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Abstract. This article concerns the nonlinear Dirac-Poisson system

−i
3X

k=1

αk∂ku+ (V (x) + a)βu+ ωu− φu = Fu(x, u),

−∆φ = 4π|u|2,

in R3, where V (x) is a potential function and F (x, u) is an asymptotically

quadratic nonlinearity modeling various types of interaction. Since the effects

of the nonlocal term, we use some special techniques to deal with the non-
local term. Moreover, the existence of infinitely many stationary solutions is

obtained for system with periodicity assumption via variational methods.

1. Introduction and main results

In this article we study the nonlinear Maxwell-Dirac system

i~∂tψ =
3∑
k=1

αk(−ic~∂k +Ak)ψ +mc2βψ −A0ψ,

∂tA0 +
3∑
k=1

∂kAk = 0, ∂2
tA0 −∆A0 = 4π|ψ|2,

∂2
tAk −∆Ak = 4π(αkψ)ψ̄, k = 1, 2, 3,

(1.1)

in R × R3, where ∂k = ∂
∂xk

, ψ(t, x) ∈ C4, c is the speed of light, m is the mass
of the electron, ~ is the Planck’s constant, A := (A1, A2, A3) : R × R3 → R3 is
the magnetic field, A0 : R× R3 → R is the electric field, and uv̄ denotes the usual
scalar product of u, v ∈ C4. Furthermore, α1, α2, α3 and β are the 4×4 Pauli-Dirac
matrices:

β =
(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3,

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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The Maxwell-Dirac system plays an important role in quantum electrodynamics.
It is used to describe the interaction of a particle with its self-generated electro-
magnetic field, and it has been widely employed in many areas such as quantum
cosmology, atomic physics, nuclear physics and gravitational physics (see [19, 36]).

In this article, we consider the electrostatic case, namely

A0 = φ(x), Ak = 0, k = 1, 2, 3, x ∈ R3,

and for standing wave function

ψ(t, x) = u(x)eiθt/~, θ ∈ R, u : R3 → C4.

In the case of zero magnetic field (i.e. Ak = 0, k = 1, 2, 3) and non-trivial electric
potential φ(x), the Maxwell-Dirac system (1.1) has the form

−i
3∑
k=1

αk∂ku+ aβu+ ωu− φu = 0,

−∆φ = 4π|u|2,

(1.2)

in R3, where a = mc/~, ω = θ/c~. In [21, 37], this system is called the Dirac-Poisson
system.

In the past decade, system (1.2) has been studied for a long time and many
results are available concerning the Cauchy problem, see for instance, [10, 11, 22,
25, 26, 28, 35] and the references therein. As we know, the existence of stationary
solutions of the Maxwell-Dirac system has been an open problem for a long time,
see [27]. As far as variational methods are concerned, there is a pioneering work by
Esteban et al. [20] in which a multiplicity result was studied when ω ∈ (0, a). After
that, Abenda [1] studied the case ω ∈ (−a, a) and obtained the existence result of
soliton-like solutions. And a strong localization result was obtained in [33]. In [29],
Garrett Lisi gave numerical evidence of the existence of bounded states by using
an axially symmetric ansatz. In the survey paper [21], there are more detailed
descriptions for equations and systems related to Dirac operator.

We emphasize that the works mentioned above mainly concerned with the au-
tonomous system with null self-coupling. Besides, the idea to consider a nonlinear
self-coupling, in quantum electrodynamics, gives the description of models of self-
interacting spinor fields, see [23, 24]. Due to the special physical importance, in the
present paper, we consider the Dirac-Poisson system with the general self-coupling
nonlinearity

−i
3∑
k=1

αk∂ku+ (V (x) + a)βu+ ωu− φu = Fu(x, u),

−∆φ = 4π|u|2,

(1.3)

in R3, where V (x) is a potential function and F (x, u) is a nonlinear function mod-
eling various types of interaction.

Recently, for system (1.3) with magnetic field, Chen and Zheng [15] studied
the system with non-periodic potential and superquadratic nonlinearity, and the
existence of least energy stationary solutions was obtained. An asymptotically
quadratic nonperiodic problem was considered in [43]. Zhang et al. [42, 44] con-
sidered the more general periodic problem, and obtained the existence of ground
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state solutions by using linking and concentration compactness arguments. Be-
sides, for other related topics including the superquadratic singular perturbation
problem and concentration phenomenon of semi-classical states, see, for instance
[17, 18, 19, 45] and the references therein.

Motivated by the above facts, in this paper we are concerned with system (1.3)
with non-autonomous asymptotically quadratic nonlinearity and periodicity condi-
tion. To the best of our knowledge, there has been no work concerning on multi-
plicity result in the general case up to now. The main purpose of this paper is to
study the existence and multiplicity of stationary solutions via variational methods.
Before stating our main result, we first make the following assumptions:

(A1) ω ∈ (−a, a);
(A2) V ∈ C1(R3,R+), and V (x) is 1-periodic in xk, k = 1, 2, 3;
(A3) F (x, u) ∈ C1(R3 × C4,R+) and F (x, u) is 1-periodic in xk, k = 1, 2, 3;
(A4) Fu(x, u) = o(|u|) as |u| → 0 uniformly in x;
(A5) Fu(x, u) − G(x)u = o(|u|) as |u| → ∞ uniformly in x, and infx∈R3 G(x) >

a+ ω + supR3 V , where G ∈ C(R3,R) is 1-periodic in xk, k = 1, 2, 3;
(A6) F̃ (x, u) ≥ 0, and there exists δ1 ∈ (0, a − |ω|) such that F̃ (x, u) ≥ δ1

whenever |Fu(x, u)| ≥ (a − |ω| − δ1)|u|, where F̃ (x, u) := 1
2Fu(x, u)u −

F (x, u).

Observe that, because of the periodicity of V , F , if u is a solution of system
(1.3), then so is k ∗ u for all k ∈ Z3, where (k ∗ u)(x) = u(x+ k). Two solutions u1

and u2 are said to be geometrically distinct if k ∗ u1 6= u2 for all k ∈ Z3. The main
result of this paper is the following theorem.

Theorem 1.1. Assume that (A1)–(A6) are satisfied. Then system (1.3) has at
least one nontrivial stationary solutions. Moreover, if F (x, u) is even in u. Then
system (1.3) has infinitely many geometrically distinct solutions.

There have been a large number of works on the existence of stationary solutions
of nonlinear Schrödinger-Poisson system arising in the non-relativistic quantum
mechanics, see, for example, [2, 5, 14, 32, 34, 46]. It is quite natural to ask if
certain similar results can be obtain for nonlinear Dirac-Poisson system arising in
the relativistic quantum mechanics, we will give an answer for Dirac-Poisson system
in the present paper. Mathematically, the two problems possess different variational
structures, the mountain pass and the linking structures respectively. Contrary
to the Schrödinger operator, the Dirac operator not only has unbounded positive
continuous spectrum but also has unbounded negative continuous spectrum, and
the corresponding energy functional is strongly indefinite. On the other hand, the
main difficulty when dealing with this problem is the lack of compactness of Sobolev
embedding, hence our problem poses more challenges in the calculus of variation.
In order to overcome these difficulties, we will turn to the linking and concentration
compactness arguments (see [7, 30, 31]).

Recently, there have been some works focused on existence of stationary solutions
for nonlinear Dirac equation but not for Dirac-Poisson system, see, for example
[8, 16, 39, 40, 41]. Particularly, under the conditions (A3)–(A5) and the following
condition

A6’) F̃ (x, u) > 0 if u 6= 0, and F̃ (x, u)→∞ as |u| → ∞ uniformly in x.
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Zhao and Ding [39] obtained the existence of infinitely many geometrically distinct
solutions. We point out that condition (A6’) plays an important role in the argu-
ments that showing any (C)c-sequence is bounded in [39]. However, F does not
satisfy the above property under the conditions we assumed. Hence, we shall use
new tricks to show any (C)c-sequence is bounded in the present paper, which is dif-
ferent from the arguments in [39]. Moreover, the condition (A6) is weaker than the
one (A6’) and there are some functions satisfying (A6), but not (A6’), see Remark
1.2.

Compared with the Dirac equation, the Dirac-Poisson system becomes more
complicated because of the effects of nonlocal term. This will need more delicate
analysis and some new tricks to get the result. It is worth pointing out that although
some ideas were used before for Dirac equation, the adaptation to the procedure
to our problem is not trivial at all. Hence our result can be viewed as extension to
the result in [8, 39] from Dirac equation to Dirac-Poisson system.

Remark 1.2. Let F (x, u) = 1
2b(x)|u|2

(
1 − 1

1+|u|σ
)
, where > 0, b ∈ C(R3,R) and

is 1-periodic in xk, k = 1, 2, 3, and infR3 b > a+ ω + supR3 V . Then

Fu(x, u) = b(x)
( 1

1 + |u|σ
+

σ|u|σ

(1 + |u|σ)2

)
u, F̃ (x, u) =

b(x)σ|u|σ+2

2(1 + |u|σ)2
≥ 0.

It is easy to see that F satisfies (A3)–(A6), but it does not satisfy (A6’) when σ ≥ 2.

The remainder of this article is organized as follows. In section 2, we formulate
the variational setting, and present two critical point theorems required. In section
3, we will use the linking and concentration compactness principle to prove our
main result.

2. Variational setting and abstract theorem

Below by | · |q we denote the usual Lq-norm, (·, ·)2 denote the usual L2 inner
product, c, Ci stand for different positive constants. For convenience, let

A := −i
3∑
k=1

αk∂k + (V + a)β.

be the Dirac operator. It is well known that A is a selfadjoint operator acting on
L2 := L2(R3,C4) with D(A) = H1 := H1(R3,C4) (see [16, Lemma 7.2 a)]). Let |A|
and |A|1/2 denote respectively the absolute value of A and the square root of |A|,
and let {Fλ : −∞ ≤ λ ≤ +∞} be the spectral family of A. Set U = id−F0−F0−.
Then U commutes with A, |A| and |A|1/2, and A = U |A| is the polar decomposition
of A. Let σ(A), σc(A) be the spectrum, the continuous spectrum of A, respectively.
In order to establish a variational setting for the system (1.3), we have the following
lemma.

Lemma 2.1 ([16, Lemma 7.3]). Suppose (A2) holds. Then

σ(A) = σc(A) ⊂ (−∞,−a] ∪ [a,∞)

and inf σ(|A|) ≤ a+ supR3 V .

From Lemma 2.1 it follows that the space L2 possesses the orthogonal decom-
position:

L2 = L− ⊕ L+, u = u− + u+
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such that A is negative definite on L− and positive definite on L+. Let E :=
D(|A|1/2) be the domain of |A|1/2. We introduce on E the inner product

(u, v) = (|A|1/2u, |A|1/2v)2 + ω(u, v+ − v−)2

and the induced norm

‖u‖ = (u, u)1/2 =
(∣∣|A|1/2u∣∣2

2
+ ω(|u+|22 − |u−|22)

)1/2

.

It is clear that E possesses the following decomposition

E = E− ⊕ E+ and E± = E ∩ L±.

Then

Au = −|A|u, ∀u ∈ E−, Au = |A|u, ∀u ∈ E+,

u = u− + u+, ∀u ∈ E.

Hence E+ and E− are orthogonal with respect to both (·, ·)2 and (·, ·) inner prod-
ucts.

Lemma 2.2 ([16, Lemma 7.4]). Suppose (A1)–(A2) hold. Then E = H1/2(R3,C4)
with equivalent norms, and E embeds continuously into Lp for all p ∈ [2, 3] and
compactly into Lploc for all p ∈ [1, 3). Moreover

(a− |ω|)|u|22 ≤ ‖u‖2, ∀u ∈ E.

Let D1,2 := D1,2(R3,R) be the completion of C∞0 (R3,R) with respect to the
norm

‖u‖2D =
∫

R3
|∇u|2dx.

It is well known system (1.3) can be reduced to a single equation with nonlocal
term. Actually, for each u ∈ E, the linear functional Tu in D1,2 defined by

Tu(v) = 4π
∫

R3
|u|2vdx, v ∈ D1,2,

is continuous. In fact, since u ∈ Lq for all q ∈ [2, 3], one has |u|2 ∈ L6/5 for all
u ∈ E, and Hölder inequality and Sobolev inequality imply that

|Tu(v)| = 4π
∣∣ ∫

R3
|u|2vdx

∣∣ ≤ 4π
(∫

R3

∣∣|u|2∣∣6/5dx
)5/6(∫

R3
|v|6dx

)1/6

≤ 4πS−1/2
∣∣|u|2∣∣

6/5
‖v‖D,

(2.1)

where S is the Sobolev embedding constant. It follows from the Lax-Milgram
theorem that there exists a unique φu ∈ D1,2 such that∫

R3
∇φu · ∇vdx = 4π

∫
R3
|u|2vdx, ∀v ∈ D1,2, (2.2)

that is φu satisfies the Poisson equation

−∆φu = 4π|u|2

and it holds

φu(x) =
∫

R3

|u(y)|2

|x− y|
dy =

1
|x|
∗ |u|2.
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By (2.1) and (2.2), it is easy to see that

‖φu‖2D = 4π
∫

R3
φu|u|2dx ≤ 4πS−1/2

∣∣|u|2∣∣
6/5
‖φu‖D (2.3)

and ∫
R3
φu|u|2dx ≤ S−1/2

∣∣|u|2∣∣
6/5
‖φu‖D ≤ 4πS−1|u|412/5. (2.4)

Substituting φu in (1.3), we are led to the equation

− i
3∑
k=1

αk∂ku+ (V (x) + a)βu+ ωu− φuu = Fu(x, u). (2.5)

Next, on E we define the functional

Φ(u) =
1
2

(‖u+‖2 − ‖u−‖2)− Γ(u)−Ψ(u) (2.6)

for u = u+ + u− ∈ E, where

Γ(u) =
1
4

∫
R3
φu|u|2dx =

1
4

∫
R3×R3

|u(y)|2|u(x)|2

|x− y|
dydx,

Ψ(u) =
∫

R3
F (x, u)dx.

Moreover, our hypotheses imply that Φ ∈ C1(E,R), and a standard argument
shows that critical points of Φ are solutions of system (1.3) (see [16, 38]).

To find critical points of Φ, we shall use the following abstract theorems which
are taken from [7] and [16].

Let E be a Banach space with direct sum E = X ⊕ Y and corresponding pro-
jections PX , PY onto X,Y . Let S ⊂ (X)∗ be a dense subset, for each s ∈ S there
is a semi-norm on E defined by

ps : E → R, ps(u) : |s(x)|+ ‖y‖ for u = x+ y ∈ E.

We denote by TS the topology induced by semi-norm family {ps}, w∗ denote the
weak∗-topology on E∗. Now, some notations are needed. For a functional Φ ∈
C1(E,R) we write Φa = {u ∈ E|Φ(u) ≥ a}, Φb = {u ∈ E|Φ(u) ≤ b} and Φba =
Φa∩Φb. Recall that a sequence {un} ⊂ E is said to be a (C)c-sequence if Φ(un)→ c
and (1 + ‖un‖)Φ′(un) → 0; Φ is said to satisfy the (C)c-condition if any (C)c-
sequence has a convergent subsequence. A setO ⊂ E is said to be a (C)c-attractor if
for any ε, δ > 0 and any (C)c-sequence {un} there is n0 such that un ∈ Uε(O∩Φc+δc−δ)
for n ≥ n0. Given an interval I ⊂ R, O is said to be a (C)I -attractor if it is a (C)c-
attractor for all c ∈ I. Φ is said to be weakly sequentially lower semi-continuous if
for any un ⇀ u in E one has Φ(u) ≤ lim infn→∞ Φ(un), and Φ′ is said to be weakly
sequentially continuous if limn→∞Φ′(un)w = Φ′(u)w for each w ∈ E.

Suppose

(A7) for any c ∈ R, superlevel Φc is TS -closed, and Φ′ : (Φc, TS) → (E∗, w∗) is
continuous;

(A8) for any c > 0, there exists ξ > 0 such that ‖u‖ < ξ‖PY u‖ for all u ∈ Φc;
(A9) there exists r > 0 such that % := inf Φ(Sr ∩ Y ) > 0, where Sr := {u ∈ E :

‖u‖ = r};
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(A10) there is an increasing sequence Yn ⊂ Y of finite-dimensional subsequences
and a sequence {Rn} of positive numbers such that, letting En = X ⊕ Yn
and Bn = BRn ∩En, sup Φ(En) <∞ and sup Φ(En \Bn) < inf Φ(Br ∩ Y ),
where Br := {u ∈ E : ‖u‖ ≤ r};

(A11) for any interval I ⊂ (0,∞) there is a (C)I -attractor O with PXO bounded
and inf{‖PY (z − w)‖ : z, w ∈ O, ‖PY (z − w)‖ 6= 0} > 0.

Now we state the following critical point theorems which will be used later (see
[7, 16]).

Theorem 2.3. Let (A7)–(A9) be satisfied and suppose there are R > r > 0 and
e ∈ Y with ‖e‖ = 1 such that sup Φ(∂Q) ≤ % where Q := {u = x + te : x ∈ X, t ≥
0, ‖u‖ < R}. Then Φ has a (C)c-sequence with % ≤ c ≤ sup Φ(Q).

Theorem 2.4. Assume Φ is even with Φ(0) = 0 and let (A7)–(A11) be satisfied.
Then Φ possesses an unbounded sequence of positive critical values.

3. Proof of main results

First, let r > 0, set Br := {u ∈ E : ‖u‖ ≤ r}, Sr := {u ∈ E : ‖u‖ = r}. From
assumptions (A3)–(A5), for any ε > 0, there exist positive constants rε, Cε such
that

|Fu(x, u)| ≤ ε|u| for all 0 ≤ |u| ≤ rε,
|Fu(x, u)| ≤ ε|u|+ Cε|u|p−1 for all (x, u),

|F (x, u)| ≤ ε|u|2 + Cε|u|p for all (x, u),

(3.1)

where p ∈ (2, 3). Before proving our result, we need some preliminary results.

Lemma 3.1. Γ and Ψ are non-negative, weakly sequentially lower semi-continuous,
Γ′ and Ψ′ are weakly sequentially continuous. Moreover, there is ξ > 0 such that
for any c > 0,

‖u‖ ≤ ξ‖u+‖, for all u ∈ Φc.

Proof. By a standard argument of [38], Ψ and Ψ′ are obvious. So it is sufficient
to show that Γ and Γ′ have the above property. Clearly, Γ is non-negative. Let
un ⇀ u in E, we can assume, up to a subsequence, that un(x)→ u(x) a.e. on R3.
It follows from Fatou’s lemma that

Γ(u) ≤ lim inf
n→∞

Γ(un).

Hence Γ is weakly sequentially lower semi-continuous.
Next, we show that Γ′ is weakly sequentially continuous. Let un ⇀ u in E,

we can assume, up to a subsequence, that un → u in Lsloc for all s ∈ [1, 3) and
un(x)→ u(x) a.e. on R3. It is not difficult to prove that

Γ′(un)ϕ =
∫

R3
φununϕ̄dx→

∫
R3
φuuϕ̄dx = Γ′(u)ϕ,

|Γ′(u)ϕ| ≤ C0‖u‖3‖ϕ‖.

for any ϕ ∈ C∞0 (R3). Since C∞0 is dense in E, for any v ∈ E we take ϕn ∈ C∞0
such that ‖ϕn − v‖ → 0. Note that

|(Γ′(un)− Γ′(u))ϕn| → 0.

Thus, by the above facts we obtain∣∣Γ′(un)v − Γ′(u)v
∣∣
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= |Γ′(un)v − Γ′(un)ϕn + Γ′(un)ϕn − Γ′(u)ϕn + Γ′(u)ϕn − Γ′(u)v|
≤ |(Γ′(un)− Γ′(u))ϕn|+ |(Γ′(un)− Γ′(u))(v − ϕn)|
≤ |(Γ′(un)− Γ′(u))ϕn|+ C0(‖un‖3 + ‖u‖3)‖ϕn − v‖ → 0.

Therefore, we have shown that Γ′ is weakly sequentially continuous.
On the other hand, for any c > 0 and u ∈ Φc, using the fact that Γ,Ψ ≥ 0 one

has
0 < c ≤ 1

2
(‖u+‖2 − ‖u−‖2).

This yields ‖u−‖ ≤ ‖u+‖, and hence ‖u‖ ≤
√

2‖u+‖. Thus we obtain the second
conclusion. �

Lemma 3.2. Let (A3)–(A5) be satisfied. Then there exists r > 0 such that % :=
inf Φ(Sr ∩ E+) > 0.

Proof. Observe that |u|pp ≤ cp‖u‖p for all u ∈ E by Lemma 2.2. For any u ∈ E+,
by (2.4) and (3.1) we have

Φ(u) =
1
2
‖u‖2 − Γ(u)−Ψ(u)

≥ 1
2
‖u‖2 − C1‖u‖4 − c2ε‖u‖2 − Cεcp‖u‖p

= (
1
2
− c2ε)‖u‖2 − C1‖u‖4 − Cεcp‖u‖p.

Since p ∈ (2, 3), choosing suitable r > 0 we see that the desired conclusion holds. �

As a consequence of Lemma 2.1 we have

a ≤ inf σ(A) ∩ [0,∞) ≤ a+ sup
R3

V.

Let Λ := infx∈R3 G(x). By (A5), we take a positive number µ such that

a+ sup
R3

V < µ < Λ− ω. (3.2)

Since A is invariant under the action of Z3 by (A2), the subspace Y0 := (Fµ−F0)L2

is infinite-dimensional, and

(a+ ω)|u|22 < ‖u‖2 < (µ+ ω)|u|22 for all u ∈ Y0. (3.3)

Let {µn} ⊂ σ(A) satisfy µ0 := a < µ1 < µ2 < · · · ≤ µ for n ∈ N. For each
n ∈ N, we take an element en ∈ (Fµn − Fµn−1)L2 with ‖en‖ = 1 and define
Yn := span{e1, . . . , en}, En := E− ⊕ Yn.

Lemma 3.3. Let (A3)–(A5) be satisfied and r > 0 be given by Lemma 3.2. Then
sup Φ(En) < ∞, and there is a sequence Rn > 0 such that sup Φ(En \ Bn) <
inf Φ(Bn), where Bn := {u ∈ En : ‖u‖ ≤ Rn}.

Proof. It is sufficient to prove that Φ(u) → −∞ in En as ‖u‖ → ∞. If not, then
there are M > 0 and {un} ⊂ En with ‖un‖ → ∞ such that Φ(un) ≥ −M for all n.
Denote vn := un

‖un‖ , passing to a subsequence if necessary, vn ⇀ v, v−n ⇀ v− and
v+
n ⇀ v+. Since Γ(u) ≥ 0 and Ψ(u) ≥ 0,

1
2

(‖v+
n ‖2 − ‖v−n ‖2) ≥ Φ(un)

‖un‖2
≥ −M
‖un‖2

, (3.4)
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which implies
1
2
‖v−n ‖2 ≤

1
2
‖v+
n ‖2 +

M

‖un‖2
. (3.5)

We claim that v+ 6= 0. Indeed, if not, (3.5) yields ‖v−n ‖ → 0. Thus ‖vn‖ → 0,
which contradicts ‖vn‖ = 1. It follows from (3.2) and (3.3) that

‖v+‖2 − ‖v−‖2 −
∫

R3
G(x)v2dx ≤ ‖v+‖2 − ‖v−‖2 − Λ|v|22

≤ −(Λ− µ− ω)|v+|22 − ‖v−‖2 − Λ|v−|22 < 0,

then there exists a bounded set Ω ⊂ R3 such that

‖v+‖2 − ‖v−‖2 −
∫

Ω

G(x)v2dx < 0. (3.6)

Letting R(x, u) := F (x, u) − 1
2G(x)u2, then |R(x, u)| ≤ C2|u|2 for some C2 > 0

and R(x,u)
|u|2 → 0 as |u| → ∞ uniformly in x. Hence, by Lebesgue’s dominated

convergence theorem, we have

lim
n→∞

∫
Ω

R(x, un)
‖un‖2

dx = lim
n→∞

∫
Ω

R(x, un)
|un|2

|vn|2dx = 0. (3.7)

Thus (3.4), (3.6) and (3.7) imply

0 ≤ lim
n→∞

(1
2

(‖v+
n ‖2 − ‖v−n ‖2)− 1

4

∫
R3

φun |un|2

‖un‖2
dx−

∫
R3

F (x, un)
‖un‖2

dx
)

≤ lim
n→∞

(1
2

(‖v+
n ‖2 − ‖v−n ‖2)−

∫
Ω

F (x, un)
‖un‖2

dx
)

≤ 1
2

(
‖v+‖2 − ‖v−‖2 −

∫
Ω

G(x)v2dx
)
< 0.

Now the desired conclusion is obtained from this contradiction. �

As a consequence, we have the following result.

Lemma 3.4. Let (A3)–(A5) be satisfied. Then there is R0 > r > 0, such that
Φ|∂Q ≤ %, where % > 0 be given by Lemma 3.2, Q := {u = u− + se : u− ∈ E−, s ≥
0, ‖u‖ ≤ R0}.

Next we discuss the properties of the (C)c-sequences. Since the presence of
nonlocal term Γ(u), it is not easy to prove the boundedness of the (C)c-sequence
for the functional Φ. Motivated by Ackermann [3], we give a delicate estimate for
the norm of Γ′(u) by using some special techniques, it is very important in our
arguments.

Lemma 3.5. For any u ∈ E\{0}, there exists C > 0 such that

Γ′(u)u > 0 and ‖Γ′(u)‖E∗ ≤ C
(√

Γ′(u)u+ Γ′(u)u
)
,

where E∗ denotes the dual space of E.

Proof. Clearly, Γ′(u)u = 4Γ(u) > 0 for any u ∈ E\{0}. Now we show the sec-
ond conclusion. Since Γ is the unique nonlocal term in Φ, from the argument in
Ackermann [3](see also [4]), we have∫

R3

( 1
|x|
∗ |u|2

)
|v|2dx ≤ C3

(∫
R3

(
1
|x|
∗ |u|2)|u|2dx

∫
R3

(
1
|x|
∗ |v|2)|v|2dx

)1/2
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for all u, v ∈ E and some C3 > 0. Hence using this, (2.4) and Hölder inequality, we
can obtain ∫

R3
(

1
|x|
∗ |u|2)|uv|dx

≤
(∫

R3
(

1
|x|
∗ |u|2)|u|2dx

)1/2(∫
R3

(
1
|x|
∗ |u|2)|v|2dx

)1/2

≤ C4

(∫
R3

(
1
|x|
∗ |u|2)|u|2dx

)1/2(∫
R3

(
1
|x|
∗ |u|2)|u|2dx

)1/4

×
(∫

R3
(

1
|x|
∗ |v|2)|v|2dx

)1/4

≤ C5

(∫
R3

(
1
|x|
∗ |u|2)|u|2dx

)3/4

‖v‖,

which implies

|Γ′(u)v| ≤ C5 (Γ′(u)u)3/4 ‖v‖ ≤ C
(√

Γ′(u)u+ Γ′(u)u
)
‖v‖.

This shows the second conclusion. �

Lemma 3.6. Suppose that (A3)–(A6) are satisfied. Then any (C)c-sequence of Φ
is bounded.

Proof. Let {un} ⊂ E be such that

Φ(un)→ c and (1 + ‖un‖)Φ′(un)→ 0. (3.8)

Then, there is constant C0 > 0 such that

C0 ≥ Φ(un)− 1
2

Φ′(un)un = Γ(un) +
∫

R3
F̃ (x, un)dx. (3.9)

Suppose to the contrary that {un} is unbounded. Setting vn := un/‖un‖, then
‖vn‖ = 1 and |vn|s ≤ cs‖vn‖ = cs for all s ∈ [2, 3]. Observe that

Φ′(un)(u+
n − u−n ) = ‖un‖2

(
1− Γ′(un)(u+

n − u−n )
‖un‖2

−
∫

R3

Fu(x, un)(u+
n − u−n )

‖un‖2
dx
)
.

Hence
Γ′(un)(u+

n − u−n )
‖un‖2

+
∫

R3

Fu(x, un)(u+
n − u−n )

‖un‖2
dx→ 1. (3.10)

Let

δ := lim sup
n→∞

sup
y∈R3

∫
B(y,1)

|vn|2dx.

If δ = 0, by Lions’ concentration compactness principle in [31] or [38, Lemma 1.21],
then vn → 0 in Ls for any s ∈ (2, 3). Set

Ωn :=
{
x ∈ R3 :

|Fu(x, un)|
|un|

≤ a− |ω| − δ1
}
. (3.11)

Then by Lemma 2.2 and (3.11), we have∫
Ωn

|Fu(x, un)|
|un|

|vn||v+
n − v−n |dx ≤ (a− |ω| − δ1)|vn|22 ≤ 1− δ1

a− |ω|
. (3.12)
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Choose q > 3, then q′ := q/(q − 1) ∈ (1, 3/2). Hence, by (A4)–(A6) and (3.9), we
have ∫

R3\Ωn

|Fu(x, un)|
|un|

|vn||v+
n − v−n |dx

≤ C6

∫
R3\Ωn

(
F̃ (x, un)

)1/q

|vn||v+
n − v−n |dx

≤ C6

(∫
R3\Ωn

F̃ (x, un)dx
)1/q

|vn|2q′ |v+
n − v−n |2q′

≤ C7|vn|2q′ |v+
n − v−n |2q′ = o(1).

(3.13)

From (3.9), for the nonlocal term, we easily show that

Γ(un)
‖un‖

→ 0, as n→∞. (3.14)

Moreover, by Lemma 3.5, we have∣∣∣Γ′(un)(u+
n − u−n )

‖un‖2
∣∣∣ ≤ ‖Γ′(un)‖E∗‖u+

n − u−n ‖
‖un‖2

≤ C8

∣∣∣ (√Γ′(un)un + Γ′(un)un
)
‖u+

n − u−n ‖
‖un‖2

∣∣∣
≤ C9

∣∣∣√Γ′(un)un + Γ′(un)un
‖un‖

∣∣∣
= C9

( 1√
‖un‖

√
4Γ(un)
‖un‖

+
4Γ(un)
‖un‖

)
= o(1).

(3.15)

By (3.10), (3.12), (3.13) and (3.15) we have

1 + o(1) =
Γ′(un)(u+

n − u−n )
‖un‖2

+
∫

R3

Fu(x, un)(u+
n − u−n )

‖un‖2
dx

≤ 1− δ1
a− |ω|

+ o(1).

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z3

such that
∫
B1+

√
3(kn)

|vn|2dx > δ/2. Let ṽn(x) = vn(x+kn). Since V (x) is 1-periodic
in each of x1, x2, x3. Then ‖ṽn‖ = ‖vn‖ = 1, and∫

B1+
√

3(0)

|ṽn|2dx >
δ

2
. (3.16)

Passing to a subsequence, we have ṽn ⇀ ṽ in E, ṽn → ṽ in Lsloc, for all s ∈ [1, 3),
ṽn → ṽ a.e. on R3. Obviously, (3.16) implies that ṽ 6= 0.

Now we define ũn(x) = un(x + kn), then ũn/‖un‖ = ṽn → ṽ a.e. on R3, ṽ 6= 0.
For x ∈ Ω0 := {y ∈ R3 : ṽ(y) 6= 0}, we have limn→∞ |ũn(x)| = ∞. For any
ϕ ∈ C∞0 (R3), setting ϕn(x) = ϕ(x− kn), then

Φ′(un)ϕn = (u+
n − u−n , ϕn)− Γ′(un)ϕn −

∫
R3
Fu(x, un)ϕndx

= ‖un‖
(

(v+
n − v−n , ϕn)− Γ′(un)ϕn

‖un‖
−
∫

R3

Fu(x, un)ϕn
‖un‖

dx
)
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= ‖un‖
(

(ṽ+
n − ṽ−n , ϕ)− Γ′(ũn)ϕ

‖ũn‖
−
∫

R3

Fu(x, ũn)ϕ
‖ũn‖

dx
)
.

This yields

(ṽ+
n − ṽ−n , ϕ)− Γ′(ũn)ϕ

‖ũn‖
−
∫

R3

Fu(x, ũn)ϕ
‖ũn‖

dx→ 0. (3.17)

Observe that, by (3.14) and Lemma 3.5, we have∣∣Γ′(ũn)ϕ
‖ũn‖

∣∣ ≤ ‖Γ′(ũn)‖E∗‖ϕ‖
‖ũn‖

≤ C10

∣∣∣ (√Γ′(ũn)ũn + Γ′(ũn)ũn
)
‖ϕ‖

‖ũn‖

∣∣∣
= C10

( 1√
‖ũn‖

√
4Γ(ũn)
‖ũn‖

+
4Γ(ũn)
‖ũn‖

)
‖ϕ‖ = o(1).

(3.18)

On the other hand, |ũn(x)| → ∞ since v(x) 6= 0. By (A5) and Lebesgue’s dominated
convergence theorem, it is easy to see that∫

R3

Fu(x, ũn)ϕ
‖ũn‖

dx→
∫

R3
G(x)ṽϕdx. (3.19)

Hence, it follows from (3.17)−(3.19) that

(ṽ+ − ṽ−, ϕ)−
∫

R3
G(x)ṽϕdx = 0. (3.20)

This implies that Aṽ = (G(x)−ω)ṽ. By the weak unique continuation property for
Dirac operator [6] or [16, p.128], we deduce that |Ω0| = ∞. Hence, we can choose
ε0 > 0 such that |Ω′0| ≥ 3C0/δ1, where C0 is given in (3.9) and

Ω′0 := {x ∈ R3 : |ṽ(x)| ≥ 2ε0}. (3.21)

By Egoroff’s theorem, we can find a set Ω′′0 ⊂ Ω′0 with |Ω′′0 | ≥ 2C0/δ1 such that
ṽn → ṽ uniformly on Ω′′0 . So there is an integer n0 ≥ 1 such that

|ṽn(x)| ≥ ε0, ∀x ∈ Ω′′0 , n ≥ n0. (3.22)

By (A5), there exists a r0 > 0 such that

|Fu(x, u)|
|u|

≥ G(x)− |Ru(x, u)|
|u|

≥ a+ ω + sup
R3

V − δ1, ∀x ∈ R3, |u| ≥ r0. (3.23)

Combining (3.22) with (3.23), one has

|Fu(x, ũn)|
|ũn|

≥ a− |ω| − δ1, ∀x ∈ Ω′′0 , n ≥ n1, (3.24)

where n1 ∈ Z such that |ũn(x)| ≥ r0 for x ∈ Ω′′0 and n ≥ n1. It follows from (A6)
and (3.24) that F̃ (x, un) ≥ δ1 for x ∈ Ω′′0 and n ≥ n1. Hence,

C0 ≥
∫

R3
F̃ (x, un)dx ≥ δ1|Ω′′0 | ≥ 2C0, for n ≥ n1,

a contradiction. Therefore {un} is bounded in E. �
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Let {un} ⊂ E be a (C)c-sequence of Φ, by Lemma 3.6, it is bounded, up to a
subsequence, we may assume un ⇀ u in E, uu → u in Lsloc for all s ∈ (1, 3) and
un(x) → u(x) a.e. on R3. Obviously, u is a critical point of Φ. Set vn := un − u,
then vn ⇀ 0 in E. Using Brezis-Lieb lemma in [9], we can prove the following
results.

Lemma 3.7. Let {un} be a (C)c-sequence of Φ at level c, and set vn := un − u.
Then, passing to a subsequence,

lim
n→∞

(∫
R3

(
F (x, un)− F (x, u)− F (x, vn)

)
dx
)

= 0,

lim
n→∞

(
Γ(un)− Γ(u)− Γ(vn)

)
= 0,

lim
n→∞

(
Γ′(un)ϕ− Γ′(u)ϕ− Γ′(vn)ϕ

)
= 0,

lim
n→∞

(∫
R3

(
Fu(x, un)− Fu(x, u)− Fu(x, vn)

)
ϕdx

)
= 0

uniformly in ϕ ∈ E.

Lemma 3.8. Let {un} be a (C)c-sequence of Φ at level c, and set vn := un − u.
Then, passing to a subsequence,

Φ(vn)→ c− Φ(u) and Φ′(vn)→ 0.

Let K := {u ∈ E : Φ′(u) = 0, u 6= 0} be the set of nontrivial critical points of Φ.

Lemma 3.9. Under the assumptions of Theorem 1.1, the following two conclusions
hold

(1) ν := inf{‖u‖ : u ∈ K} > 0;
(2) θ := inf{Φ(u) : u ∈ K} > 0.

Proof. (1) For any u ∈ K, it holds

0 = Φ′(u)(u+ − u−) = ‖u‖2 − Γ′(u)(u+ − u−)−
∫

R3
Fu(x, u)(u+ − u−)dx .

This (2.4) and (3.1) imply

‖u‖2 ≤ C‖u‖4 + ε‖u‖2 + Cε‖u‖p,
where p ∈ (2, 3). Choose ε small enough, hence

0 < (1− ε)‖u‖2 ≤ C‖u‖4 + Cε‖u‖p−2,

which implies that ‖u‖ > 0.
(2) Suppose to the contrary that there exist a sequence {un} ⊂ K such that

Φ(un) → 0. By the first conclusion, ‖un‖ ≥ ν. Clearly, {un} is a (C)0-sequence
of Φ, and hence is bounded by Lemma 3.6. Moreover, {un} is nonvanishing. By
the invariance under translation of Φ, we can assume, up to a translation, that
un ⇀ u ∈ K. Moreover, by Fatou’s lemma and Lemma 3.5, we have

0 = lim
n→∞

Φ(un) = lim
n→∞

(
Φ(un)− 1

2
Φ′(un)un

)
= lim
n→∞

(
Γ(un) +

∫
R3
F̃ (x, un)dx

)
≥ Γ(u) +

∫
R3
F̃ (x, u)dx > 0,
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a contradiction. This completes the proof. �

In the following lemma we discuss further the (C)c-sequence. Let [l] denote the
integer part of l ∈ R. Combining Lemma 3.8, Lemma 3.9 and a standard argument,
we have the following lemma (see Coti-Zelati and Rabinowitz [12, 13]).

Lemma 3.10. Under the assumptions of Theorem 1.1, let {un} ⊂ E ba a (C)c-
sequence of Φ. Then either

(i) un → 0 (and hence c = 0), or
(ii) c ≥ θ and there exist a positive integer l ≤ [ cθ ], u1, . . . , ul ∈ K and sequences
{ain ⊂ Z3}, i = 1, 2, . . . , l, such that, after extraction of a subsequence of
{un},

‖un −
l∑
i=1

ain ∗ ui‖ → 0 and
l∑
i=1

Φ(ui) = c

and for i 6= k, |ain − akn| → ∞.

Proof of Theorem 1.1. (Existence) With X = E− and Y = E+. By Lemma 3.1, we
see that (A7) and (A8) are satisfied. Lemma 3.2 implies that (A9) holds. Lemma
3.4 shows that Φ possesses the linking structure of Theorem 2.3. Therefore, using
Theorem 2.3, there exists a sequence {un} ⊂ E such that Φ(un) → c and (1 +
‖un‖)Φ′(un)→ 0. By Lemma 3.6, {un} is bounded in E. Let

δ := lim sup
n→∞

sup
y∈R3

∫
B(y,1)

|un|2dx.

If δ = 0, by Lions’ concentration compactness principle in [31] or [38, Lemma 1.21],
then un → 0 in Ls for any s ∈ (2, 3). Therefore, it follows from (2.4) and (3.1) that∫

R3
F (x, un)dx→ 0,

∫
R3
Fu(x, un)undx→ 0 and Γ(un)→ 0

as n→∞. Consequently,

c = lim
n→∞

(
Φ(un)− 1

2
Φ′(un)un

)
= lim
n→∞

(
Γ(un) +

∫
R3
F̃ (x, un)dx

)
= 0.

This is a contradiction. Hence δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z3

such that ∫
B(kn,1+

√
3)

|un|2dx >
δ

2
.

Let us define vn(x) = un(x+ kn) so that∫
B(0,1+

√
3)

|vn|2dx >
δ

2
. (3.25)

Since Φ and Φ′ are Z3-translation invariant, we obtain ‖vn‖ = ‖un‖ and

Φ(vn)→ c and (1 + ‖vn‖)Φ′(vn)→ 0. (3.26)

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Lsloc, for all s ∈ [1, 3)
and vn → v a.e. on R3. Hence it follows from (3.25) and (3.26) that Φ′(v) = 0 and
v 6= 0. This shows that v ∈ K is a nontrivial of system (1.2).
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(Multiplicity) Φ is even provided F (x, u) is even in u. Lemma 3.3 shows that Φ
satisfies (A10). Next we assume

K/Z3 is a finite set. (3.27)

In fact, if (3.27) is false, then the last conclusion of Theorem 1.1 holds automatically.
In the sequel, we assume (3.27) holds. Let F be a set consisting of arbitrarily chosen
representatives of the Z3-orbits of K. Then F is a finite set by (3.27), and since Φ′

is odd we may assume that F = −F . If u ∈ K, then Φ(u) ≥ θ by (2) of Lemma
3.9. Hence there exists θ ≤ ϑ such that

θ ≤ min
F

Φ = min
K

Φ ≤ max
K

Φ = max
F

Φ ≤ ϑ.

For l ∈ N and a finite set A ⊂ E we define

[A, l] :=
{ j∑
i=1

ai ∗ ui | 1 ≤ j ≤ l, ai ∈ Z3, ui ∈ A
}
.

As in Coti-Zelati and Rabinowitz [12, 13],

inf{‖u− u′‖ : u, u′ ∈ [A, l]} > 0. (3.28)

Now we check (A11). Given a compact interval I ⊂ (0,∞) with d := max I and
O = [F , l]. We have P+[F , l] = [P+F , l]. Thus from (3.28)

inf{‖u+
1 − u

+
2 ‖ : u1, u2 ∈ O, u+

1 6= u+
2 } > 0.

In addition, O is a (C)I -attractor by Lemma 3.10 and O is bounded because ‖u‖ ≤
lmax{‖ū‖ : ū ∈ F} for all u ∈ O. Therefore, by Theorem 2.4, Φ has a unbounded
sequence of critical values which contradicts with the assumption (3.27), and hence
Φ has infinitely many geometrically distinct nontrivial critical points. Therefore,
our multiplicity result follows. This completes the proof. �
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