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Abstract. We prove a uniqueness for the positive solution to a strongly com-
peting system of Lotka-Volterra type problem in the limiting configuration,

when the competition rate tends to infinity. We give an alternate proof of

uniqueness based on properties of limiting solutions.

1. Introduction

The aim of this paper is to investigate the uniqueness of solution for a competition-
diffusion system of Lotka-Volterra type, with Dirichlet boundary conditions as the
competition rate tends to infinity. This model of strongly competing systems have
been extensively studied from different point of views, see [3, 5, 7, 6, 8, 9] and
references therein.

The model describes the steady state of m competing species coexisting in the
same area Ω. Let ui(x) denote the population density of the ith component. The
following system shows the steady state of interaction between m components

∆uε
i =

1
ε
uε

i

∑
j 6=i

uε
j(x) in Ω,

uε
i ≥ 0, i = 1, . . . ,m in Ω,

uε
i (x) = φi(x), i = 1, . . . ,m on ∂Ω.

(1.1)

Here Ω ⊂ Rd is an open, bounded, and connected domain with smooth boundary;
m is an integer; φi are non-negative C1 functions with disjoint supports, that is,
φi ·φj = 0 almost everywhere on the boundary; and the term 1/ε is the competition
rate.

This model is also called adjacent segregation, modeling when particles annihilate
each other on contact. The system (1.1) has been generalized for nonlinear diffusion
or long segregation, where species interact at a distance from each other see [4].
Also in [10] the generalization of this problem has been considered for the extremal
Pucci operator. The numerical treatment of the limiting case of system (1.1) is
given in [2].
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The limiting configuration (solution) of (1.1) as ε tends to zero, is related to
a free boundary problem and the densities ui satisfy the system of differential
inequalities. The uniqueness of limiting solution is proven for the cases m = 2 in
[5] and m = 3 in planar domain, see [7]. Later in [11] these uniqueness results have
been generalized to arbitrary dimension and arbitrary number of species.

In this work we give a new proof for uniqueness of the limiting configuration for
arbitrary m competing densities. We use properties of limiting solution, which is
rather different approach than the proof of uniqueness for limiting solution given
in [11]. The outline of this article is as follows: In Section 2, we state the problem
and provide mathematical background and known results, which will be used in
our proof. In Section 3, we prove the uniqueness of the system (1.1) in the limiting
case as ε tends to zero.

2. Known results and mathematical background

In this section we recall some estimates and compactness properties that will
play an important role in our study. As shown in [11], for each ε, system (1.1)
has a unique solution. Their proof uses the sub- and sup-solution method for
nonlinear elliptic systems to construct iterative monotone sequences which lead to
the uniqueness for system (1.1).

Let Uε = (uε
1, . . . , u

ε
m) be the unique solution of system (1.1) for a fixed ε. Then

uε
i , for i = 1, . . . ,m, satisfies the differential inequality

−∆uε
i ≤ 0 in Ω. (2.1)

We define
ûε

i := uε
i −

∑
j 6=i

uε
j ,

then it is easy to verify the property

−∆ûε
i =

∑
j 6=i

∑
h 6=j

uε
ju

ε
h ≥ 0. (2.2)

By constructing of sub and super solution to the system (1.1), we can show
that ∂uε

i

∂n is bounded on ∂Ω (independent of ε). Then multiplying the inequality
−∆uε

i ≤ 0 by uε
i and integrating by part yields that uε

i is bounded in H1(Ω) for
each ε.

The above discussion shows that the solution of (1.1) belongs to the following
class F , see [5, Lemma 2.1]:

F =
{

(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, −∆ui ≤ 0, −∆ûi ≥ 0, ui = φi on ∂Ω
}
,

where as in system (1.1) the boundary data φi ∈ C1(∂Ω), nonnegative functions
and φi · φj = 0, almost everywhere on the boundary.

The following result in [3, 5] shows the asymptotic behavior of the system as
ε → 0. Let Uε = (uε

1, . . . , u
ε
m) be the solution of system (1.1). If ε tends to zero,

then there exists U = (u1, . . . , um) ∈ (H1(Ω))m such that for all i = 1, . . . ,m:

(1) up to a subsequences, uε
i → ui strongly in H1(Ω),

(2) ui · uj = 0 if i 6= j a.e in Ω,
(3) ∆ui = 0 in the set {ui > 0},
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(4) Let x belong to the common interface of two components ui and uj , then

lim
y→x
∇ui(y) = − lim

y→x
∇uj(y).

From above, the limiting solution, as ε tends to zero, belongs to the class

S =
{

(u1, . . . , um) ∈ F : ui · uj = 0 for i 6= j
}
.

Note that the inequalities in (2.1) and (2.2) hold as ε tends to zero. Also

−∆ûi = 0 on {x ∈ Ω : ui(x) > 0}.

In this part we briefly review the known results about uniqueness of the limiting
configuration of the system (1.1). In particular, for the case m = 2, the limiting
solution and the rate of convergence are given (see [5, Theorem 2.1]). For the sake
of clarity we recall the following result.

Theorem 2.1. Let W be harmonic in Ω with the boundary data φ1 − φ2. Let
u1 = W+, u2 = −W−, then the pair (u1, u2) is the limit configuration of any
sequences (uε

1, u
ε
2) and

‖uε
i − ui‖H1(Ω) ≤ C · ε1/6 as ε→ 0, i = 1, 2.

For the case m = 3, the uniqueness of the limiting configuration, as ε tends to
zero, is shown in [7] on a planar domain, with appropriate boundary conditions.
More precisely, the authors prove that the limiting configuration of the system

∆uε
i =

uε
i (x)
ε

3∑
j 6=i

uε
j(x) in Ω,

uε
i (x) = φi(x) on ∂Ω,

i = 1, 2, 3,

minimizes the energy

E(u1, u2, u3) =
∫

Ω

3∑
i=1

1
2
|∇ui|2dx,

among all segregated states ui · uj = 0, a.e. with the same boundary conditions.

Remark 2.2. System (1.1) is not in a variational form. Existence and uniqueness
for a class of segregation states governed by a variational principle are proved in
[6].

In [11], the uniqueness of the limiting configuration and least energy property
are generalized to arbitrary dimension and for arbitrary number of components.
Following the notation in [11], we have the matric space

Σ = {(u1, u2, . . . , um) ∈ Rm : ui ≥ 0, ui · uj = 0 for i 6= j}.

The authors in [11] show that the solution of the limiting problem (u1, . . . , um) ∈ S
is a harmonic map into the space

∑
. The harmonic map is the critical point (in

weak sense) of the energy functional∫
Ω

m∑
i=1

1
2
|∇ui|2dx,



4 A. ARAKELYAN, F. BOZORGNIA EJDE-2017/96

among all nonnegative segregated states ui · uj = 0, a.e. with the same boundary
conditions, see [11, Theorem 1.6]. Their proof is based on computing the deriva-
tive of the energy functional with respect to the geodesic homotopy between u and
a comparison to an energy minimizing map v with same boundary values. This
demands some procedures to avoid singularity of free boundary. Unlike their ap-
proach, our proof is more direct and based on properties of limiting solutions and
doesn’t require results from regularity theory or harmonic maps.

3. Uniqueness

In this section we prove the uniqueness for the limiting case as ε tends to zero.
Our approach is motivated from the recent work related to the numerical analysis
of a certain class of the spatial segregation of reaction-diffusion systems (see [1]).
We use the notation

ŵi(x) := wi(x)−
∑
p 6=i

wp(x),

for every 1 ≤ i ≤ m.

Lemma 3.1. Let two elements (u1, . . . , um) and (v1, . . . , vm) belong to S. Then
the following equation for each 1 ≤ i ≤ m holds:

max
Ω

(
ûi(x)− v̂i(x)

)
= max
{ui(x)≤vi(x)}

(
ûi(x)− v̂i(x)

)
.

Proof. We argue by contradiction. Assume there exists an i0 such that

max
Ω

(ûi0 − v̂i0) = max
{ui0>vi0}

(ûi0 − v̂i0) > max
{ui0≤vi0}

(ûi0 − v̂i0). (3.1)

Assume D = {x ∈ Ω : ui0(x) > vi0(x)}, then in D we have

−∆ûi0(x) = 0,

−∆v̂i0(x) ≥ 0,
(3.2)

which implies that
∆(ûi0(x)− v̂i0(x)) ≥ 0.

The weak maximum principle yields

max
D

(ûi0 − v̂i0) ≤ max
∂D

(ûi0 − v̂i0) ≤ max
{ui0=vi0}

(ûi0 − v̂i0),

which is inconsistent with our assumption (3.1). It is clear that we can interchange
the role of ûi and v̂i. Thus, we also have

max
Ω

(v̂i(x)− ûi(x)) = max
{vi(x)≤ui(x)}

(v̂i(x)− ûi(x)),

for 1 ≤ i ≤ m. �

In view of Lemma 3.1 we define the following quantities

P := max
1≤i≤m

(
max

Ω
(ûi(x)− v̂i(x))

)
= max

1≤i≤m

(
max
{ui≤vi}

(ûi(x)− v̂i(x))
)
,

Q := max
1≤i≤m

(
max

Ω
(v̂i(x)− ûi(x))

)
= max

1≤i≤m

(
max
{vi≤ui}

(v̂i(x)− ûi(x))
)
.
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Lemma 3.2. Let two elements (u1, . . . , um) and (v1, . . . , vm) belong to S, and let
P and Q be as defined above. If P > 0 is attained for some index 1 ≤ i0 ≤ m,
then we have P = Q > 0. Moreover, there exist another index j0 6= i0 and a point
x0 ∈ Ω, such that

P = Q = max
{ui0≤vi0}

(ûi0 − v̂i0) = max
{ui0=vi0=0}

(ûi0 − v̂i0) = vj0(x0)− uj0(x0).

Proof. Let the maximum P > 0 be attained for the i0th component. According to
the previous lemma, we know that (ûi0(x)− v̂i0(x)) attains its maximum on the set
{ui0(x) ≤ vi0(x)}. Let that maximum point be x∗ ∈ {ui0(x) ≤ vi0(x)}. It is easy
to see that ûi0(x∗) − v̂i0(x∗) = P > 0, implies ui0(x∗) = vi0(x∗) = 0. Indeed, if
ui0(x∗) = vi0(x∗) > 0, then in light of disjointness property of the components of ui

and vi we get P = ûi0(x∗)−v̂i0(x∗) = ui0(x∗)−vi0(x∗) = 0 which is a contradiction.
If ui0(x∗) < vi0(x∗), then again because of the disjointness of the densities ui, vi,
we have

0 < P = ûi0(x∗)− v̂i0(x∗) = ûi0(x∗)− vi0(x∗) ≤ ui0(x∗)− vi0(x∗) < 0.

this again leads to a contradiction. Therefore ui0(x∗) = vi0(x∗) = 0.
Now assume by contradiction that Q ≤ 0. Then by definition of Q we should

have
v̂j(x) ≤ ûj(x), ∀x ∈ Ω, j = 1, . . . ,m.

This apparently yields

vj(x) ≤ uj(x), ∀x ∈ Ω, j = 1, . . . ,m.

Let Di0 = {ui0(x) = vi0(x) = 0}, then we have

0 < P = max
Di0

(
ûi0(x)− v̂i0(x)

)
= max

Di0

(∑
j 6=i0

(vj(x)− uj(x))
)
≤ 0.

This contradiction implies that Q > 0. By analogous proof, one can see that if P
be non-positive then Q will be non-positive as well. Next, assume the maximum P
is attained at a point x0 ∈ Di0 . Then, we get

0 < P = ûi0(x0)− v̂i0(x0)

= (ui0(x0)− vi0(x0)) +
∑
j 6=i0

(vj(x0)− uj(x0))

=
∑
j 6=i0

(vj(x0)− uj(x0)).

This shows that ∑
j 6=i0

vj(x0) =
∑
j 6=i0

uj(x0) + P > 0.

Since (v1, . . . , vm) ∈ S, then there exists j0 6= i0 such that vj0(x0) > 0. This implies

0 < P = ûi0(x0)− v̂i0(x0) = vj0(x0)−
∑
j 6=i0

uj(x0) ≤ v̂j0(x0)− ûj0(x0) ≤ Q.

The same argument shows that Q ≤ P which yields P = Q. Hence, we can write

P = vj0(x0)−
∑
j 6=i0

uj(x0) = v̂j0(x0)− ûj0(x0) = Q.
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This gives us 2
∑

j 6=j0
uj(x0) = 0, and therefore

uj(x0) = 0, ∀j 6= j0,

which completes the last statement of the proof. �

We are ready to prove the uniqueness of a limiting configuration.

Theorem 3.3. There exists a unique vector (u1, . . . , um) ∈ S, which satisfies the
limiting solution of (1.1).

Proof. To show the uniqueness of the limiting configuration, we assume that two
m-tuples (u1, . . . , um) and (v1, . . . , vm) are the solutions of system (1.1) as ε tends
to zero. These two solutions belong to the class S. For them we set P and Q as
above. Then, we consider two cases P ≤ 0 and P > 0. If we assume that P ≤ 0
then Lemma 3.2 implies that Q ≤ 0. This leads to

0 ≤ −Q ≤ ûi(x)− v̂i(x) ≤ P ≤ 0,

for every 1 ≤ i ≤ m, and x ∈ Ω. This provides that

ûi(x) = v̂i(x) i = 1, . . . ,m,

which in turn implies
ui(x) = vi(x).

Now, suppose P > 0. We show that this case leads to a contradiction. Let the
value P is attained for some i0, then due to Lemma 3.2 there exist x0 ∈ Ω and
j0 6= i0 such that:

0 < P = Q = ûi0(x0)− v̂i0(x0) = max
{ui0=vi0=0}

(ûi0(x)− v̂i0(x)) = vj0(x0)− uj0(x0).

Let Γ be a fixed curve starting at x0 and ending on the boundary of Ω. Since Ω
is connected, then one can always choose such a curve belonging to Ω. By the
disjointness and smoothness of vj0 and uj0 there exists a ball centered at x0, and
with radius r0 (r0 depends on x0) which we denote Br0(x0), such that

vj0(x)− uj0(x) > 0 in Br0(x0).

This yields
∆(v̂j0(x)− ûj0(x)) ≥ 0 in Br0(x0).

The maximum principle implies that

max
Br0 (x0)

(v̂j0(x)− ûj0(x)) = max
∂Br0 (x0)

(v̂j0(x)− ûj0(x)) ≤ P.

One the other hand, in view of Lemma 3.2 we have

v̂j0(x0)− ûj0(x0) = vj0(x0)− uj0(x0) = P,

which implies that P is attained at the interior point x0 ∈ Br0(x0). Thus,

v̂j0(x)− ûj0(x) ≡ P > 0 in Br0(x0).

Next let x1 ∈ Γ ∩ ∂Br0(x0). We get v̂j0(x1) − ûj0(x1) = P > 0, which leads to
vj0(x1) ≥ uj0(x1). We proceed as follows: If vj0(x1) > uj0(x1), then as above
vj0(x) > uj0(x) in Br1(x1). This in turn implies

∆(v̂j0(x)− ûj0(x)) ≥ 0 in Br1(x1).
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Again following the maximum principle and recalling that v̂j0(x1) − ûj0(x1) = P
we conclude that

v̂j0(x)− ûj0(x) = P > 0 in Br1(x1).
If vj0(x1) = uj0(x1), then clearly the only possibility is vj0(x1) = uj0(x1) = 0.

Thus,
0 < P = v̂j0(x1)− ûj0(x1) =

∑
j 6=j0

(uj(x1)− vj(x1)).

Following the lines of the proof of Lemma 3.2, we find some k0 6= j0, such that

P = uk0(x1)− vk0(x1) = ûk0(x1)− v̂k0(x1).

It is easy to see that there exists a ball Br1(x1) (without loss of generality one keeps
the same notation)

∆(ûk0(x)− v̂k0(x)) ≥ 0 in Br1(x1).

In view of the maximum principle and above steps we obtain:

ûk0(x)− v̂k0(x) = P > 0 in Br1(x1).

Then we take x2 ∈ Γ ∩ ∂Br1(x1) such that x1 stands between the points x0 and
x2 along the given curve Γ. According to the previous arguments for the point x2

we will find an index l0 ∈ {1, . . . ,m} and corresponding ball Br2(x2), such that

|ûl0(x)− v̂l0(x)| = P in Br2(x2).

We continue this way and obtain a sequence of points xn along the curve Γ, which
are getting closer to the boundary of Ω. Since for all j = 1, . . . ,m and x ∈ ∂Ω we
have

ûj(x)− v̂j(x) = v̂j(x)− ûj(x) = 0,
then obviously after finite steps N we find the point xN , which will be very close
to the ∂Ω and for all j = 1, . . . ,m

|ûj(xN )− v̂j(xN )| < P/2.

On the other hand, according to our construction for the point xN , there exists an
index 1 ≤ jN ≤ m such that

|ûjN
(xN )− v̂jN

(xN )| = P,

which is a contradiction. This completes the proof. �
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