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Abstract. In this article, we prove the existence of multiple solutions for

following fractional Schrödinger-Poisson system with sign-changing potential

(−∆)su+ V (x)u+ λφu = f(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the

potential V is allowed to be sign-changing. Under certain assumptions on f ,
we obtain infinitely many solutions for this system.

1. Introduction and preliminaries

This article concerns the fractional Schrödinger-Poisson system

(−∆)su+ V (x)u+ λφu = f(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,
(1.1)

where (−∆)α denotes the fractional Laplacian operator, λ is a positive parameter
and V is allowed to be sign-changing. In (1.1), the first equation is a nonlinear frac-
tional Schrödinger equation in which the potential φ satisfies a nonlinear fractional
Poisson equation. For this reason, system (1.1) is called a fractional Schrödinger-
Poisson system, also known as the fractional Schrödinger-Maxwell system, which
is not only a physically relevant generalization of the classical NLS but also an
important model in the study of fractional quantum mechanics. For more details
about the physical background, we refer the reader to [14, 15] and the references
therein.

If λ = 1, then system (1.1) reduces to the fractional Schrödinger-Poisson system

(−∆)su+ V (x)u+ φu = f(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,
(1.2)
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which has been studied by Zhang [29] by using the fountain theorem. The author
proved the existence of multiple solutions under the condition (A4) and (A5) below.
Meanwhile, the author proved that (A4) and (A5) are more weaker than (A8).

Let s = 1, t = 1 and λ = 1, then system (1.1) can be simplified to the classical
fractional Schrödinger-Poisson system

−∆u+ V (x)u+ φu = f(x, u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.3)

which has been considered to prove the existence of infinitely many solutions for
(1.3) via the fountain theorem. For more details, see the references [11, 13, 17, 20,
24] and the references therein, for more results about applying the critical point
theory to second-order elliptic equations, we refer the reader to [2, 3, 4, 5, 26, 27,
28, 32] and the references therein.

However, it is well known that the fractional Schrödinger-Poisson system was first
introduced by Giammetta [10] and the diffusion is fractional only in the Poisson
equation. Afterwards, in [23], the authors proved the existence of radial ground
state solutions of (1.1) when V (x) ≡ 0 and nonlinearity f(x, u) is of subcritical or
critical growth. Recently, in [29], the author proved infinitely many solutions via
fountain theorem in (1.1) when λ = 1 and V (x) is positive. However, to the best
of our knowledge, for the sign-changing potential case, there are not many results
for problem (1.1).

In 2013, Tang [21] gave some more weaker conditions and studied the existence
of infinitely many solutions for Schrödinger equation via the symmetric mountain
pass theorem with sign-changing potential. Using Tang’s conditions, some authors
studied the existence of infinitely many solutions for different equations with sign-
changing potential. See, e.g., [6, 7, 9, 24, 25, 31] and the references quoted in them.
These results generalized and extended some known results.

In [29], the author proved the existence of multiple solutions for the fractional
Schrödinger-Possion equation with the following super-quadratic conditions:

(A1) infx∈R3 V (x) ≥ V0 > 0, where V0 is a constant. Moreover, for every M > 0,
meas({x ∈ R3 : V (x) ≤ M}) < ∞, where meas(·) denote the Lebesgue
measure in R3.

(A2) There exists a1 > 0 and q ∈ (2, 2∗s) such that

|f(x, u)| ≤ a1(1 + |u|p−1), ∀(x, u) ∈ R3 × R,

where 2∗s = 6
3−2s is the critical exponent in fractional Sobolev inequalities.

Moreover, f(x, u) = o(u) as u→ 0.
(A3) lim|u|→∞

F (x,u)
|u|4 =∞, uniformly for x ∈ R3.

(A4) there exists a constant θ ≥ 1 such that

θF(x, u) ≥ F(x, τu), ∀(x, u) ∈ R3 × R, ∀τ ∈ [0, 1],

where F(x, u) := 1
4uf(x, u)− F (x, u).

(A5) there exists r1 > 0 such that

4F (x, u) ≤ uf(x, u), ∀(x, u) ∈ R3 × R, |u| ≥ r1 .

(A6) f(x,−u) = −f(x, u), ∀ (x, u) ∈ R3 × R.
Under the conditions (A1)–(A4), (A6) and (A1)–(A3), (A5) and (A6), respec-

tively, the author obtained multiple solutions for (1.1) in [29, 30]. However, in [12],
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Jeanjean gave the following condition and application to Landesman-Lazer type
problems in RN .

(A7) f(x,u)
u3 is increasing in u > 0 and decreasing in u < 0.

In [8], the following Ambrosetti and Rabinowitz condition was assumed to prove
the existence of high energy solutions.

(A8) (Also known as (AR) condition) There exist µ > 4 and r1 > 0 such that

0 < µF (x, u) ≤ uf(x, u), ∀x ∈ R3, |u| > r1,

where F (x, u) =
∫ u

0
f(x, η)dη.

Inspired by the above results, we consider problem (1.1) with sign-changing po-
tential and without the (AR) type superlinear condition, and establish the existence
of infinitely many solutions by the symmetric mountain pass theorem in [21]. To
state our results, we use the following conditions on V :

(A9) V ∈ C(R3,R) and infx∈R3 V (x) > −∞;
(A10) there exists a constant d0 > 0 such that

lim
|y|→∞

meas
(
{x ∈ R3 : |x− y| ≤ d0, V (x) ≤M}

)
= 0, ∀M > 0,

where meas denotes the Lebesgue measure on R3.
Condition (A10) was first introduced by Bartsch and Wang [4]. From (A9), we give
the following equivalent equations for problem (1.1):

Remark 1.1. By (A9), we known that V (x) is bounded from below. Hence there
exists V0 > 0 such that infx∈R3 Ṽ (x) > 0 for all x ∈ R3, where Ṽ (x) := V (x) + V0.
Let f̃(x, u) := f(x, u) + V0u. Then problem (1.1) is equivalent to the problem

(−∆)su+ Ṽ (x)u+ λφu = f̃(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3.

To achieve our results, we need to make the following assumptions on F and f .
(A11) f ∈ C(R3,R), and there exist c1 > 0, c2 > 0 and q ∈ (4, 2∗s) such that

|f(x, u)| ≤ c1|u|3 + c2|u|q−1, ∀(x, u) ∈ R3 × R,
where 2∗s = 6

3−2s is the critical exponent in fractional Sobolev inequalities.

(A12) lim|u|→∞
|F (x,u)|
|u|4 =∞, a.e. x ∈ R3 and there exists r0 ≥ 0 such that

F (x, u) ≥ 0, ∀(x, u) ∈ R3 × R, |u| ≥ r0;

(A13) there exists θ0 > 0 such that

4F (x, u)− uf(x, u) ≤ θ0u
2, ∀(x, u) ∈ R3 × R.

Next, we illustrate that F and f satisfying (A11)-(A13) and (A6) is not equivalent
to F̃ and f̃ satisfying (A11)–(A13) and (A6).

Remark 1.2. First, we prove that f̃ satisfying (A11) is not equivalent to f satis-
fying (A11). In fact, if f̃ satisfies (A11), then we have

|f(x, u)| ≤ |f̃(x, u)− V0u| ≤ c1|u|3 + c2|u|q−1 + V0|u|.
Thus f does not satisfy (A11). Now, if f satisfy (A11), similar to the discussion of
f , we can obtain

|f̃(x, u)| ≤ c1|u|3 + c2|u|q−1 + V0|u|.
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Thus f̃ does not satisfy (A11).
Second, if lim|u|→∞

|F (x,u)|
|u|4 = ∞, a.e. x ∈ R3 then lim|u|→∞

| eF (x,u)|
|u|4 = ∞, a.e.

x ∈ R3. the converse also holds. Moreover, if F (x, u) ≥ 0 for any (x, u) ∈ R3 × R,
|u| ≥ r0, then F̃ (x, u) ≥ 0 for any (x, u) ∈ R3×R, |u| ≥ r0. Conversely, it does not
hold.

Finally, f̃ satisfying (A13) is not equivalent to f satisfying (A13). In fact, if
4F (x, u)− uf(x, u) ≤ θ0u

2, then using f̃(x, u) := f(x, u) + V0u, we have

4
[
F̃ (x, u)− 1

2
V0u

2
]
− u
[
f̃(x, u) + V0u

]
= 4F̃ (x, u)− uf̃(x, u)− V0u

2 ≤ θ0u
2

which implies
4F̃ (x, u)− uf̃(x, u) ≤ (θ0 + V0)u2.

This shows that F̃ and f̃ satisfy (A13). On the contrary, if 4F̃ (x, u) − uf̃(x, u) ≤
θ0u

2, then similar to the proof the above inequalities, we obtain

4F (x, u)− uf(x, u) ≤ (θ0 − V0)u2.

But we do not know whether θ0 > V0 or not. Thus F and f do not satisfy (A13).
As for (A6), it is easy to check that f satisfying (A6) is equivalent to f̃ satisfying

(A6).

Now, we are ready to state the main results of this paper. Note that the space
E is defined in (2.2).

Theorem 1.3. Suppose that (A6), (A9)–(A13) are satisfied. Then when s ∈
(3/4, 1), t ∈ (0, 1) satisfying 4s + 2t ≥ 3, problem (1.1) has infinitely many non-
trivial solutions. {(uk, φtuk)} in E ×Dt,2(R3) satisfying J(uk) → +∞ as k → ∞,
where the functional J is defined in (2.8).

In [21], the author used the following conditions to prove the existence of infin-
itely many solutions for Schrödinger equation.
(A15) there exist µ > 4 and % > 0 such that

µF (x, u) ≤ uf(x, u) + %u2, ∀(x, u) ∈ R3 × R;

(A16) there exist µ > 4 and r1 > 0 such that

µF (x, u) ≤ uf(x, u), ∀(x, u) ∈ R3 × R, |u| ≥ r0;

It is easy to check that (A15) imply (A13). Thus, we have the following corollary.

Corollary 1.4. Suppose that (A6), (A9)–(A12), (A15) are satisfied. Then when
s ∈ (3/4, 1), t ∈ (0, 1) satisfy 4s + 2t ≥ 3, problem (1.1) has infinitely many
nontrivial solutions. {(uk, φtuk)} in E×Dt,2(R3) satisfying J(uk)→ +∞ as k →∞,
where the functional J is defined in (2.8).

It is easy to check that (A11) and (A15) imply (A16). Thus, we have the following
corollary.

Corollary 1.5. Suppose that (A6), (A9)–(A12), (A16) are satisfied. Then when
s ∈ (3/4, 1), t ∈ (0, 1) satisfy 4s + 2t ≥ 3, problem (1.1) has infinitely many
nontrivial solutions. {(uk, φtuk)} in E×Dt,2(R3) satisfying J(uk)→ +∞ as k →∞,
where the functional J is defined in (2.8).
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Remark 1.6. In our results, F (x, u) is allowed to be sign-changing. Thus (A12) is
much weaker than (A3). In addition, it is obvious that (A15) is somewhat weaker
than (A16). Moreover, (A16) implies (A5) and that (A15) implies (A13). Hence,
our condition (A13) is somewhat weaker than (A5), (A15), (A16).

Remark 1.7. If s ∈ (3/4, 1) then we can infer that 2∗s > 4. Hence (A11) is feasible.

2. Variational framework and main results

In this section, we need assumptions (A17) and (A18) instead of (A9) and (A10).

(A17) Ṽ ∈ C(R3,R) and infx∈R3 Ṽ (x) > 0;
(A18) there exists a constant d0 > 0 such that

lim
|y|→∞

meas
(
{x ∈ R3 : |x− y| ≤ d0, Ṽ (x) ≤M}

)
= 0, ∀M > 0,

where meas denotes the Lebesgue measure on R3.
We define the Gagliardo seminorm by

[u]α,p =
(∫

R3

∫
R3

|u(x)− u(y)|p

|x− y|N+αp
dxdy

)1/p

,

where u : R3 → R is a measurable function.
On the one hand, we define fractional Sobolev space by

Wα,p(R3) = {u ∈ Lp(R3) : u is measurable and [u]α,p <∞}
endowed with the norm

‖u‖α,p =
(

[u]pα,p + ‖u‖pp
)1/p

, (2.1)

where

‖u‖p =
(∫

R3
|u(x)|pdx

)1/p

.

If p = 2, the space Wα,2(R3) is an equivalent definition of the fractional Sobolev
spaces is based on the Fourier analysis; that is,

Hα(R3) := Wα,2(R3) =
{
u ∈ L2(R3) :

∫
R3

(1 + |ξ|2α)|ũ|2dξ <∞
}
,

endowed with the norm

‖u‖Hα =
(∫

R3
|ξ|2α|ũ|2dξ +

∫
R3
|u|2dξ

)1/2

,

where ũ denotes the usual Fourier transform of u. Furthermore, we know that
‖ · ‖Hα is equivalent to the norm

‖u‖Hα =
(∫

R3
|(−∆)α/2u|2dx+

∫
R3
u2dx

)1/2

.

On the other hand, in view of the potential Ṽ (x), we consider the subspace

E =
{
u ∈ Hα(R3) :

∫
R3
Ṽ (x)u2dx <∞

}
. (2.2)

Thus, E is a Hilbert space with the inner product

(u, v)EV =
∫

R3

(
|ξ|2αũ(ξ)ṽ(ξ) + ũ(ξ)ṽ(ξ)

)
dξ +

∫
R3
Ṽ (x)u(x)v(x)dx
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and the norm

‖u‖EV =
(∫

R3

(
|ξ|2α|ũ(ξ)|2 + |ũ(ξ)|2

)
dξ +

∫
R3
Ṽ (x)u2(x)dx

)1/2

.

Moreover, ‖ · ‖EV is equivalent to the norm

‖u‖ := ‖u‖E =
(∫

R3
|(−∆)α/2u|2dx+

∫
R3
Ṽ (x)u2dx

)1/2

,

where the corresponding inner product is

(u, v)E =
∫

R3

(
(−∆)α/2u(−∆)α/2v + Ṽ (x)uv

)
dx.

The homogeneous Sobolev space Dα,2(R3) is defined by

Dα,2(R3) =
{
u ∈ L2∗α(R3) : |ξ|αũ(ξ) ∈ L2(R3)

}
,

which is the completion of C∞0 (R3) under the norm

‖u‖Dα,2 =
(∫

R3
|(−∆)α/2u|2dx

)1/2

=
(∫

R3
|ξ|2α|ũ(ξ)|2dξ

)1/2

,

endowed with the inner product

(u, v)Dα,2 =
∫

R3
(−∆)α/2u(−∆)α/2v dx.

Then Dα,2(R3) ↪→ L2∗α(R3); that is, there exists a constant C0 > 0 such that

‖u‖2∗α ≤ C0‖u‖Dα,2 . (2.3)

Next, we give the following lemmas which discuss the continuous and compact
embedding for E ↪→ Lp(R3) for all p ∈ [2, 2∗α]. In the rest of this article, we use the
norm ‖ · ‖ in E. Motivated by [33, Lemma 3.4], we can prove the following lemma.
Here we omit its proof.

Lemma 2.1. Space E is continuously embedded in Lp(R3) for 2 ≤ p ≤ 2∗α := 6
3−2α

and compactly embedded in Lp(R3) for all s ∈ [2, 2∗α).

By Lemma 2.1, we can conclude that there exists a constant γp > 0 such that

‖u‖p ≤ γp‖u‖, (2.4)

where ‖u‖p denotes the usual norm in Lp(R3) for all 2 ≤ p ≤ 2∗α.

Lemma 2.2 ([18, Theorem 6.5]). For any α ∈ (0, 1), Dα,2(R3) is continuously
embedded int L2∗α(R3), that is, there exists Sα > 0 such that(∫

R3
|u|2

∗
αdx

)2/2∗α
≤ Sα

∫
R3
|(−∆)α/2u|2dx ∀u ∈ Dα,2(R3).

Next, let α = s ∈ (0, 1). Using Hölder’s inequality, for every u ∈ E and s, t ∈
(0, 1), we have ∫

R3
u2vdx ≤

(∫
R3
|u|

12
3+2t dx

) 3+2t
6
(∫

R3
|v|2

∗
t dx
)1/2∗t

≤ γ 12
3+2t

S
1/2
t ‖u‖2‖v‖Dt,2 ,

(2.5)

where we use the embedding

E ↪→ L
12

3+2t (R3) when 2t+ 4s ≥ 3.
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By the Lax-Milgram theorem, there exists a unique φtu ∈ Dt,2(R3) such that∫
R3
v(−∆)tφtudx =

∫
R3

(−∆)t/2φtu(−∆)t/2vdx =
∫

R3
u2vdx, v ∈ Dt,2(R3). (2.6)

Hence, φtu satisfies the Poisson equation

(−∆)tφtu = u2, x ∈ R3.

Moreover, φtu has the integral expression

φtu(x) = ct

∫
R3

u2(y)
|x− y|3−2t

dy, x ∈ R3,

which is called t-Riesz potential, where

ct = π−3/22−2tΓ( 3
2 − 2t)
Γ(t)

.

Thus φtu(x) ≥ 0 for all x ∈ R3, from (2.1) and (2.6), we have

‖φtu‖Dt,2 ≤ S
1/2
t ‖u‖2

L
12

3+2t
≤ C1‖u‖2 when 2t+ 4s ≥ 3. (2.7)

Therefore, by Hölder’s inequality and Lemma 2.1, there exist C̃1 > 0, C̃2 > 0 such
that ∫

R3
φtuu

2dx ≤
(∫

R3
|φtu|2

∗
t dx
)1/2∗t

(∫
R3
|u|

12
3+2t dx

) 3+2t
6

≤ C̃1‖φtu‖Dt,2‖u‖2 ≤ C̃2‖u‖4.

Next, we define the energy functional J on E by

J(u) =
1
2
‖u‖2 +

λ

4

∫
R3
φtuu

2dx−
∫

R3
F̃ (x, u)dx, ∀u ∈ E. (2.8)

By [19], the energy functional J : E → R is well defined and of class C1(E,R).
Moreover, the derivative of J is

〈J ′(u), v〉 =
∫

R3

(
(−∆)s/2u(−∆)s/2v + Ṽ (x)uv + λφtuuv − f̃(x, u)v

)
dx, (2.9)

for all u, v ∈ E. Obviously, it can be proved that if u is a critical point of J , then
the pair (u, φtu) is a solution of system (1.1).

A sequence {un} ⊂ E is said to be a (C)c-sequence if J(u)→ c and ‖J ′(u)‖(1 +
‖un‖) → 0. J is said to satisfy the (C)c-condition if any (C)c-sequence has a
convergent subsequence. To prove our results, we state the following symmetric
mountain pass theorem, see [1, Lemma 2.4] and [19, Lemma 912]

Lemma 2.3. Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where
Y is finite dimensional. If J ∈ C1(X,R) satisfies the (C)c condition for all c > 0,
and

(1) J(0) = 0, J(−u) = J(u) for all u ∈ X;
(2) there exist constants ρ, α > 0 such that J |∂Bρ∩Z ≥ α;
(3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such

that J(u) ≤ 0 on X̃\BR;
then J possesses an unbounded sequence of critical values.
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Lemma 2.4. Assume that a sequence {un} ⊂ E, un ⇀ u in E as n → ∞ and
{‖un‖} is a bounded sequence. Then, as n→∞,∫

R3
(φtunun − φ

t
uu)(un − u)dx→ 0. (2.10)

Proof. Take a sequence {un} ⊂ E such that un ⇀ u in E as n→∞ and {‖un‖} is
a bounded sequence. By Lemma 2.1, we have un → u in Lp(R3) where 2 ≤ p < 2∗s,
and un → u a.e. on R3. Hence supn∈N ‖un‖ < ∞ and ‖u‖ is finite. Since s ∈
(3/4, 1), then we know that E ↪→ L

6
2s . Hence by (2.3) and (2.7), we have∣∣ ∫

R3
(φtunun − φ

t
uu)(un − u)dx

∣∣
≤
(∫

R3
(φtunun − φ

t
uu)2dx

)1/2(∫
R3

(un − u)2dx
)1/2

≤
√

2
[ ∫

R3
(|φtunun|

2 + |φtuu|2)
]1/2
‖un − u‖2

≤ C3

(
‖φtun‖

2
2∗s
‖un‖26

2s
+ ‖φtu‖22∗s‖u‖

2
6
2s

)1/2

‖un − u‖2

≤ C3

(
‖un‖4 + ‖u‖4

)1/2

‖un − u‖2 → 0, as n→∞.

This completes the proof. �

The next lemmas are needed for our proofs.

Lemma 2.5 ([21]). Assume that p1, p2 > 1, r, q ≥ 1 and Ω ⊆ RN . Let g(x, t) be a
Carathéodory function on Ω× R and satisfies

|g(x, t) ≤ a1|t|
p1−1
r + a2|t|

p2−1
r , ∀(x, t) ∈ Ω× R, (2.11)

where a1, a2 ≥ 0. t If un → u in Lp1(Ω) ∩ Lp2(Ω), and un → u a.e. x ∈ Ω, then
for any v ∈ Lp1q(Ω) ∩ Lp2q(Ω),

lim
n→∞

∫
Ω

|g(x, un)− g(x, u)|r|v|qdx = 0. (2.12)

Lemma 2.6. Suppose that (A9)–(A13) are satisfied. Then any {un} ⊂ E satisfying

J(un)→ c > 0, ‖J ′(un)‖(1 + ‖un‖)→ 0 (2.13)

is bounded in E.

Proof. To prove the boundedness of {un} we argue by contradiction. Assume that
‖un‖ → ∞ and let vn = un/‖un‖. Then ‖vn‖ = 1 and ‖vn‖p ≤ γp‖vn‖ = γp for
2 ≤ p < 2∗s. By (A13) and (2.13), for n large enough, we have

c+ 1 ≥ J(un)− 1
4
〈J ′(un), un〉

=
1
4
‖un‖2 +

∫
R3

(1
4
f̃(x, un)un − F̃ (x, un)

)
dx

=
1
4
‖un‖2 +

∫
R3

[1
4
f(x, un)− F (x, un)− 1

4
V0u

2
]
dx

≥ 1
4
‖un‖2 −

1
4

(θ0 + V0) ‖un‖22

≥ 1
4
‖un‖2 −

1
4

(θ0 + V0) ‖vn‖22‖un‖2,

(2.14)
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which implies
c+ 1
‖un‖2

≥ 1
4
− 1

4
(θ0 + V0) ‖vn‖22. (2.15)

For 0 < a < b, let
Ωn(a, b) = {x ∈ R3 : a ≤ |un| < b}. (2.16)

Passing to a subsequence, we may assume that vn ⇀ v in E, then by Lemma 2.1,
vn → v in Lp(R3), 2 ≤ p < 2∗s, and vn → v a.e. on R3. Hence, if ‖un‖ → ∞ in
(2.15), then

‖vn‖22 ≥
4

θ0 + V0
+ on(1),

which shows that vn ⇀ v 6= 0.
We only need to consider the case v 6= 0. Set A := {x ∈ R3 : v(x) 6= 0}. Thus

meas(A) > 0. For a.e. x ∈ A, we have limn→∞ |un(x)| =∞. Hence A ⊂ Ωn(r0,∞)
for large n ∈ N. which implies that χΩn(r0,∞) = 1 for large n, where χΩn denotes
the characteristic function on Ωn and Ωn(0, r0) is the same as in (2.16). By (A13),
then we have

|F̃ (x, un)| ≤ c1u4
n + c2|un|q +

1
2
V0u

2
n, (2.17)

which implies that there exists a constant C3 > 0 such that |F̃ (x, un)| ≤ C3u
2
n, for

any |un| ≤ r0. It follows from (2.8), (2.16), (2.17) and Fatou’s Lemma that

0 = lim
n→∞

c+ o(1)
‖un‖4

= lim
n→∞

J(un)
‖un‖4

= lim
n→∞

[ 1
2‖un‖2

− 1
‖un‖4

∫
R3
F̃ (x, un)dx+

λ

4
1

‖un‖4

∫
R3
φtunu

2
ndx

]
= lim
n→∞

[
− 1
‖un‖4

∫
Ωn(0,r0)

F̃ (x, un)dx

−
∫

Ωn(r0,∞)

F̃ (x, un)
u4
n

v4
ndx+

λ

4
1

‖un‖4

∫
R3
φtunu

2
ndx

]
≤ lim sup

n→∞

[ 1
‖un‖4

‖un‖22 −
∫

Ωn(r0,∞)

F̃ (x, un)
u4
n

v4
ndx

]
+
λC̃2

4

≤ lim sup
n→∞

[ ‖vn‖22
‖un‖2

−
∫

Ωn(r0,∞)

F̃ (x, un)
u4
n

v4
ndx

]
+
λC̃2

4

= lim sup
n→∞

[ γ2
2

‖un‖2
−
∫

Ωn(r0,∞)

F̃ (x, un)
u4
n

v4
ndx

]
+
λC̃2

4

≤ − lim inf
n→∞

∫
Ωn(r0,∞)

F̃ (x, un)
u4
n

v4
ndx+

λC̃2

4

= − lim inf
n→∞

∫
R3

|F̃ (x, un)|
u4
n

[χΩn(r0,∞)(x)]v4
ndx+

λC̃2

4

≤ −
∫

R3
lim inf
n→∞

F̃ (x, un)
u4
n

[χΩn(r0,∞)(x)]v4
ndx+

λC̃2

4
= −∞, (2.18)

which is a contradiction. Thus {un} is bounded in E. �

Lemma 2.7. Suppose that (A9)–(A13) are satisfied. Then each {un} ⊂ E satisfy-
ing (2.13) has a convergent subsequence in E.
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Proof. By Lemma 2.6, {un} is bounded in E. If necessary going to a subsequence,
we can assume that un ⇀ u in E. From Lemma 2.1, we have un → u in Lp(Ω) for
all 2 ≤ p < 2∗s. Hence, by Lemma 2.5, one has∣∣ ∫

R3
(f̃(x, un)− f̃(x, u))(un − u)dx

∣∣→ 0, as n→∞. (2.19)

Observe that

‖un − u‖2 = 〈J ′(un)− J ′(u), un − u〉+
∫

R3
(φtun − φ

t
u)(un − u)dx

+
∫

R3
(f̃(x, un)− f̃(x, u))(un − u)dx.

(2.20)

It is clear that
〈J ′(un)− J ′(u), un − u〉 → 0, as n→∞. (2.21)

From (2.19), (2.20) and (2.21), we have ‖un − u‖ → 0, as n→∞. �

Lemma 2.8. Suppose that (A9)–(A13) are satisfied. Then for each Ẽ ⊂ E, it holds

J(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (2.22)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ →
∞, there is M > 0 such that J(un) ≥ −M for all n ∈ N. Set vn = un

‖un‖ , then

‖vn‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v in E. Since Ẽ is
finite dimensional, then vn → v ∈ Ẽ in E, vn → v a.e. on RN , and so ‖v‖ = 1.
Hence, we can conclude a contradiction by a similar methods as (2.18). �

Corollary 2.9. Suppose that (A9)–(A13) are satisfied. Then for any Ẽ ⊂ E, there
exists R = R(Ẽ) > 0 such that

J(un) ≤ 0, ‖u‖ ≥ R, ∀u ∈ Ẽ.

Let {ej} is a total orthonormal basis of E and define Xj = Rej ,

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , ∀k ∈ Z. (2.23)

Lemma 2.10. Suppose that (A9) and (A10) are satisfied. Then for 2 ≤ p < 2∗s,
we have

βk(s) := sup
u∈Zk,‖u‖=1

‖u‖p → 0, k →∞.

Proof. It is clear that 0 < βk+1 ≤ βk, so that βk → β ≥ 0(k → ∞). For every
k ∈ N, there exists uk ∈ Zk such that |uk|2 > βk

2 and ‖uk‖ = 1. For any v ∈ E,
writing v = Σ∞j=1cjej , we have, by the Cauchy-Schwartz inequality,

|(uk, v)| = |(uk,Σ∞j=1cjej)| = |(uk,Σ∞j=k+1cjej)|

≤ ‖uk‖‖Σ∞j=k+1cjej‖ = (Σ∞j=k+1c
2
j )

1/2 → 0

as k →∞, which implies that uk ⇀ 0. By Lemma 2.1, the compact embedding of
E ↪→ Lp(R3) (2 ≤ p < 2∗s) implies that uk → 0 in Lp(R3). Hence, letting k → ∞,
we obtain β = 0, which completes the proof. �
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By Lemma 2.10, we can choose an integer m ≥ 1 such that

‖u‖22 ≤
1

2V0
‖u‖2, ‖u‖24 ≤

√
1
c1
‖u‖2, ‖u‖qq ≤

q

4c2
‖u‖q, ∀u ∈ Zm, (2.24)

where q ∈ (4, 2∗s).

Lemma 2.11. Suppose that (A9)–(A11) are satisfied. Then there exist constants
ρ, α > 0 such that

J
∣∣
∂Bρ∩Zm

≥ α.

Proof. From (2.17) and (2.24), for u ∈ Zm, choosing ρ := ‖u‖ = 1
2 , we obtain

J(u) =
1
2
‖u‖2 +

λ

4

∫
R3
φtuu

2dx−
∫

R3
F̃ (x, u)dx

≥ 1
2
‖u‖2 −

∫
R3
F̃ (x, u)dx

≥ 1
2
‖u‖2 − c1

4
‖u‖44 −

c2
q
‖u‖qq −

1
2
V0‖u‖22

≥ 1
4
(
‖u‖2 − ‖u‖4 − ‖u‖q

)
=

1
4
[ 3
16
− 1

2q
]

:= α > 0,

since q ∈ (4, 2∗s). This completes the proof. �

Proof of Theorem 1.3. Let X = E, Y = Ym and Z = Zm. By Lemmas 2.6, 2.7,
2.11 and Corollary 2.9, all conditions of Lemma 2.3 are satisfied. Thus problem
(1.1) possesses infinitely many nontrivial solutions. �
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