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DISSIPATIVE STURM-LIOUVILLE OPERATORS WITH A
SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

ON BOUNDED TIME SCALES

BILENDER P. ALLAHVERDIEV, AYTEKIN ERYILMAZ, HÜSEYIN TUNA

Communicated by Jerome Goldlstein

Abstract. In this article we consider a second-order Sturm-Liouville operator

with a spectral parameter in the boundary condition on bounded time scales.
We construct a selfadjoint dilation of the dissipative Sturm-Liouville operators.

Using by methods of Pavlov [40, 41, 42], we prove the completeness of the

system of eigenvectors and associated vectors of the dissipative Sturm-Liouville
operators on bounded time scales.

1. Introduction

In the recent years, the study of dynamic equations on time scales have found a
noticeable interest and attracted many researches; see for example [1, 2, 10, 45]. The
first fundamental results in this area were obtained by Hilger [29]. He introduced the
idea of time scales as a way to unify continuous and discrete analysis and it allows
a simultaneous treatment of differential and difference equations, extending those
theories to so called dynamic equations. The study of time scales has led to several
important applications, e.g., in the study of neural networks, heat transfer, and
insect population models, phytoremediation of metals, wound healing and epidemic
models [2, 32, 45]. For some basic definitions, we refer the reader to consult the
reference [8, 20, 21, 22, 28, 34].

The study of problems involving parameter dependent systems is of great inter-
est to a lot of numerous problems in physics and engineering. A boundary-value
problem with a spectral parameter in the boundary condition appears commonly
in mathematical models of mechanics. There are many studies about parameter
dependent problems [3, 7, 16, 23, 27, 30, 38, 39, 44, 45].

The spectral analysis of non-selfadjoint (dissipative) operators is based on ideas
of the functional model and dilation theory rather than on traditional resolvent
analysis and Riesz integrals. Using a functional model of a non-selfadjoint operator
as a principal tool, spectral properties of such operators are investigated. The func-
tional model of non-selfadjoint dissipative operators plays an important role within
both the abstract operator theory and its more specialized applications in other
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disciplines. The construction of functional models for dissipative operators, natu-
ral analogues of spectral decompositions for selfadjoint operators is based on Sz.
Nagy-Foias dilation theory [36] and Lax-Phillips scattering theory [35]. Pavlov’s
approach [40, 41, 42] to the model construction of dissipative extensions of sym-
metric operators was followed by Allahverdiev in his works [3, 4, 5, 6, 7] and some
others [23, 38, 39, 46, 47]. The theory of the dissipative Schrödinger operator on
a finite interval was applied to the problems arising in the semiconductor physics
[9, 10, 11]. In [12, 13, 14, 15], Pavlov’s functional model was extended to (general)
dissipative operators which are finite dimensional extensions of a symmetric oper-
ator, and the corresponding dissipative and Lax-Phillips scattering problems were
investigated in some detail. We extend the results [3, 4, 5, 6, 7, 38, 39, 46, 47] to
the more general eigenvalues problem (2.2)–(2.4) on time scales. While proving our
results, we use the machinery and method of [3, 4, 5, 6, 7].

The organization of this document is as follows: In Section 2, some time scale
essentials are included for the convenience of the reader. In Section 3, we construct a
selfadjoint dilation of dissipative Sturm-Liouville operator on bounded time scales.
We present its incoming and outcoming spectral representations which makes it
possible to determine the scattering matrix of the dilation according to the Lax
and Phillips scheme [35]. A functional model of this operator is constructed by
methods of Pavlov [40, 41, 42] and define its characteristic functions. Finally, we
proved a theorem on completeness of the system of eigenvectors and associated
vectors of dissipative operators.

2. Preliminaries

Let us denote a time scale by T. The forward jump operator σ : T → T is
defined by σ(t) = inf{s ∈ T : s > t}, t ∈ T and the backward jump operator
ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}, t ∈ T (see [20, 21]). We
have operators µσ : T → [0,∞) and µρ : T → (−∞, 0] defined by µσ(t) = σ(t) − t
and µρ(t) = ρ(t) − t, respectively. A point t ∈ T is left scattered if µρ(t) 6= 0
and left dense if µρ(t) = 0, and a point t ∈ T is right scattered if µσ(t) 6= 0 and
right dense if µσ(t) = 0 (see [20, 21]). We introduce the sets Tk, Tk, T∗ which are
derived form the time scale T as follows. If T has a left scattered maximum t1,
then Tk = T−{t1}, otherwise Tk = T. If T has a right scattered minimum t2, then
Tk = T− {t2}, otherwise Tk = T. Finally, T∗ = Tk ∩ Tk.

In [20, 21], f∆(t) the delta (or Hilger ) derivative of f at t (or ∆-differentiable
at some point t ∈ T) is defined as follows: assume f : T → R is a function and let
t ∈ Tk. f∆(t) is a number (provided it exists) with the property that for every ε > 0
there is a neighborhood U ⊂ T of t such that |f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤
ε|σ(t) − s|, (s ∈ U). Analogously one may define the notion of ∇-differentiability
of some function using the backward jump ρ. One can show f∆(t) = f∇(σ(t)) and
f∇(t) = f∆(ρ(t)) for continuously differentiable functions [28].

Let f : T→ R be a function, and a, b ∈ T. If there exists a function F : T→ R,
such that F∆(t) = f(t) for all t ∈ Tk, then F is a ∆-antiderivative of f . In this case
the integral is given by the formula

∫ b
a
f(t)∆t = F (b)−F (a) for a, b ∈ T. Similarly,

one may define the notion of ∇-antiderivative of some function.
Let L2

∆(T∗) be the space of all functions defined on T∗ such that

‖f‖ :=
(∫ b

a

|f(t)|2∆t
)1/2

<∞.
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The space L2
∆(T∗) is a Hilbert space with the inner product (f, g) :=

∫ b
a
f(t)g(t)∆t,

f, g ∈ L2
∆(T∗) (see [43]).

Let a ≤ b be fixed points in T and a ∈ Tk, b ∈ Tk. We will consider the Sturm-
Liouville equation

l(y) := −[p(t)y∆(t)]∇ + q(t)y(t), t ∈ [a, b], (2.1)

where q : T → C is continuous function, p : T → C is ∇-differentiable on Tk,
p(t) 6= 0 for all t ∈ T, and p∇ : Tk → C is continuous. The Wronskian of y, z is
defined as W (y, z)(t) := p(t)[y(t)z∆(t)− y∆(t)z(t)], t ∈ T∗ (see [28]).

Let L0 denote the closure of the minimal operator generated by (2.1) and by D0

its domain. Moreover, we denote by D the set of all functions y(t) from L2
∆ (T∗)

such that l(y) ∈ L2
∆(T∗); D is the domain of the maximal operator L. Furthermore

L = L∗0 (see [37]). Suppose that the operator L0 has defect index (2, 2) (see [31]).
For every y, z ∈ D, Lagrange’s identity [28] is defined as (Ly, z) − (y, Lz) =

[y, z](b)− [y, z](a), where [y, z] := p(t)[y(t)z∆(t)− y∆(t)z(t)].
Consider the boundary-value problem defined by

l(y) = λy, y ∈ D, (2.2)

subject to the boundary conditions

y(b)− hp(b)y∆(b) = 0, Imh > 0, (2.3)

α1y(a)− α2p(a)y∆(a) = λ(α′1y(a)− α′2p(a)y∆(a)) (2.4)

where λ is spectral parameter and α1, α2, α
′
1, α
′
2 ∈ R and α is defined by

α :=
∣∣∣∣α′1 α1

α′2 α2

∣∣∣∣ = α′1α2 − α1α
′
2 > 0.

For λ = 1, this problem was investigated by Tuna [47].
On the other hand, when we restrict the time variable to t ≥ 0, the usual case of

nonnegative continuous time, there is some related literature. For instance, Favini
et al. [24, 25, 26] obtained some corresponding results in n dimensions. See also
[17, 18, 19].

For the sake of simplicity, we define Ra(y) := α1y(a) − α2p(a)y∆(a), R′a(y) :=
α′1y(a)−α′2p(a)y∆(a), N b

1(y) := y(b), N b
2(y) := p(b)y∆(b), Na

1 (y) := y(a), Na
2 (y) :=

p(a)y∆(a), Rb(y) := N b
2(y)− hN b

1(y).

Lemma 2.1. For arbitrary y, z ∈ D suppose that Ra(z) = Ra(z), R′a(z) = R′a(z).
Then

[y, z](a) =
1
α

[Ra(y)R′a(z)−R′a(y)Ra(z)] . (2.5)

Proof. Note that
1
α

[Ra(y)R′a(z)−R′a(y)Ra(z)]

=
1
α

[(α1y(a)− α2p(a)y∆(a))(α′1z(a)− α′2p(a)z∆(a))]

− 1
α

[(α′1y(a)− α′2p(a)y∆(a))(α1z(a)− α2p(a)z∆(a))]

=
1
α

[(α′1α2 − α1α
′
2)(y(a)p(a)z∆(a)− p(a)y∆(a)z(a))]

= [y, z](a).



4 B. P. ALLAHVERDIEV, A. ERYILMAZ, H. TUNA EJDE-2017/95

�

Let θ1, θ2 denote the solutions of (2.1) satisfying the conditions Na
1 (θ2) = α2 −

α′2λ, Na
2 (θ2) = α1 − α′1λ, N b

1(θ1) = h, N b
2(θ1) = 1. By equation (2.1), we have

∆(λ) = [θ1, θ2](t) = −[θ2, θ1](t) = −[θ2, θ1](a)

= − 1
α

[Ra(θ1)R′a(θ2)−R′a(θ1)Ra(θ2)] = Ra(θ2)− λR′a(θ2),

and ∆(λ) = [θ1, θ2](t) = −[θ2, θ1](t) = −[θ2, θ1](b) = −(Na
2 (θ1) − hNa

1 (θ1)). We
also let

G(t, ξ, λ) =
1

∆(λ)

{
θ2(ξ, λ)θ1(t, λ), t < ξ

θ1(t, λ)θ2(ξ, λ), ξ < t .

It can be shown that G(t, ξ, λ) satisfies equation (2.1) and boundary conditions
(2.3)-(2.4). G(t, ξ, λ) is a Green function of the boundary-value problem (2.2)–(2.4).
Thus, we obtain the G(t, ξ, λ) is a Hilbert-Schmidt kernel and the solution of the
boundary value problem can be expressed by y(t, λ) =

∫ b
a
G(t, ξ, λ)y(ξ, λ)dξ = Rλy.

Thus Rλ is a Hilbert Schmidt operator on space L2
∆(T∗). The spectrum of the the

boundary value problem coincide with the roots of the equation ∆(λ) = 0. Since
∆ is analytic and not identical to zero, it means that the function ∆ has at most a
countable number of isolated zeros with finite multiplicity and possible limit points
at infinity.

Suppose that f (1) ∈ L2
∆(T∗) and f (2) ∈ C. We denote linear space H = L2

∆(T∗)⊕

C with two component of elements of f̂ =
(
f (1)(t)
f (2)

)
. If α > 0 and f̂ =

(
f (1)(t)
f (2)

)
,

ĝ =
(
g(1)(t)
g(2)

)
∈ H, then the formula

(f̂ , ĝ) =
∫ b

a

f (1)(t)g(1)(t)∆t+
1
α
f (2)g(2)

defines an inner product in Hilbert space H. In terms of this inner product, linear
space H is a Hilbert space. Let us define operator of Ah : H → H with equalities
suitable for boundary-value problem

D(Ah) =
{
f̂ =

(
f (1)

f (2)

)
∈ H : f (1) ∈ D,Rb(f (1)) = 0, f (2) = R′a(f (1))

}
and Ahf̂ = l̃(f̂) :=

(
l(f (1))
Ra(f (1))

)
. Recall that a linear operator Ah with domain

D(Ah) in Hilbert space H is called dissipative if Im(Ahf, f) ≥ 0 for all f ∈ D(Ah)
and maximal dissipative if it does not have a proper extension.

3. Main Results

Theorem 3.1. The operator Ah is maximal dissipative in the space H.

Proof. Let ŷ ∈ D(Ah). From (2.5), we have

(Ahŷ, ŷ)− (ŷ, Ahŷ) = [y1, y1](b)− [y1, y1](a)

+
1
α

[Ra(y1)R′a(y1)−R′a(y1)Ra(y1)] = [y1, y1](b) = 2 Imh(p(b)y∆(b))2.
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Since Im(Ahŷ, ŷ) = Imh(p(b)y∆(b))2 ≥ 0, Ah is a dissipative operator in H. Let
us prove that Ah is maximal dissipative operator in the space H. To do this, it is
enough to control that

(Ah − λI)D(Ah) = H, Imλ < 0 (3.1)

To prove (3.1), let F ∈ H, Imλ < 0 and set

Γ =

(
(G̃t, F )

R′a[(G̃t, F )]

)
,

where

G̃t,λ =
(

G(t, ξ, λ)
R′a[G(t, ξ, λ)]

)
, G(t, ξ, λ) =

{
1

∆(λ)θ2(ξ, λ)θ1(t, λ), t < ξ
1

∆(λ)θ1(t, λ)θ2(ξ, λ), ξ < t .

The function t 7→ (G(t, ξ, λ), F1) satisfies the equation l(y)−λy = F1 (a < t < b) and
the boundary conditions (2.3)—(2.4). Moreover, for all F ∈ H and for Imλ < 0,
we obtain Γ ∈ D(Ah). For each F ∈ H and for Imλ < 0, we have (Ah−λI)Γ = F .
Consequently, the result is (Ah−λI)D(Ah) = H in the case of Imλ < 0. The proof
of is complete. �

Definition 3.2. If the system of vectors y0, y1, y2, . . . , yn corresponding to the
eigenvalue λ0 satisfy

l(y0) = λ0y0, Ra(y0)− λR′a(y0) = 0, Rb(y0) = 0,

l(ys)− λ0ys − ys−1 = 0, Ra(ys)− λR′a(ys)−R′a(ys−1) = 0,

Rb(ys) = 0, s = 1, 2, . . . , n,

(3.2)

then the system y0, y1, y2, . . . , yn corresponding to the eigenvalue λ0 is called a
chain of eigenvectors and associated vectors of boundary-value problem (2.2)-(2.4)
[3, 4, 5, 6, 7, 23, 38, 39, 46, 47].

Since the operator Ah is dissipative in H and from Definition 3.2, we have that
the eigenvalue of boundary value problem (2.2)-(2.4) coincides with the eigenvalue
of dissipative operator Ah. Additionally each chain of eigenvectors and associated
vectors y0, y1, y2, . . . , yn corresponding to the eigenvalue λ0 corresponds to the chain
eigenvectors and associated vectors ŷ0, ŷ1, ŷ2, . . . , ŷn corresponding to the same
eigenvalue λ0 of dissipative Ah operator. In this case, the equality ŷk =

(
yk

R′a(yk)

)
,

k = 0, 1, 2, . . . , n, holds.
Now, we first construct the self adjoint dilation of the operator Ah. To do

this, let us add the “incoming” and “outgoing” subspaces D− = L2(−∞, 0] and
D+ = L2[0,∞) to H = L2

∆(T∗) ⊕ C. The orthogonal sum H = D− ⊕ H ⊕ D+ is
called main Hilbert space of the dilation. In the space H, we consider the operator
Lh on the set D(Lh), its elements consisting of vectors w = 〈ϕ−, y, ϕ+〉, generated
by the expression

Lh〈ϕ−, ŷ, ϕ+〉 = 〈idϕ−
dξ

, l̃(ŷ), i
dϕ+

dξ
〉 (3.3)

satisfying the conditions: ϕ− ∈ W 1
2 (−∞, 0], ϕ+ ∈ W 1

2 [0,∞), ŷ ∈ H, ŷ =
(
y1(x)
y2

)
,

y1 ∈ D, y2 = R′a(y1), y(b) − hp(b)y∆(b) = βϕ−(0), y(b) − hp(b)y∆(b) = βϕ+(0)
where W 1

2 (·, ·) are Sobolev spaces and β2 := 2 Imh, β > 0 (see [3, 4, 5, 6, 7, 38, 39,
46, 47]).
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Theorem 3.3. The operator Lh is selfadjoint in H and it is a selfadjoint dilation
of the operator Ah.

Proof. We first prove that Lh is symmetric inH. Namely (Lhf, g)H−(f,Lhg)H = 0.
Let f, g ∈ D(Lh), f = 〈ϕ−, ŷ, ϕ+〉 and g = 〈ψ−, ẑ, ψ+〉. Then we have

(Lhf, g)H − (f,Lhg)H
= (Lh〈ϕ−, ŷ, ϕ+〉, 〈ψ−, ẑ, ψ+〉)− (〈ϕ−, ŷ, ϕ+〉,Lh〈ψ−, ẑ, ψ+〉)

= [y1, z1](b)− [y1, z1](a) +
1
α

[Ra(y1)R′a(z1)−R′a(y1)Ra(z1)]

+ iψ−(0)ϕ−(0)− iϕ+(0)ψ+(0)

Therefore,

(Lhf, g)H − (f,Lhg)H = [y1, z1](b) + iψ−(0)ϕ−(0)− iϕ+(0)ψ+(0). (3.4)

On the other hand,

iψ−(0)ϕ−(0)− iϕ+(0)ψ+(0) =
i

β2
(y(b)− hp(b)y∆(b))(z(b)− hp(b)z∆(b))

− i

β2
(y(b)− hp(b)y∆(b))(z(b)− hp(b)z∆(b))

=
i

β2
(h− h)p(b)[y(b)z∆(b)− z(b)y∆(b)].

By (3.4), we obtain

iψ−(0)ϕ−(0)− iϕ+(0)ψ+(0) = −[y1, z1](b), (3.5)

and we have (Lhf, g)H − (f,Lhg)H = 0. Thus, we prove that Lh is a symmetric
operator. To prove that Lh is selfadjoint, we need to show that L∗h ⊆ Lh. Now,
we consider the bilinear form (Lhf, g)H on elements g = 〈ψ−, ẑ, ψ+〉 ∈ D(L∗h),
where f = 〈ϕ−, ŷ, ϕ+〉 ∈ D(Lh), ϕ∓ ∈ W 1

2 (R∓), ϕ∓(0) = 0. Integrating by parts,
we obtain L∗hg = 〈idψ−dξ , ẑ

∗, idψ+
dξ 〉, where ψ∓ ∈ W 1

2 (R∓), ẑ∗ ∈ H. Similarly, if
f = 〈0, ŷ, 0〉 ∈ D(Lh), then integrating by parts in (Lhf, g)H, we obtain

L∗hg = L∗h〈ψ−, ẑ, ψ+〉 = 〈idψ−
dξ

, l̃(ẑ), i
dψ+

dξ
〉, z1 ∈ D, z2 = R′a(z1). (3.6)

Consequently, we have (Lhf, g)H = (f,Lhg) H, for each f ∈ D(Lh) by (3.6), where
the operator Lh is defined by (3.3). Therefore, the sum of the integrated terms in
the bilinear form (Lhf, g)H must be equal to zero:

[y1, z1](b)− [y1, z1](a) +
1
α

[Ra(y1)R′a(z1)

−R′a(y1)Ra(z1)] + iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0) = 0.

Then by (3.5), we obtain

[y1, z1](b) + iϕ−(0)−ψ−(0)− iϕ+(0)ψ+(0) = 0. (3.7)

From the boundary conditions for Lh, we have

y(b) = βϕ−(0)− h

iβ
(ϕ−(0)− ϕ+(0)), p(b)y∆(b) =

i

β
(ϕ−(0)− ϕ+(0)).
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Afterwards, by (3.7) we obtain

βϕ−(0)− h

iβ
(ϕ−(0)− ϕ+(0))z(b)− i

β
(ϕ−(0)− ϕ+(0))p(b)z∆(b)

= iϕ+(0)ψ+(0)− iϕ−(0)ψ−(0).
(3.8)

We obtain iβ2−h
β z(b) + 1

β p(b)z
∆(b) = ϕ−(0) comparing the coefficients of ϕ−(0) in

(3.8) or
z(b)− hp(b)z∆(b) = βψ−(0). (3.9)

Similarly, we obtain
z(b)− hp(b)z∆(b) = βψ+(0) (3.10)

by comparing the coefficients of ϕ+(0) in (3.8). Consequently, conditions (3.9) and
(3.10) imply D(L∗h) ⊆ D(Lh), hence Lh = L∗h.

The selfadjoint operator Lh generates on H a unitary group Ut = exp(iLht)
(t ∈ R = (−∞,∞)). Let us denote by P : H → H and P1 : H → H the mappings
defined by P : 〈ϕ−, ŷ, ϕ+〉 → ŷ and P1 : ŷ → 〈0, ŷ, 0〉. Let Zt := PUtP1 t ≥ 0, by
using Ut. The family {Zt} (t ≥ 0) of operators is a strongly continuous semigroup
of completely non-unitary contraction on H. Let us denote by Bh the generator of
this semigroup: Bhŷ = limt→+0(it)−1(Ztŷ − ŷ). The domain of Bh consists of all
the vectors for which the limit exists. The operator Bh is dissipative. The operator
Lh is called the selfadjoint dilation of Bh (see [3, 4, 5, 6, 7, 38, 39, 46, 47]). We show
that Bh = Ah, hence Lh is selfadjoint dilation of Bh. To show this, it is sufficient
to verify the equality

P (Lh − λI)−1P1ŷ = (Ah − λI)−1ŷ, ŷ ∈ H, Imh < 0. (3.11)

To do this, we set (Lh − λI)−1P1ŷ = g = 〈ψ−, ẑ, ψ+〉. Then we have (Lh − λI)g =
P1ŷ, and hence l̃(ẑ)− λẑ = ŷ, ψ−(ξ) = ψ−(0)e−iλξ and ψ+(ξ) = ψ+(0)e−iλξ. Since
g ∈ D(Lh), then ψ− ∈ L2(−∞, 0), it follows that ψ−(0) = 0, and consequently
ẑ satisfies the boundary condition z(b) − hp(b)z∆(b) = 0. Therefore ẑ ∈ D(Ah),
and since point λ with Imλ < 0 cannot be an eigenvalue of dissipative operator, it
follows that ψ+(0) is obtained from the formula ψ+(0) = β−1(z(b) − hp(b)z∆(b)).
Thus, we have

(Lh − λI)−1P1ŷ = 〈0, (Ah − λI)−1ŷ, β−1(z(b)− hp(b)z∆(b))〉

for ŷ and Imλ < 0. By applying the mapping P , we obtain (3.11) and

(Ah − λI)−1 = P (Lh − λI)−1P1 = −iP
∫ ∞

0

Ute
−iλtdtP1

= −i
∫ ∞

0

Zte
−iλtdt = (Bh − λI)−1, Imλ < 0,

so this clearly shows that Ah = Bh. �

The unitary group {Ut} has an important property which makes it possible to
apply it to the Lax-Phillips [35]. It can be described as a characteristic function
of maximal dissipative operator. The Lax-Phillips scheme has orthogonal incom-
ing and outcoming subspaces D− = 〈L2(−∞, 0), 0, 0〉 and D+ = 〈0, 0, L2(0,∞)〉
satisfying the following properties

(1) UtD− ⊂ D−, t ≤ 0 and UtD+ ⊂ D+, t ≥ 0;
(2) ∩t≤0UtD− = ∩t≥0UtD+ = {0};
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(3) ∪t≥0UtD− = ∪t≤0UtD+ = H;
(4) D− ⊥ D+.

Definition 3.4. The linear operator A with domain D(A) acting on the Hilbert
space H is called completely nonselfadjoint (or simple) if there is no invariant
subspace M ⊆ D(A) (M 6= {0}) of the operator A on which the restriction A to M
is selfadjoint.

Lemma 3.5. The operator Ah is completely nonselfadjoint (simple).

Proof. Let H ′ ⊂ H be a nontrivial subspace in which Ah induces a selfadjoint
operator A′h with domain D(A′h) = H ′ ∩ D(Ah). If f̂ ∈ D(A′h), then f̂ ∈ D(A′∗h )
and

d

dt
‖eiA

′
htf̂‖2H =

d

dt
(eiA

′
htf̂ , eiA

′
htf̂)H

= i(A′he
iA′htf̂ , eiA

′
htf̂)H − i(eiA

′
htf̂ , A′he

iA′htf̂)H .

Taking ĝ = eiA
′
htf̂ , we have

0 = i(A′hĝ, ĝ)H − i(ĝ, A′hĝ)H

= i[g1, g1](b)− i[g1, g1](a) +
i

α
[Ra(g1)R′a(g1)−R′a(y1)Ra(g1)]

= −2 Imh(Dq−1y1(a))2 = −β2(p(b)y∆(b))2.

Since f̂ ∈ D(A′h), A′h holds condition above. Moreover, eigenvectors of the
operator A′h should also hold this condition. Therefore, for the eigenvectors ŷ(λ)
of the operator Ah acting in H ′ and the eigenvectors of the operator A′h, we have
p(b)y∆(b) = 0. From the boundary conditions, we obtain y(b) = 0 and ŷ(t, λ) = 0.
Consequently, by the theorem on expansion in the eigenvectors of the selfadjoint
operator A′h, we obtain H ′ = {0}. Hence the operator Ah is simple. The proof is
complete. �

Let us define
H− = ∪t≥0UtD− , H+ = ∪t≤0UtD+

where D− = 〈L2(−∞, 0), 0, 0〉 and D+ = 〈0, 0, L2(0,∞)〉. By using Lemma 3.5,
one can obtain H− +H+ = H.

Assume that ϕ(x, λ) and ψ(x, λ) are solutions of l(y) = λy, satisfying the condi-
tions

ϕ(a, λ) =
α′2
α
, p(a)ϕ∆(a, λ) =

α′1
α
,

ψ(a, λ) = α2 − α′2λ, p(a)ψ∆(a, λ) = α1 − α′1λ,
Let us adopt the notation

ψ̂(x, λ) :=
(
ψ(x, λ)
α

)
, nb(λ) =

p(b)ϕ∆(b, λ)
ϕ(b, λ)

, mb(λ) =
ψ(b, λ)

p(b)ψ∆(b, λ)
.

The functions mb(λ) is a meromorphic function on the complex plane C with a
countable number of poles on the real axis. Further, it is possible to show that the
function mb(λ) possesses the following properties: Im mb(λ) ≥ 0 for all Imλ > 0,
and mb(λ) = mb(λ) for all λ ∈ C, except the real poles mb(λ). We set

Sh(λ) :=
mb(λ)− h
mb(λ)− h

. (3.12)
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U−λ (t, ξ, ζ) = 〈e−iλξ, αnb(λ){(mb(λ)− h)p(b)ϕ∆(b, λ)}−1ψ̂(t, λ), Sh(λ)e−iλζ〉.

We note that the vectors U−λ (t, ξ, ζ) for real λ do not belong to the space H. How-
ever, U−λ (t, ξ, ζ) satisfies the equation LhU = λU and the corresponding boundary
conditions for the operator LH . By means of vector U−λ (t, ξ, ζ), we define the
transformation F− : f → f̃−(λ) by

(F−f)(λ) := f̃−(λ) :=
1√
2π

(f, Uλ)H

on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ−(ξ), ϕ+(ζ), y(x) are smooth, compactly
supported functions

Lemma 3.6. The transformation F− isometrically maps H− onto L2(R). For all
vectors f, g ∈ H− the Parseval equality and the inversion formulae hold:

(f, g)H = (f̃−, g̃−)L2 =
∞
inf
−∞

f̃−(λ)g̃−(λ)dλ, f =
1√
2π

∫ ∞
−∞

f̃−(λ)Uλdλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ+, 0, 0〉, with Paley-Wiener theorem,
we have

f̃−(λ) =
1√
2π

(f, Uλ)H =
1√
2π

∫ 0

−∞
ϕ−(ξ)e−iλξdξ ∈ H2

−,

and by using the usual Parseval equality for Fourier integrals, we have

(f, g)H =
∫ ∞
−∞

ϕ−(ξ)ψ−(ξ)dξ =
∫ ∞
−∞

f̃−(λ)g̃−(λ)dλ = (F−f, F−g)L2 ,

Here, H2
± denotes the Hardy classes in L2(R) consisting of the functions analytically

extendible to the upper and lower half-planes, respectively. We now extend to the
Parseval equality to the whole of H−. We consider in H− the dense set of H ′− of
the vectors obtained as follows from the smooth, compactly supported functions in
D− : f ∈ H ′− if f = UT f0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞0 (−∞, 0), where T = Tf is a
nonnegative number depending on f . If f, g ∈ H ′− , then for T > Tf and T > Tg we
have U−T f, U−T g ∈ D−, moreover, the first components of these vectors belong to
C∞0 (−∞, 0). Therefore, since the operators Ut (t ∈ R) are unitary, by the equality
F−Utf = (Utf, Uλ)H = eiλt(f, U−λ )H = eiλtF−f , we have

(f, g)H = (U−T f, U−T g)H = (F−U−T f, F−U−T g)L2 ,

(eiλTF−f, eiλTF−g)L2 = (f̃ , g̃)L2 . (3.13)

By taking the closure (3.13), we obtain the Parseval equality for the space H−.
The inversion formula is obtained from the Parseval equality if all integrals in it
are considered as limits in the of integrals over finite intervals. Finally F−H− =
∪t≥0F−UtD− = ∪t≥0eiλtH2

− = L2(R), that is F− maps H− onto the whole of
L2(R). The proof is complete. �

We set

U+
λ (t, ξ, ζ) = 〈Sh(λ)e−iλξ, αnb(λ)(mb(λ)− h)p(b)ϕ∆(b, λ)ψ̂(t, λ), e−iλζ〉.

We note that the vectors U+
λ (t, ξ, ζ) for real λ do not belong to the space H. How-

ever, U+
λ (t, ξ, ζ) satisfies the equation LhU = λU and the corresponding boundary

conditions for the operator LH . With the help of vector U+
λ (t, ξ, ζ), we define the
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transformation F+ : f → f̃+(λ) by (F+f)(λ) := f̃+(λ) := 1√
2π

(f, U+
λ )H on the

vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ−(ξ), ϕ+(ζ) and y(x) are smooth, compactly
supported functions.

Lemma 3.7. The transformation F+ isometrically maps H+ onto L2(R). For all
vectors f, g ∈ H+ the Parseval equality and the inversion formula hold:

(f, g)H = (f̃+, g̃+)L2 =
∫ ∞
−∞

f̃+(λ)g̃+(λ)dλ, f =
1√
2π

∫ ∞
−∞

f̃+(λ)U+
λ dλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

The proof of the above lemma is analogous to the Lemma 3.6, and it is omitted.
It is obvious that |Sh(λ)| = 1 for λ ∈ R. Therefore, it explicitly follows from the
formulae for the vectors U−λ and U+

λ that

U+
λ = Sh(λ)U−λ . (3.14)

It follows from Lemmas 3.6 and 3.7 that H− = H+. Together with Lemma 3.5, it
can be concluded that H− = H+ = H.

Thus, the transformation F− isometrically maps H− onto L2(R) with the sub-
space D− mapped onto H2

− and the operators Ut are transformed into the operators
of multiplication by eiλt. This means that F− is the incoming spectral representa-
tion for the group {Ut}. Similarly, F+ is the outgoing spectral representation for the
group {Ut}. It follows from (3.14) that the passage from the F− representation of
an element f ∈ H to its F+ representation is accomplished as f̃+(λ) = Sh(λ)f̃−(λ).
Consequently, according to [35], we have proved the following Theorem.

Theorem 3.8. The function Sh(λ) is the scattering matrix of the group {Ut} (of
the selfadjoint operator Lh).

Let S(λ) be an arbitrary non-constant inner function (see [36]) on the upper half-
plane (the analytic function S(λ) on the upper half-plane C+ is called inner function
on C+ if |S(λ)| ≤ 1 for all λ ∈ C+ and |S(λ)| = 1 for almost all λ ∈ R). Define
K = H2

+	SH2
+. Then K 6= {0} is a subspace of the Hilbert space H2

+. We consider
the semigroup of operators Zt (t ≥ 0) acting in K according to the formula Ztϕ =
P [eiλtϕ], ϕ = ϕ(λ) ∈ K, where P is the orthogonal projection from H2

+ onto K.
The generator of the semigroup {Zt} is denoted by Tϕ = limt→+0(it)−1(Ztϕ− ϕ),
which T is a maximal dissipative operator acting in K and with the domain D(T )
consisting of all functions ϕ ∈ K, such that the limit exists. The operator T is called
a model dissipative operator (we remark that this model dissipative operator, which
is associated with the names of Lax-Phillips [35], is a special case of a more general
model dissipative operator constructed by Nagy and Foiaş [36]). The basic assertion
is that S(λ) is the characteristic function of the operator T .

Let K = 〈0, H, 0〉, so that H =D− ⊕K ⊕D+. It follows from the explicit form
of the unitary transformation F− under the mapping F− that

H → L2(R), f → f̃−(λ) = (F−f)(λ), D− → H2
−, D+ → ShH

2
+,

K → H2
+ 	 ShH2

+, Ut → (F−UtF−1
− f̃−)(λ) = eiλtf̃−(λ).

(3.15)

The formulas (3.15) show that operator Ah is a unitarily equivalent to the model
dissipative operator with the characteristic function Sh(λ). Since the characteristic
functions of unitary equivalent dissipative operator coincide (see [36]), we have thus
proved following theorem.
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Theorem 3.9. The characteristic function of the maximal dissipative operator Ah
coincides with the function Sh(λ) defined in (3.12).

Using the characteristic function, we investigate the spectral properties of the
maximal dissipative operator Ah. We know that the characteristic function of a
maximal dissipative operator carries information about the spectral properties of
this operator. To prove completeness of the system of eigenvectors and associated
vectors of the operator Ah in the space H, we must show that there exists no
singular factor s(λ) of the characteristic function Sh(λ) in the factorization Sh(λ) =
s(λ)B(λ) (B(λ) is a Blaschke product) (see [3, 4, 5, 6, 7, 33, 36]). The characteristic
function Sh(λ) of the maximal dissipative operator Ah has the form

Sh(λ) :=
mb(λ)− h
mb(λ)− h

,

where Imh > 0. From (3.12), it is clear that Sh(λ) is an inner function in the upper
half-plane, and it is meromorphic in the whole complex λ-plane.

Theorem 3.10. For all the values of h with Imh > 0, except possibly for a single
value h = h0, the characteristic function Sh(λ) of the maximal dissipative operator
Ah is a Blaschke product. The spectrum of Ahis purely discrete and belongs to
the open upper half-plane. The operator Ah has a countable number of isolated
eigenvalues with finite multiplicity and limit points at infinity. The system of all
eigenvectors and associated vectors of the operator Ah is complete in the space H
(see [3, 4, 5, 6, 7, 23, 38, 39, 46, 47]).

Proof. Since Sh(λ) is an inner function, it can be factored in the form

Sh(λ) = eiλcBh(λ), c = c(h) ≥ 0, (3.16)

where Bh(λ) is a Blaschke product. It follows from (3.16) that

|Sh(λ)| = |eiλc| |Bh(λ)| ≤ e−c(h) Imλ, Imλ ≥ 0. (3.17)

Further, for mb(λ) in terms of Sh(λ), we find from (3.12) that

mb(λ) =
h− hSh(λ)
Sh(λ)− 1

. (3.18)

If c(h) > 0 for a given value h (Imh > 0), then (3.17) implies that limt→+∞ Sh(it) =
0, and then (3.18) gives us that limt→+∞mb(it) = −h. Sincemb(λ) does not depend
on h, this implies that c(h) can be nonzero at not more than a single point h = h0

(and further h0 = − limt→+∞mb(it)). The proof is complete. �
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Boston, 2003.
[22] R. A. Douglas, G. Sh. Guseinov, J. Hoffacker; Higher-order self-adjoint boundary-value prob-

lems on time scales, J. Comput. Appl. Math., 194, 2 (2006), 309–342.

[23] A. Erylmaz; Spectral Analysis of q-Sturm-Liouville Problem with the Spectral Parameter in
the Boundary Condition, Journal of Function Spaces and Applications, Volume 2012, Article

ID 736437, 17 pages.

[24] A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht, S. Romanelli; Elliptic operators with
general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,

Math. Nachr. 283 (2010), 504–521.

[25] A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht, S. Romanelli; Nonsymmetric elliptic
operators with Wentzell boundary conditions in general domains, Comm. on Pure and Appl.

Anal., 15, 6 (2016), 2475–2487.
[26] A. Favini, G. R. Goldstein, J. A. Goldstein, S. Romanelli; The heat equation with generalized

Wentzell boundary condition, J. Evol. Equations 2 (2002), 1–19.

[27] C. T. Fulton; Two-point boundary value problems with eigenparameter contained in the
boundary conditions. Proc Royal Soc Edinburgh, 77A (1977), 293–308.

[28] G. Sh. Guseinov; Self-adjoint boundary value problems on time scales and symmetric Green’s
functions, Turkish J. Math., 29 (4), (2005), 365–380.

[29] S. Hilger; Analysis on measure chains-a unified approach to continuous and discrete calculus,

Results Math., 18 (1990), 18–56.

[30] D. B. Hinton; An expansions theorem for an eigenvalue problem with eigenparameter in the
boundary condition. Q. J. Math Oxf Ser II,1979, 30, 33-42.

[31] A. Huseynov; Limit point and limit circle cases for dynamic equations on time scales, Hacet.
J. Math. Stat., 39 (2010), 379–392.

[32] M. A. Jones, B. Song, D. M. Thomas; Controlling wound healing through debridement, Math.

Comput. Modelling, 40 (2004) 1057–1064.

[33] A. Kuzhel; Characteristic Functions and Models of Nonselfadjoint Operators, Kluwer Aca-
demic, Dordrecht, 1996.



EJDE-2017/95 DISSIPATIVE STURM-LIOUVILLE OPERATORS 13

[34] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan; Dynamic Systems on Measure

Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[35] P. D. Lax, R. S. Phillips; Scattering Theory, Academic Press, New York, 1967.
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