W−1,p(x)(Rn+,C`n) the equality (2.5) still holds for fk ∈
Lp(x)(Rn+,C`n), k = 0, 1, . . . , n. Moreover, ‖f‖W−1,p(x)(Rn

+,C`n) is equivalent to∑n
k=0 ‖fk‖Lp(x)(Rn

+,C`n). On the other hand, by [3, Proposition 12.3.4], it is easy

to show that the space C∞0 (Rn+,C`n) is dense in W−1,p(x)(Rn+,C`n). Thus we may
choose

uj = uj0 +
n∑
k=1

∂ujk
∂xk

,

where uj0, u
j
k ∈ C∞0 (Rn+,C`n), such that ‖uj − f‖W−1,p(x)(Rn

+,C`n) → 0 and ‖ujk −
fk‖Lp(x)(Rn

+,C`n) → 0 as j → ∞, where k = 0, 1, . . . , n. Here, we are using the fact

that C∞0 (Rn+,C`n) is dense in Lp(x)(Rn+,C`n)(see [3]). Then we consider

Tuj =
∫

Rn
+

Kz(x, y)uj(y)dy.

Then we have

Tuj =
∫

Rn
+

Kz(x, y)
(
uj0(y) +

n∑
k=1

∂

∂yk
ujk(y)

)
dy

=
∫

Rn
+

Kz(x, y)uj0(y)dy −
n∑
k=1

∫
Rn

+

∂

∂yk
Kz(x, y)ujk(y)dy.

Since∣∣ ∫
Rn

+

Kz(x, y)uj0(y)dy
∣∣ ≤ ∫

Rn
+

1
|x− y|n−1

∣∣uj0(y)
∣∣dy +

∫
Rn

+

1
|y − z|n−1

∣∣uj0(y)
∣∣dy.

By Remark 2.1, Lemma 2.5 and Lemma 2.6, there exists a constant C0 > 0 such
that ∥∥∫

Rn
+

Kz(x, y)uj0(y)dy
∥∥
Lp(x)(Rn

+,C`n)
≤ C0‖uj0‖Lp(x)(Rn

+,C`n). (2.7)



EJDE-2017/98 NAVIER-STOKES EQUATIONS 9

Now let us extend ujk(x) by zero to Rn \ Rn+. Note that the position of z which is
outside of a half space Rn+ leads to the fact that G(y − z) has no singularities for
any y ∈ Rn+. Thus it is easy to show that ∂

∂yk
Kz(x, y) satisfies the conditions of

Calderón-Zygmund kernel on Rn × Rn. In view of Lemma 2.8, there exist positive
constant Ck(k = 1, . . . , n) such that∥∥∫

Rn
+

∂

∂yk
Kz(x, y)ujk(y)

∥∥
Lp(x)(Rn

+,C`n)
≤ Ck‖ujk‖Lp(x)(Rn

+,C`n). (2.8)

Combining (2.7) with (2.8), we have

‖Tuj‖Lp(x)(Rn
+,C`n) ≤ C0‖uj0‖Lp(x)(Rn

+,C`n) +
n∑
k=1

Ck‖ujk‖Lp(x)(Rn
+,C`n).

Letting j →∞, by means of the Continuous Linear Extension Theorem, the oper-
ator T can be uniquely extended to a bounded linear operator T̃ such that for all
f ∈W−1,p(x)(Rn+,C`n), there exists a constant C̃ > 0 such that

‖T̃ f‖Lp(x)(Rn
+,C`n) ≤ C

(
‖f0‖Lp(x)(Rn

+,C`n) +
n∑
k=1

‖fk‖Lp(x)(Rn
+,C`n)

)
≤ C̃‖f‖W−1,p(x)(Rn

+,C`n).

Hence claim (ii) follows. �

Lemma 2.10. The following operators are continuous linear operators:
(i) D : W 1,p(x)(Rn+,C`n)→ Lp(x)(Rn+,C`n).
(ii) D̃ : Lp(x)(Rn+,C`n)→W−1,p(x)(Rn+,C`n).

Proof. (i) The proof is similar to that of [11, Lemma 2.6], so we omit it.
(ii) We consider the following Dirichlet problem of the Poisson equation with

homogeneous boundary data

−∆u = f, in Rn+
u = 0, on Σ

(2.9)

It is easy to see that for all f ∈W−1,p(x)(Rn+,C`n) problem (2.9) still has a unique
weak solution u ∈ W 1,p(x)(Rn+,C`n), see Diening, Lengeler and Ružička [5]. We
denote by ∆−1

0 the solution operator. On the other hand, it is clear that the
operator

∆ : W 1,p(x)(Rn+,C`n)→W−1,p(x)(Rn+,C`n)

is continuous, so we obtain from Lemma 2.9 that the operator D̃ = −∆T :
Lp(x)(Rn+,C`n) → W−1,p(x)(Rn+,C`n) is continuous, where the operator D̃ can be
considered as a unique continuous linear extension of the operator D. �

Lemma 2.11. Let p(x) ∈ P(Rn+).

(i) If u ∈W 1,p(x)(Rn+,C`n), then the Borel-Pompeiu formula Fu(x)+TDu(x) =
u(x) holds for all x ∈ Rn+.

(ii) If u ∈ Lp(x)(Rn+,C`n), then the equation DTu(x) = u(x) holds for all
x ∈ Rn+.
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Proof. Let us denote by C∞0 (Rn+) the space of all restrictions of functions from
C∞0 (Rn) to Rn+. Furthermore, suppose ϕ ∈ C∞0 (Rn+). Now, let us consider a point
y ∈ Ω and the open ball B(0, r) with origin 0, radius r, and boundary S(0, r). If
r is sufficiently large such that y lies in the domain Ω(r) = B(0, r) ∩ Rn+. For this
domain, we have

FS(0,r)ϕ(y) = ϕ(y)− TΩ(r)Dϕ(y).

see [25] for more details. This can be written in the form

lim
r→∞

(∫
Σ∩B(0,r)

+
∫
S(0,r)∩Rn

+

)
Kz(x, y)α(y)u(y)dSy

= ϕ(y)− lim
r→∞

TΩ(r)Dϕ(y)

Since

lim
r→∞

∫
Σ∩B(0,r)

Kz(x, y)α(y)u(y)dSy =
∫

Σ

Kz(x, y)α(y)u(y)dSy

and

lim
r→∞

TΩ(r)Dϕ(y) = TRn
+
Dϕ(y), lim

r→∞

∫
S(0,r)∩Rn

+

Kz(x, y)α(y)u(y)dSy = 0,

we obtain the Borel-Pompeiu formula in case of ϕ ∈ C∞0 (Rn+). Finally, the desired
result (i) follows immediately from the density document.

(ii) Using the same idea with (i), we can get directly the desired result from [25,
Lemma 2.6]. �

Lemma 2.12. Let p(x) satisfy (2.1).

(i) If u ∈ Lp(x)(Rn+,C`n), then T̃ D̃u(x) = u(x) for all x ∈ Rn+.
(ii) If u ∈W−1,p(x)(Rn+,C`n), then D̃T̃ u(x) = u(x) for all x ∈ Rn+.

Proof. (i) follows from Lemma 2.11 (i) and the denseness of W 1,p(x)
0 (Rn+,C`n) in

Lp(x)(Rn+,C`n).
(ii) follows from Lemma 2.11 (ii) and the denseness of C∞0 (Rn+,C`n) in the space

W−1,p(x)(Rn+,C`n), see [3, Proposition 12.3.4] for the details. �

Gürlebeck and Sprößig [14, 15] showed that the orthogonal decomposition of the
space L2(Ω) holds in the hyper-complex function theory:

L2(Ω,C`n) = (kerD ∩ L2(Ω,C`n))⊕DW 1,2
0 (Ω,C`n) (2.10)

with respect to the Clifford-valued product (2.3). Note that kerD denotes the set
of all monogenic functions on Ω. This decomposition has a number of applications,
especially to the theory of partial differential equations, see [6] for the complex
case and [14] for the hyper-complex case. Kähler [22] extended the orthogonal
decomposition (2.10) to the spaces Lp(Ω) in form of a direct decomposition in the
case of Clifford analysis. In [7], Fu et al. extended the direct decomposition to the
case of variable exponent Lebesgue spaces in bounded smooth domains.

Theorem 2.13. The space Lp(x)(Rn+,C`n) allows the Hodge-type decomposition

Lp(x)(Rn+,C`n) = (ker D̃ ∩ Lp(x)(Rn+,C`n))⊕DW 1,p(x)
0 (Rn+,C`n) (2.11)

with respect to the Clifford-valued product (2.3).
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Proof. Similar to the proof of [22, Theorem 6], we first show that the intersection
of (ker D̃ ∩ Lp(x)(Rn+,C`n)) and DW

1,p(x)
0 (Rn+,C`n) is empty. Suppose f belongs

to both ker D̃ ∩ Lp(x)(Rn+,C`n) and DW
1,p(x)
0 (Rn+,C`n), then D̃f = 0 . Because f

belongs to DW 1,p(x)
0 (Rn+,C`n), there exists a function v ∈ W 1,p(x)

0 (Rn+,C`n) such
that Dv = f . Hence, we obtain that −∆v = 0 and v = 0 on Σ. From the
uniqueness of ∆−1

0 we obtain v = 0. Consequently, f = 0. Therefore, the sum of
the two subspaces is a direct one.

Now let u ∈ Lp(x)(Rn+,C`n). Then u2 = D∆−1
0 D̃u ∈ DW 1,p(x)

0 (Rn+,C`n). Let
u1 = u−u2. Then u1 ∈ Lp(x)(Rn+,C`n). Furthermore, we take uk ∈W 1,p(x)

0 (Rn+,C`n)
such that uk → u in Lp(x)(Rn+,C`n), then by the denseness of W 1,p(x)

0 (Rn+,C`n) in

Lp(x)(Rn+,C`n) and Lemma 2.2, we have for any ϕ ∈W 1,p′(x)
0 (Rn+,C`n)(

u1, Dϕ
)

C`n
=
(
u− u2, Dϕ

)
C`n

= lim
k→∞

(
Duk −DD∆−1

0 Duk, ϕ
)

C`n

= lim
k→∞

(
Duk −Duk, ϕ

)
C`n

= 0,

which implies that u1 ∈ ker D̃. Since u ∈ Lp(x)(Rn+,C`n) is arbitrary, the desired
result follows. �

From this decomposition we can get the following two projections

P : Lp(x)(Rn+,C`n)→ ker D̃ ∩ Lp(x)(Rn+,C`n),

Q : Lp(x)(Rn+,C`n)→ DW
1,p(x)
0 (Rn+,C`n).

Moreover, we have
Q = D∆−1

0 D̃, P = I −Q.

Corollary 2.14. The space Lp(x)(Rn+,C`n)∩imQ is a closed subspace of Lp(x)(Rn+,C`n).

The proof can be easily done by combining Theorem 2.13, Lemma 2.3 with
Lemma 2.10. We refer the reader to [38, Lemma 2.6] for a similar argument.

Corollary 2.15.
(
Lp(x)(Rn+,C`n)∩ imQ

)∗ = Lp
′(x)(Rn+,C`n)∩ imQ. Namely, the

linear operator

Φ : DW 1,p′(x)
0 (Rn+,C`n)→

(
DW

1,p(x)
0 (Rn+,C`n)

)∗
given by

Φ(Du)(Dϕ) = (Dϕ,Du)Sc :=
∫

Rn
+

[
DϕDu

]
0
dx

is a Banach space isomorphism.

Proof. In terms of Lemma 2.14, DW 1,p(x)
0 (Rn+,C`n) and DW

1,p′(x)
0 (Rn+,C`n) are

reflexive Banach spaces since they are closed subspaces in Lp(x)(Rn+,C`n) and
Lp
′(x)(Rn+,C`n) respectively. The linearity of Φ is clear. For injectivity, suppose

Φ(Du)(Dϕ) = (Dϕ,Du)Sc = 0 (2.12)

for all ϕ ∈ W
1,p(x)
0 (Rn+,C`n) and some u ∈ W

1,p′(x)
0 (Rn+,C`n). For any ω ∈

Lp(x)(Rn+,C`n), according to (2.11), we may write ω = α + β with α ∈ ker D̃ ∩
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Lp(x)(Rn+,C`n) and β ∈ DW 1,p(x)
0 (Rn+,C`n). Thus we obtain

(ω,Du)Sc = (α+ β,Du)Sc = (β,Du)Sc.

This and (2.12) gives (ω,Du)Sc = 0. This means that Du = 0. It follows that Φ is
injective. To get subjectivity, let f ∈

(
DW

1,p(x)
0 (Rn+,C`n)

)∗. By the Hahn-Banach
Theorem, there is F ∈

(
Lp(x)(Rn+,C`n)

)∗ with ‖F‖ = ‖f‖ and F |
DW

1,p(x)
0 (Rn

+,C`n)
=

f . Moreover, there exists ϕ ∈ Lp′(x)(Rn+,C`n) such that F (u) = (u, ϕ)Sc for any u ∈
Lp(x)(Rn+,C`n). According to (2.11), we can write ϕ = η +Dα, where η ∈ ker D̃ ∩
Lp
′(x)(Rn+,C`n), Dα ∈ DW 1,p′(x)

0 (Rn+,C`n). For any Du ∈ DW 1,p(x)
0 (Rn+,C`n), we

have

f(Du) = (Du,ϕ)Sc = (Du,Dα)Sc = Φ(Dα)(Du).

Consequently, Φ(Dα) = f . It follows that Φ is surjective. By [10, Theorem 3.1] we
have

|Φ(Du)(Dϕ)| ≤ C‖Dϕ‖Lp(x)(Rn
+,C`n)‖Du‖Lp′(x)(Rn

+,C`n).

This means that Φ is continuous. Furthermore, it is immediate that Φ−1 is contin-
uous from the Inverse Function Theorem. This ends the proof of Lemma 2.3. �

3. Stokes equations in the half-space

In the section, we consider the Stokes system which consists in finding a solution
(u, π) for

−∆u+
1
µ
∇π =

ρ

µ
f in Rn+, (3.1)

div u = f0 in Rn+, (3.2)

u = v0 on Σ. (3.3)

With
∫

Ω
f0dx =

∫
∂Ω
n · v0dx the necessary condition for the solvability is given.

Here, u is the velocity, π the hydrostatic pressure, ρ the density, µ the viscosity,
f the vector of the external forces and the scalar function f0 a measure of the
compressibility of fluid. The boundary condition (3.3) describes the adhesion at
the boundary of the domain Ω for v0 = 0. This system describes the stationary
flow of a homogeneous viscous fluid for small Reynold’s numbers. For more details,
we refer to [2, 14, 15, 16, 20].

In this paper, for f =
∑n
i=1 fiei and u =

∑n
i=1 uiei, we consider the following

Stokes system in the hyper-complex formulation (see [16, 17]):

D̃Du+
1
µ
Dπ =

ρ

µ
f in Rn+, (3.4)

[Du]0 = 0 in Rn+, (3.5)

u = 0 on Σ. (3.6)

Definition 3.1. We say that (u, π) ∈ W
1,p(x)
0 (Rn+,C`n) × Lp(x)(Rn+) is a solu-

tion of (3.4)–(3.6) provided that it satisfies the system (3.4)–(3.6) for all f ∈
W−1,p(x)(Rn+,C`n).
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Definition 3.2. The operator ∇̃ : Lp(x)(Rn+)→ (W−1,p(x)(Rn+))n is defined by

〈∇̃f, ϕ〉 = −〈f, divϕ〉 := −
∫

Rn
+

f divϕdx

for all f ∈ Lp(x)(Rn+) and ϕ ∈ (C∞0 (Rn+))n.

Theorem 3.3. Suppose f ∈ W−1,p(x)(Rn+,C`n). Then the Stokes system (3.4)–
(3.6) has a unique solution (u, π) ∈W 1,p(x)

0 (Rn+,C`n)× Lp(x)(Rn+) of the form

u+
1
µ
TQπ =

ρ

µ
TQT̃f,

with respect to the estimate

‖Du‖Lp(x)(Rn
+,C`n) +

1
µ
‖Qπ‖Lp(x)(Rn

+) ≤ C
ρ

µ
‖QT̃f‖Lp(x)(Rn

+,C`n).

Here, C ≥ 1 is a constant and the hydrostatic pressure π is unique up to a constant.

Proof. We first prove that if f ∈ W−1,p(x)(Rn+,C`n), then we have the representa-
tion

TQT̃f = u+ TQω.

Indeed, let ϕn ∈ W
1,p(x)
0 (Rn+,C`n) with ϕn → ϕ in Lp(x)(Rn+,C`n). By Lemma

2.11, we have
TQT (Dϕn) = TQϕn.

Since W 1,p(x)
0 (Rn+,C`n) is dense in Lp(x)(Rn+,C`n), it follows that TQT̃ D̃ϕ = TQϕ.

Thus, for u ∈W 1,p(x)
0 (Rn+,C`n) and π ∈ Lp(x)(Rn+) we obtain

TQT̃ (
ρ

µ
f) = TQT̃ (D̃Du+

1
µ
D̃π) = u+

1
µ
TQπ.

This implies that our system (3.4)–(3.5) is equivalent to the system

u+
1
µ
QTQπ =

ρ

µ
TQT̃f, (3.7)

[Qπ]0 = [QT̃f ]0. (3.8)

Obviously, the equality (3.4) is equivalent to the equality

Du+
1
µ
Qπ =

ρ

µ
QT̃f. (3.9)

Now we need to show that for each f ∈ W−1,p(x)(Rn+,C`1n), the function QTf
can be decomposed into two functions Du and Qπ. Suppose Du + Qπ = 0 for
u ∈ W

1,p(x)
0 (Rn+,C`1n) ∩ ker div and π ∈ Lp(x)(Rn+). Then (3.5) gives [Qπ]0 = 0.

Thus, Qπ = 0. Hence, Du = Qπ = 0. This means that Du + Qπ is a direct sum,
which is a subset of imQ.

Next we have to ask about the existence of a functional F ∈ (Lp(x)(Rn+,C`1n) ∩
imQ)∗ with F(Du) = 0 and F(Qπ) = 0 but F(QT̃f) 6= 0. This is equivalent to
ask if there exists g ∈W−1,p′(x)(Rn+,C`1n), such that for all u ∈W 1,p(x)

0 (Rn+,C`1n)∩
ker div and ω ∈ Lp(x)(Rn+),

(Du,QT̃g)Sc = 0, (3.10)

(Qπ,QT̃g)Sc = 0, (3.11)
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but (QT̃f,QT̃ g)Sc 6= 0. Here, Lemmas 2.9 and Corollary 2.15 are employed.
Thus, let us consider the system (3.10) and (3.11) with g ∈ W−1,p′(x)(Ω,C`1n)

for all open cubes Ω ⊂ Rn+. Notice that, with the help of Lemma 2.10, (3.10) yields

(Du,QT̃g)Sc = (u, D̃QT̃ g)Sc = (u, D̃T̃ g − D̃P T̃ g)Sc = (u, g)Sc = 0,

which implies g = ∇̃h = D̃h with h ∈ L
p′(x)
loc (Rn+) because of [38, Lemma 2.8].

Furthermore, by Definition 3.2, it is easy to see that if g ∈ W−1,p′(x)(Rn+,C`1n),
then h ∈ Lp′(x)(Rn+). Thus it follows from (3.11) and Lemma 2.3,

(Qπ,QT̃g)Sc = (Qπ,QT̃ D̃h)Sc = (Qπ,Qh)Sc = 0

holds for each π ∈ Lp(x)(Rn+). Hence, Qπ = |Qh|p′(x)−2Qh gives Qh = 0. Then we
obtain

g = D̃h = D̃Qh+ D̃Ph = 0.
Furthermore, we obtain

(QT̃f,QT̃ g)Sc = 0, for all f ∈W−1,p(x)(Rn+,C`1n).

Finally, (3.9) yields

‖Du‖Lp(x)(Rn
+,C`n) +

1
µ
‖Qπ‖Lp(x)(Rn

+) ≥
ρ

µ
‖QT̃f‖Lp(x)(Rn

+,C`n).

By the Norm Equivalence Theorem, we obtain

‖Du‖Lp(x)(Rn
+,C`n) +

1
µ
‖Qπ‖Lp(x)(Rn

+) ≤ C
ρ

µ
‖QT̃f‖Lp(x)(Rn

+,C`n).

By Remark 2.1, Lemma 2.9 and the boundedness of the operator Q, we obtain

‖u‖
W

1,p(x)
0 (Rn

+,C`n)
+

1
µ
‖Qπ‖Lp(x)(Rn

+) ≤ C
ρ

µ
‖f‖W−1,p(x)(Rn

+,C`n), (3.12)

which implies the uniqueness of solution. Note that Qπ = 0 implies π ∈ ker D̃.
Therefore, π is unique up to a constant. The proof is complete. �

4. N-S equations in the half-space

In this section, we consider the time-independent Navier-Stokes equations in
variable exponent spaces of Clifford-valued functions in a half-space:

−∆u+
ρ

µ
(u · ∇)u+

1
µ
∇π =

ρ

µ
f in Rn+, (4.1)

div u = f0 in Rn+, (4.2)

u = v0 on Σ. (4.3)

In addition to the case of the Stokes system, the main difference from the above-
mentioned Stokes equations is the appearance of the non-linear convection term
(u · ∇)u. In 1928, Oseen showed that one can get relatively good results if the
convection term (u · ∇)u is replaced by (v · ∇)u , where v is a solution of the
corresponding Stokes equations. In 1965, Finn [13] proved the existence of solutions
for small external forces with a spatial decreasing to infinity of order |x|−1 for the
case of n = 3, and used the Banach fixed-pointed theorem. Gürlebeck and Sprößig
[14, 15, 17] solved this system by a reduction to a sequence of Stokes problems
provided the external force f belongs to Lp(Ω,H) for a bounded domain Ω and
6/5 < p < 3/2. Cerejeiras and Kähler [2] obtained the similar results provided
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the external force f belongs to W−1,p(Ω,C`n) for an unbounded domain Ω and
n/2 ≤ p < ∞, see also [38] for similar results of bounded domains in the variable
exponents context. Now we would like to extend these results to the setting of
variable exponent spaces in a half-space.

For f =
∑n
i=1 fiei , u =

∑n
i=1 uiei, we consider the following steady Navier-

Stokes equations in the hyper-complex notation:

D̃Du+
1
µ
Dπ =

ρ

µ
F (u) in Rn+, (4.4)[

Du
]
0

= 0 in Rn+, (4.5)

u = 0 on Σ, (4.6)

with the non-linear part F (u) = f −
[
uD
]
0
u. We first give the following lemma,

which is crucial to the convergence of the iteration method.

Lemma 4.1. Let p(x) satisfy (2.1) and n/2 ≤ p− ≤ p(x) ≤ p+ < ∞. Then the
operator F : W 1,p(x)

0 (Rn+,C`1n)→W−1,p(x)(Rn+,C`1n) is a continuous operator and

‖
[
uD
]
0
u‖W−1,p(x)(Rn

+,C`n) ≤ C1‖u‖2W 1,p(x)
0 (Rn

+,C`n)
,

where C1 = C1(n, p) is a positive constant.

Proof. Let u =
∑n
i=1 uiei ∈W

1,p(x)
0 (Rn+,C`1n). Then

‖
[
uD
]
0
u‖W−1,p(x)(Rn

+,C`n) ≤
n∑

i,j=1

‖ui∂iuj‖W−1,p(x)(Rn
+).

In view of the continuous embedding Ls(x)(Rn+) ↪→ W−1,p(x)(Rn+) for s(x) =
np(x)/(n+ p(x)) (see [3]), we have

‖ui∂iuj‖W−1,p(x)(Rn
+) ≤ C(n, p)‖ui∂iuj‖Ls(x)(Rn

+).

By Hölder’s inequality, we obtain

‖ui∂iuj‖Ls(x)(Rn
+) ≤ C sup

‖ϕj‖
Ls′(x)(Rn

+)
≤1

∫
Rn

+

|ui∂iuj | |ϕj |dx

≤ C‖ui‖Ln(Rn
+)‖uj‖W 1,p(x)

0 (Rn
+)
.

According to the continuous embedding W 1,p(x)
0 (Rn+) ↪→ Ln(Rn+) for n/2 ≤ p− ≤

p(x) ≤ p+ <∞ (see [3]), we obtain

‖ui∂iuj‖Ls(x)(Rn
+) ≤ C(n, p)‖ui‖W 1,p(x)

0 (Rn
+)
‖uj‖W 1,p(x)

0 (Rn
+)
.

Finally, it is easy to obtain the desired estimate from above-mentioned inequalities.
Hence, the continuity of the operator F follows immediately. �

Remark 4.2. Actually, n/2 ≤ p− means p− ∈ (1,+∞) for n = 2 while p− ∈
[n/2,+∞) for n > 2. Evidently, Lemma 4.1 is a direct generalization of [2, Lemma
4.1] to the variable exponent context in a half-space.

Now we are in a position to prove our main result.
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Theorem 4.3. Let p(x) satisfy (2.1) and n/2 ≤ p− ≤ p(x) ≤ p+ < ∞. Then the
system (4.4)–(4.6) has a unique solution (u, π) ∈ W 1,p(x)

0 (Rn+,C`n)× Lp(x)(Rn+,R)
(π is unique up to a real constant) if the right-hand side f satisfies the condition

‖f‖W−1,p(x)(Rn
+,C`n) <

ν2

4C1C2
4

, (4.7)

with ν = µ/ρ, C4 = C2(1 + C3), where C3 ≥ 1 indicated in (4.11) and

C2 = ‖T‖
[Lp(x)∩imQ,W

1,p(x)
0 ]

‖Q‖[Lp(x),Lp(x)∩imQ]‖T̃‖[W−1,p(x),Lp(x)∩imQ].

For any function u0 ∈W 1,p(x)
0 (Rn+,C`n) with

‖u0‖W 1,p(x)
0 (Rn

+,C`n)
≤ ν

2C1C2
−M, (4.8)

here, M =
√

ν2

4C2
1C

2
4
− 1

C1
‖f‖W−1,p(x)(Rn

+,C`n), the iteration process

uk +
1
µ
TQπk =

ρ

µ
TQT̃F (uk−1), k = 1, 2, . . . (4.9)

1
µ

[
Qπk

]
0

=
ρ

µ

[
QT̃F (uk−1)

]
0
, (4.10)

converges in W
1,p(x)
0 (Rn+,C`n)× Lp(x)(Rn+,R).

Proof. The proof is similar to one of [15, theorem 4.6.8]. For the reader’s conve-
nience, we would like to give some details. Replacing f by F (uk−1) in the proof of
Theorem 3.3 we obtain the unique solvability of the Stokes equations (4.9)–(4.10)
which we have to solve in each step. Moreover, we have the following estimate:

‖Duk‖Lp(x)(Rn
+,C`n) +

1
µ
‖Qπk‖Lp(x)(Rn

+) ≤ C3
ρ

µ
‖QT̃F (uk−1)‖Lp(x)(Rn

+,C`n) (4.11)

where C3 ≥ 1 is a constant. The only remaining problem is the convergence of our
iteration procedure. From Theorem 3.3 we know

Duk +
1
µ
Qπk =

ρ

µ
QT̃F (uk−1).

Then it follows from (4.11) that

1
µ
‖Q(πk − πk−1)‖Lp(x)(Rn

+) ≤
C3

ν
‖QT̃ (F (uk−1)− F (uk−2))‖Lp(x)(Rn

+,C`n).

Hence

‖uk − uk−1‖W 1,p(x)
0 (Rn

+,C`n)
≤ 1
µ
‖TQ(πk − πk−1)‖

W
1,p(x)
0 (Rn

+,C`n)

+
ρ

µ
‖TQT̃ (F (uk−1)− F (uk−2))‖

W
1,p(x)
0 (Rn

+,C`n)

≤ C2(1 + C3)
ν

‖F (uk−1)− F (uk−2)‖W−1,p(x)(Rn
+,C`n).

In terms of Lemma 4.1, one obtain

‖F (uk−1)− F (uk−2)‖W−1,p(x)(Rn
+,C`n)

≤ C1‖uk−1 − uk−2‖W 1,p(x)
0 (Rn

+,C`n)
(‖uk−1‖W 1,p(x)

0 (Rn
+,C`n)

+ ‖uk−2‖W 1,p(x)
0 (Rn

+,C`n)
).



EJDE-2017/98 NAVIER-STOKES EQUATIONS 17

Let Lk = C1C4
ν (‖uk−1‖W 1,p(x)

0 (Rn
+,C`n)

+‖uk−1‖W 1,p(x)
0 (Rn

+,C`n)
) with C4 = C2(1+C3).

Then we obtain

‖uk − uk−1‖W 1,p(x)
0 (Rn

+,C`n)
≤ Lk‖uk−1 − uk−2‖W 1,p(x)

0 (Rn
+,C`n)

. (4.12)

On the other hand, by (3.1) and Lemma 4.1, we have

‖uk‖W 1,p(x)
0 (Rn

+,C`n)
≤ 1
µ
‖TQπk‖W 1,p(x)

0 (Rn
+,C`n)

+
ρ

µ
‖TQT̃F (uk−1)‖

W
1,p(x)
0 (Rn

+,C`n)

≤ C1C4

ν
‖uk−1‖2W 1,p(x)

0 (Rn
+,C`n)

+
C4

ν
‖f‖W−1,p(x)(Rn

+,C`n).

Now we have to ensure that

‖uk‖W 1,p(x)
0 (Rn

+,C`n)
≤ ‖uk−1‖W 1,p(x)

0 (Rn
+,C`n)

.

For this we notice that
C1C4

ν
‖uk−1‖2W 1,p(x)

0 (Rn
+,C`n)

+
C4

ν
‖f‖W−1,p(x)(Rn

+,C`n) ≤ ‖uk−1‖W 1,p(x)
0 (Rn

+,C`n)
,

which is equivalent to

‖uk−1‖2W 1,p(x)
0 (Rn

+,C`n)
− ν

C1C4
‖uk−1‖W 1,p(x)

0 (Rn
+,Cln)

+
1
C1
‖f‖W−1,p(x)(Rn

+,C`n) ≤ 0,

which is equivalent to(
‖uk−1‖W 1,p(x)

0 (Rn
+,C`n)

− ν

2C1C4

)2

≤ ν2

(2C1C4)2
− 1
C1
‖f‖W−1,p(x)(Rn

+,C`n).

According to the assumption (4.7), we have∣∣∣‖uk−1‖W 1,p(x)
0 (Rn

+,C`n)
− ν

2C1C4

∣∣∣ ≤ W
with

M =
( ν2

4C2
1C

2
4

− 1
C1
‖f‖W−1,p(x)(Rn

+,C`n)

)1/2

.

This leads to the following condition for ‖uk−1‖W 1,p(x)
0 (Rn

+,C`n)
,

ν

2C1C4
−M ≤ ‖uk−1‖W 1,p(x)

0 (Rn
+,C`n)

≤ ν

2C1C4
+M.

Now assume that ‖uk−1‖W 1,p(x)
0 (Rn

+,C`n)
≤ ν

2C1C4
−M. Then it follows that

‖uk‖W 1,p(x)
0 (Rn

+,C`n)

≤ 1
µ
‖TQπk‖W 1,p(x)

0 (Rn
+,C`n)

+
ρ

µ
‖TQT̃F (uk−1)‖

W
1,p(x)
0 (Rn

+,C`n)

≤ C1C4

ν
‖uk−1‖2W 1,p(x)

0 (Rn
+,C`n)

+
C4

ν
‖f‖W−1,p(x)(Rn

+,C`n)

≤ C1C4

ν

( ν

2C1C4
−M

)2

+
C4

ν
‖f‖W−1,p(x)(Rn

+,C`n)

≤ ν

2C1C4
−M.

Consequently, using the inequality ‖uk−2‖W 1,p(x)
0 (Rn

+,C`n)
≤ ν

2C1C4
−M and (4.12)

we have

‖uk − uk−1‖W 1,p(x)
0 (Rn

+,C`n)
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≤ 2C1C4

ν

( ν

2C1C4
−M

)
‖uk−1 − uk−2‖W 1,p(x)

0 (Rn
+,C`n)

≤
(

1− 2C1C4

ν
M
)
‖uk − uk−1‖W 1,p(x)

0 (Rn
+,C`n)

.

And
Lk ≤ 1− 2C1C4

ν
M := µ < 1.

In this case one has

‖uk − uk−1‖W 1,p(x)
0 (Rn

+,C`n)
≤ µ‖uk−1 − uk−2‖W 1,p(x)

0 (Rn
+,C`n)

(4.13)

with 0 < µ < 1 and fixed. The convergence of the sequence {uk} is therefore
obtained by Banach’s contraction mapping principle, and hence the convergence of
the sequence {πk} immediately follows from (4.9). �

Remark 4.4. Here, ν is the kinematic viscosity of the fluid. Our result states
that under certain smallness condition of the external force, there exists a unique
solution to the stationary Navier-Stokes equations.

Remark 4.5. Here we would like to point out that the obtained solutions in The-
orem 3.3 and Theorem 4.3 are weak solutions, see [28, Theorem 4.2 and Theorem
5.1] for the similar proofs in the case of bounded domains, so we omit all the details.

Now it is straightforward to obtain the following results based on Theorem 4.3.

Corollary 4.6. Under the assumptions in Theorem 4.3, we have the a-priori esti-
mate

‖u‖
W

1,p(x)
0 (Rn

+,C`n)
≤ ν

2C1C4
−M. (4.14)

An a-priori estimate for the term ‖Qπ‖Lp(x)(Rn
+) is easy to obtain.

Corollary 4.7. There exists the error estimate

‖uk − u‖W 1,p(x)
0 (Rn

+,C`n)
≤ Lk

1− L
‖u0 − u‖W 1,p(x)

0 (Rn
+,C`n)

.

In the case of u0 = 0 we have

‖uk − u‖W 1,p(x)
0 (Rn

+,Cln)
≤ Lk

1− L

( ν

2C1C4
−M

)
.

5. N-S equations with heat conduction in the half-space

In this section we will study the flow of a viscous fluid under the influence of
temperature. Similar to [15] the above method for treating the stationary Navier-
Stokes equations can be applied to more complicated problems. More specifically,
we consider the following problem:

−∆u+
ρ

µ
(u · ∇)u+

1
µ
∇π +

γ

µ
gw = −f in Rn+, (5.1)

−∆w +
m

κ
(u · ∇)w =

1
κ
h in Rn+, (5.2)

div u = 0 in Rn+, (5.3)

u = 0, w = 0 on Σ. (5.4)

In addition to the case of Navier-Stokes equations, w denotes the temperature,
γ the Grasshof number, m the Prandtl number, κ the number of temperature
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conductivity and g the vector (0, 0, . . . ,−1)T , where only the nth component is
different from zero. For the detailed account about the Grasshof number, the
Prandtl number and the Reynolds number, we refer to [16].

Remark 5.1. In the case of Ω a bounded domain and space W k,2
0 (Ω,H), the

problem (5.1)–(5.4) was already studied by Gürlebeck and Sprößig [16]. In the case
of Ω a unbounded domain and space W 1,p

0 (Ω,C`n), the problem (5.1)–(5.4) was
already investigated by Cerejeiras and Kähler [2], see also [38] for the corresponding
results in the setting of variable exponents in bounded smooth domains.

In analogy to the case of the Navier-Stokes equations, we consider the following
equivalent hyper-complex problem:

u+
1
µ
TQπ = −TQT̃ (F (u)− γ

µ
enw) in Rn+, (5.5)

1
µ

[
Qπ
]
0

=
[
QT̃ (F (u)− γ

µ
enw)

]
0

in Rn+, (5.6)

w = −m
κ
TQT̃

[
uD
]
0
w +

1
κ
TQT̃h in Rn+, (5.7)

with F (u) := f + ρ
µ

[
uD
]
0
u. Then the problem can be solved by the following

iteration process:

uk +
1
µ
TQπk = −TQT̃ (F (uk−1)− γ

µ
enwk−1) in Rn+, (5.8)

1
µ

[
Qπk

]
0

=
[
QT̃ (F (uk−1)− γ

µ
enwk−1)

]
0

in Rn+, (5.9)

wk = −m
κ
TQT̃

[
ukD

]
0
wk +

1
κ
TQT̃h in Rn+. (5.10)

Equations (5.8) and (5.9) represent an iteration similar to the case of the Navier-
Stokes equations. Hence we have to study the solvability of equation (5.10). To
this end, in analogy to [15], we give the following “inner” iteration:

wik = −m
κ
TQT̃ (uk · ∇)wi−1

k +
1
κ
TQT̃h. (5.11)

Similar to the proof of [38, Theorem 4.1], one can obtain the following result.

Theorem 5.2. Let uk ∈ W 1,p(x)
0 (Rn+,C`n), where p(x) satisfies (2.1) and n/2 ≤

p− ≤ p(x) ≤ p+ <∞. Furthermore, suppose
(i) ‖uk‖W 1,p(x)

0 (Rn
+,C`n)

< κ/mC1C2;

(ii) mν < 2κ(1 + C3).

Then the iteration procedure (5.11) converges in W
1,p(x)
0 (Rn+,C`n) to a unique so-

lution of (5.10) and we have a-priori estimate

‖wk‖W 1,p(x)
0 (Rn

+,C`n)
≤ 2(1 + C3)C2

2κ(1 + C3)−mν
‖h‖W−1,p(x)(Rn

+,C`n).

Combining theorem 5.2 with our considerations in the case of the Navier-Stokes
equations leads to the following theorem. See a similar proof in [38, Theorem 4.2].

Theorem 5.3. Let f ∈ W−1,p(x)(Rn+,C`n), h ∈ W−1,p(x)(Rn+,C`n), where p(x)
satisfies (2.1) and n/2 ≤ p− ≤ p(x) ≤ p+ <∞. Furthermore, assume

(a) ν ‖ f ‖W−1,p(x)(Rn
+,C`n) +C5 ‖ h ‖W−1,p(x)(Rn

+,C`n)< C6;
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(b) ‖ h ‖W−1,p(x)(Rn
+,C`n)< C7;

(c) mν < 2κ(1 + C3),
where

C5 =
2γ(1 + C3)C2

µ(2κ(1 + C3)−mν)
, C6 =

3ν2

16C1C2
4

, γC7 =
µ(2κ(1 + C3)−mν)2

8γmC1C3
2 (1 + C3)3

.

Then the problem (5.5)–(5.7) has a unique solution (u,w, π) in W
1,p(x)
0 (Rn+,C`n)×

W
1,p(x)
0 (Rn+,C`n)×Lp(x)(Rn+,R), where u and w are uniquely defined, and π uniquely

up to a constant. Our iteration procedure (5.8)–(5.10) converges to the solution of
(5.5)–(5.7).
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