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GROUND STATE SOLUTIONS FOR NONLINEAR FRACTIONAL
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Abstract. This article concerns the ground state solutions of nonlinear frac-

tional Schrödinger equations involving critical growth. We obtain the existence

of ground state solutions when the potential is not a constant and not radial.
We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity con-

dition on the nonlinearity.

1. Introduction

The fractional Laplacian (−∆)s is a classical linear integro-differential operator
of order s. The main feature, and also its main difficulty, is that it is a non-local
operator. Recently, a great deal of attention has been devoted to the fractional
Laplacian and non-local operators of elliptic type, both for their interesting theo-
retical structure and concrete applications. The fractional Laplacian (−∆)s arises
in the description of various phenomena in the applied science, such as the thin ob-
stacle problem [8, 29], phase transition [1, 30], Markov processes [16] and fractional
quantum mechanics [23] and the references therein for more details.

The fractional Schrödinger equation formulated by Laskin [21, 22, 23] has the
form

iϕt − (−∆)sϕ− V (x)ϕ+ f(ϕ) = 0, (x, t) ∈ RN × R, (1.1)
where s ∈ (0, 1), N > 2s, ϕ is the wavefunction and V (x) is the potential energy.
The fractional quantum mechanics has been discovered as a result of expanding
the Feynman path integral, from the Brownian-like to the Lévy-like quantum me-
chanical paths. Since we are concerned with the standing wave solutions of the
form

ϕ(x, t) = e−iwtu(x), w ∈ R,
then (1.1) can be converted into

(−∆)su+ V (x)u = f(u), x ∈ RN . (1.2)

When s = 1, equation (1.2) gives back to the classical nonlinear Schrödinger equa-
tion

−∆u+ V (x)u = f(u), x ∈ RN , (1.3)
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which has been studied theoretically and numerically in the last decades. We
should emphasize that the potential V (x) plays a crucial role concerning the ex-
istence of nontrivial solutions and the existence of ground state solutions. If the
potential V (x) is a constant, namely (1.3) is autonomous, in the celebrated paper
[5], Berestycki and Lions first proposed the Berestycki-Lions conditions which are
almost optimal for the existence of ground state solutions in the subcritical case.
The authors investigated the constraint minimization problem and use the Schwarz
symmetrization in H1

r (RN ). For the critical nonlinearity f , because of the lack
of compactness of H1(RN ) ↪→ L2∗(RN ), the existence of ground state solutions of
problem (1.3) becomes rather more complicated. In [38], the critical case was con-
sidered by modifying the minimization methods with constrains. Since the radial
symmetry plays a crucial role, the method is invalid for the non-radial case.

In the non-autonomous case, that is V (x) 6≡ V , where V is a constant, the
main obstacle to get the existence of solutions or ground state solutions is the
boundedness of the Palais-Smale (PS for short) sequence because of no some global
conditions on f , such as the Ambrosetti-Rabinowitz (A-R for short) condition.
Moreover, the lack of compactness due to the unboundedness of the domain prevents
us from checking the (PS) condition. To avoid the difficulties mentioned above, in
the seminal paper [19], Jeanjean and Tanaka used an indirect approach developed
in [18] to get a bounded (PS) (BPS for short) sequence for the energy functional
I, then the existence of positive solutions and moreover ground state solutions is
obtained in the subcritical case when the nonlinearity f and potential V (x) satisfy
the following assumptions:

(A1) f ∈ C(R+,R), f(0) = 0 and f ′(0) defined as limt→0+ f(t)/t exists,
(A2) there is p <∞ if N = 2, p < 2∗− 1 if N ≥ 3 such that limt→∞ f(t)/tp = 0,
(A3) limt→∞ f(t)/t = +∞,
(A4) f ′(0) < inf σ(−∆ + V (x)), where σ(−∆ + V (x)) denotes the spectrum of

the self-adjoint operator −∆ + V (x),
(A5) V ∈ C(RN ,R), V (x)→ V (∞) ∈ R as |x| → ∞,
(A6) V (x) ≤ V (∞),
(A7) there exists a function φ ∈ L2(RN ) ∩W 1,∞(RN ) such that

|x||∇V (x)| ≤ φ2(x),∀x ∈ RN .

Here, the decay condition (A7) is crucial to derive the boundedness of the (PS)-
sequence. For the critical case, the problem is different and more difficulty. In [35],
by use of the indirect approach developed in [18], the authors completed the proof
of existence of ground state solutions in the critical case with the same conditions
on V (x). As for the nonlinearity f , the following conditions are satisfied

(A8) f ∈ C(R+,R), f(t) = o(t) as t→ o+,
(A9) limt→+∞ f(t)/t2

∗−1 = K > 0, where 2∗ = 2N
N−2 ,

(A10) there exist D > 0 and 2 < q < 2∗ such that f(t) ≥ Kt2∗−1 +Dtq−1,∀t ≥ 0,
(A11) f ∈ C1(R+,R), |f ′(t)| ≤ C(1 + |t|

4
N−2 ).

Now, we return our attention to the fractional and non-local problems. With
the aid of the extended techniques developed by Caffarelli and Silvestre [9], some
existence and nonexistence of Dirichlet problems involving the fractional Laplacian
on bounded domains have been established, see [4, 7, 32] and so on. For the general
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fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, u), x ∈ RN

in the subcritical or critical case, many results have been obtained on the ex-
istence of ground state solutions, positive solutions, the multiplicity of standing
wave solutions, the symmetry of solutions and so forth, under the different condi-
tions on V (x) and f , for example the monotonicity condition, (A-R) condition, see
[3, 6, 9, 10, 12, 33, 34, 40] and the references therein.

As is well known, the existence and concentration phenomena of solutions on the
singularly perturbed fractional Schrödinger equation

ε2s(−∆)su+ V (x)u = f(u), x ∈ RN

is also a hot topic. For this subject we refer, for example, to [2, 14, 15, 17, 27, 28]
and the references therein.

Now, let us say more about the existence of ground state solutions of a class of
fractional scalar field equations

(−∆)su+ V (x)u = f(u), x ∈ RN .
When f(u) − V (x)u = g(u), the authors [11] obtained the existence of radial pos-
itive ground state solutions under the general Berestycki-Lions type assumptions
in the case of subcritical growth. By using the fractional Pohozǎev identity and
the monotonicity trick of Struwe-Jeanjean, they showed that the compactness still
holds under their assumptions without the Strauss type radial lemma in Hs

r (RN ).
In [37], the existence of radial ground state solutions was obtained when V (x) ≡ V
involving the critical growth by means of the constraint variational argument, where
V > 0 is a constant. When V (x) = V (|x|), Secchi [31] proved the existence of radi-
ally symmetric solutions for equation (1.2) in Hs

r (RN ) by the fractional Pohozǎev
identity and the monotonicity trick in subcritical case. The conditions on f and
V (x) are as follows
(A12) f ∈ C(R,R) is of class C1,γ for some γ > max{0, 1− 2s}, and odd,
(A13) −∞ < lim inft→0+ f(t)/t ≤ lim supt→0+ f(t)/t = −m < 0,
(A14) −∞ < lim supt→+∞ f(t)/t2

∗
s−1 ≤ 0, where 2∗s = 2N

N−2s ,

(A15) for some ζ > 0, there holds F (ζ) =
∫ ζ

0
f(t)dt > 0,

(A16) V ∈ C1(RN ,R), V (x) ≥ 0 for every x ∈ RN and this inequality is strict at
some point,

(A17) ‖max{〈∇V (x), x〉, 0}‖LN/2s(RN ) < 2sSs,
(A18) lim|x|→+∞ V (x) = 0,
(A19) V (x) is radially symmetric,

where Ss is the best Sobolev constant for the critical embedding, that is

Ss = inf
u∈Hs(RN ),u6=0

‖(−∆)s/2u‖2L2

‖u‖2
L2∗s

,

here Hs(RN ) is the fractional Sobolev space with respect to the norm

‖u‖2 =
∫

RN

|(−∆)s/2u|2 + |u|2.

Where (A13)-(A15) are called Berestycki-Lions type conditions, and (A17) is used
to get the boundedness of the (PS)-sequence by use of the monotonicity trick. The
condition f ∈ C1 ensures that the fractional Pohozǎev identity can be used.
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Now, the problem is how about the existence of ground state solutions when
V (x) is non-radial in the critical case. As we all know, for the critical case, the loss
of the compactness for the embedding Hs(RN ) ↪→ L2∗s (RN ) is the main difficulty.
What’s more, (PS) condition, in general, fails. Since V (x) is non-radial, the method
introduced in [37] can not be used here since the fractional space they used is
Hs
r (RN ). With critical growth, the authors [17] proved the existence of solutions

for equation (1.2) under the monotonicity condition on f(t)/t and 0 < µF (t) =
µ
∫ t

0
f(t)dt ≤ tf(t), µ ∈ (2, 2∗s) for all t > 0.

Motivated by the seminal papers above, we use the indirect approach developed
in [18] to investigate the existence of ground state solutions for nonlinear fractional
Schrödinger equation (1.2) involving the critical nonlinearity, where the potential
V (x) depends on x non-radially. More precisely, on the nonlinearity f , we assume

(A20) f ∈ C1(R+,R) and limt→0 f(t)/t = 0,
(A21) limt→∞ f(t)/t2

∗
s−1 = 1,

(A22) There exist D > 0 and p < 2∗s such that f(t) ≥ t2∗s−1 +Dtp−1, t ≥ 0.

We assume f(t) ≡ 0 for t ≤ 0 throughout the paper since we are concerned with
the positive solutions.

On potential V ∈ C1(RN ,R), we assume

(A23) There exists V0 > 0 such that infx∈RN V (x) ≥ V0,
(A24) V (x) ≤ V (∞) := lim|x|→∞ V (x) <∞ for all x ∈ RN and V (x) 6≡ V (∞),
(A25) ‖max{〈∇V (x), x〉, 0}‖LN/2s(RN ) < 2sSs.

In contrast to the conditions in [17], our conditions are more weaker. The main
result is the following.

Theorem 1.1. Assume N > 2s, s ∈ (0, 1), if max{2, 2∗s−2} < p < 2∗s, (A20)–(A25)
hold, then problem (1.2) has a ground state solution.

The proof of Theorem 1.1 is inspired by the ideas in [19] and [35].
Firstly, we show the existence of positive solutions of (1.2). For this purpose, we

look for a special BPS sequence for the energy functional I associated with (1.2)
by use of the Struwe’s monotonicity trick. Precisely, with the help of the auxiliary
energy functional Iλ satisfying

I(uλj ) = Iλj (uλj ) + (λj − 1)
∫

RN

F (uλj ), λj → 1, j →∞,

we prove the existence of positive critical points denoted by uλj
of Iλj

. Thanks
to the decomposition of BPS sequence, the properties of {uλj} and the energy
estimation of Iλj (uλj ) are obtained. Consequently, we show that {uλj} is a BPS
sequence for I at some level value.

Secondly, for the proof of the existence of ground state solutions, we construct a
minimizing sequence {un} which is composed of the critical points of I. We show
that {un} is a BPS sequence for I at m, here m denotes the least energy. Then,
making use of the decomposition of BPS sequence and the relationship of I and
I∞, we prove that m is attained at some ũ 6= 0.

Remark 1.2. In the proof of our main results, the estimations of the Mountain
Pass (MP for short) values, Pohozǎev identity and the decomposition of BPS all
play crucial roles.
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This article is organized as follows. In section 2, we introduce a variational
setting of our problem and present some preliminary results. In section 3, we are
concerned with the decomposition of BPS and the existence of nontrivial critical
points for the auxiliary energy functional. Section 4 is devoted to the completion
of the proof of Theorem 1.1.

In the following, the letters C, δ, δ0 are indiscriminately used to denote various
positive constants whose exact values are irrelevant.

2. Preliminaries and functional setting

To establish the variational setting for (1.2), we give some useful facts of the
fractional Sobolev space [25] and some preliminary lemmas.

The fractional Laplacian operator (−∆)s with s ∈ (0, 1) of a function u : RN → R
is defined by

F((−∆)su)(ξ) = |ξ|2sF(u)(ξ), ξ ∈ RN ,
where F is the Fourier transform. For s ∈ (0, 1), the fractional order Sobolev space
Hs(RN ) is defined by

Hs(RN ) = {u ∈ L2(RN ) :
∫

RN

|ξ|2s|û|2dξ <∞},

endowed with the norm ‖u‖Hs(RN ) = (
∫

RN (|ξ|2s|û|2 + |û|2)dξ)1/2, where û .= F(u).
By Plancherel’s theorem, we have ‖u‖L2(RN ) = ‖û‖L2(RN ) and∫

RN

|(−∆)s/2u(x)|2dx =
∫

RN

(|ξ|s|û|)2dξ.

It follows that ‖u‖Hs(RN ) =
( ∫

RN (|(−∆)s/2u(x)|2 + |u|2)dx
)1/2, u ∈ Hs(RN ). If u

is smooth enough, (−∆)su can be computed by the following singular integral

(−∆)su(x) = cN,sP.V.
∫

RN

u(x)− u(y)
|x− y|N+2s

dy.

Here cN,s is the normalization constant and P.V. is the principal value. So, one can
get an alternative definition of the fractional Sobolev space Hs(RN ) as follows,

Hs(RN ) = {u ∈ L2(RN ) :
|u(x)− u(y)|
|x− y|N+2s

2

∈ L2(RN × RN )}

with the norm

‖u‖Hs(RN ) =
(∫

RN

|u|2 +
∫

R2N

|u(x)− u(y)|2

|x− y|N+2s

)1/2

.

The spaceDs(RN ) denotes the completion of C∞0 (RN ) with respect to the Gagliardo
norm

‖u‖Ds(RN ) =
(∫

RN

|ξ|2s|û|2dξ
)1/2

=
(∫

RN

|(−∆)s/2u|2
)1/2

.

Since we investigate the existence of solutions of problem (1.2), we need the frac-
tional Sobolev space Hs

V (RN ) which is a Hilbert subspace of Hs(RN ) with the
norm

‖u‖Hs
V (RN ) :=

(∫
RN

(
|(−∆)s/2u|2 + V (x)|u|2

)
dx
)1/2

<∞. (2.1)
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It is easy to check that Hs
V (RN ) ≡ Hs(RN ) if (A23) and (A24) hold. In our paper,

we shall work on Hs(RN ) with norm (2.1) and we denote ‖u‖Hs(RN ) by ‖u‖ for
simplicity.

Associated with problem (1.2), is the energy functional I : Hs(RN )→ R defined
by

I(u) =
1
2

∫
RN

|(−∆)s/2u|2 + V (x)|u|2 −
∫

RN

F (u), u ∈ Hs(RN ),

where F (u) =
∫ u

0
f(t)dt. Conditions (A20)–(A22) imply that I ∈ C1(Hs(RN ),R).

Definition 2.1. u is said to be a solution of (1.2) if u is a critical point of the
energy functional I and satisfies∫

RN

(−∆)
s
2u(−∆)

s
2ϕ+

∫
RN

V (x)uϕ =
∫

RN

f(u)ϕ, u ∈ Hs(RN ), ∀ϕ ∈ C∞0 (RN ).

u is said to be a ground state solution of (1.2) if u is a solution with the least energy
among all nontrivial solutions of (1.2).

In this article, we use the embedding lemma and Lions lemma as follows.

Lemma 2.2. ([24]) For any s ∈ (0, 1), Hs(RN ) is continuously embedded into
Lr(RN ) for r ∈ [2, 2∗s] and compactly embedded into Lrloc(RN ) for r ∈ [2, 2∗s).

Lemma 2.3. ([26]) Suppose that {un} is bounded in Hs(RN ) and

lim
n→∞

sup
z∈RN

∫
B1(z)

|un|2 → 0.

Then ‖un‖Lr → 0 for r ∈ (2, 2∗s) when N ≥ 3 and for r ∈ (2,+∞) when N = 1, 2.
Here B1(z) = {y ∈ RN , |y − z| ≤ 1}.

3. Solutions for auxiliary problems

In this section, we consider the family of functionals Iλ(u) : Hs(RN )→ R defined
by

Iλ(u) =
1
2

∫
RN

|(−∆)s/2u|2 + V (x)|u|2 − λ
∫

RN

F (u).

The corresponding auxiliary problems are

(−∆)su+ V (x)u = λf(u). (3.1)

The main aim of this section is to prove that for almost every λ ∈ [1/2, 1], Iλ has
a nontrivial critical point uλ such that Iλ(uλ) ≤ cλ, where

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

Γ = {γ ∈ C([0, 1], Hs(RN )), γ(0) = 0 and Iλ(γ(1)) < 0}.
Before we prove the existence of solutions for the auxiliary problems (3.1), we

give some propositions and lemmas.

Proposition 3.1. Let u(x) be a critical point of Iλ with λ ∈ [1/2, 1], then u(x)
satisfies

N − 2s
2

∫
RN

|(−∆)s/2u|2 +
N

2

∫
RN

V (x)|u|2

+
1
2

∫
RN

〈∇V (x), x〉|u|2 −Nλ
∫

RN

F (u) = 0.
(3.2)
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As we all know, (3.2) is named Pohozǎev identity. The proof is similar as that
in [11] and we omit it here.

Lemma 3.2. Assume (A20) and (A21) hold. Let {un} ⊂ Hs(RN ) be such that
un → u weakly in Hs(RN ). Then up to a subsequence,∫

RN

(f(un)− f(u)− f(un − u))φ = on(1)‖φ‖.

where on(1)→ 0 uniformly for φ ∈ C∞0 (RN ) as n→∞.

The proof of the above lemma is similar to that in [39]. So we omit it. Similar
the proof of Brezis-Lieb Lemma in [36], we can give the following lemma.

Lemma 3.3. For s ∈ (0, 1), assume (A20) and (A21). Let {un} ⊂ Hs(RN ) such
that un → u weakly in Hs(RN ) and a.e. in RN as n→∞, then∫

RN

F (un) =
∫

RN

F (un − u) +
∫

RN

F (u) + on(1),

where on(1)→ 0 as n→∞.

To obtain the existence of critical points for Iλ, the following abstract result is
needed from [18], which shows that for almost every λ ∈ [1/2, 1], Iλ possesses a
BPS sequence at the level cλ.

Theorem 3.4. Let X be a Banach space equipped with a norm ‖·‖X and let J ⊂ R+

be an interval. For a family (Iλ)λ∈J of C1-functionals on X of the form

Iλ(u) = A(u)− λB(u),∀λ ∈ J,
where B(u) ≥ 0,∀u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as
‖u‖X →∞. If there are two points v1, v2 in X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)}, ∀λ ∈ J,

where
Γ = {γ ∈ C([0, 1], X), γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ J , there is a sequence {vn} ⊂ X such that
(i) {vn} is bounded,

(ii) Iλ(vn)→ cλ,
(iii) I ′λ(vn)→ 0 in the dual X−1 of X.

In the following, we use Theorem 3.4 to seek nontrival critical points of Iλ for
almost every λ ∈ J . In what follows, let X = Hs(RN ) and

A(u) =
1
2

∫
RN

|(−∆)s/2u|2 + V (x)|u|2, B(u) =
∫

RN

F (u).

Obviously, A(u) → +∞ as ‖u‖ → ∞ and B(u) ≥ 0 for any u ∈ Hs(RN ) by
(A22). Now, we give the following lemma to ensure that Iλ has the MP geometry.
Consequently, we obtain a BPS for Iλ by Theorem 3.4.

Lemma 3.5. Assume (A20)–(A24) hold. Then
(i) there exists a v ∈ Hs(RN ) \ {0} with Iλ(v) ≤ 0 for all λ ∈ [1/2, 1];
(ii) cλ = infγ∈Γ maxt∈[0,1] Iλ(γ(t)) > max{Iλ(0), Iλ(v)} > 0 for all λ ∈ [1/2, 1],

where

Γ = {γ ∈ C([0, 1], Hs(RN )), γ(0) = 0, γ(1) = v};
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(iii) there exists a BPS sequence {un} at the MP level cλ for Iλ, where un ≥ 0.

Proof. Since (A20) and (A21) hold, for any ε > 0, there exists C(ε) > 0 such that∫
RN

F (u) ≤ ε
∫

RN

|u|2 + C(ε)
∫

RN

|u|2
∗
s ,∀u ∈ Hs(RN ).

Thus

Iλ(u) =
1
2
‖u‖2 − λ

∫
RN

F (u)

≥ 1
2
‖u‖2 − ε‖u‖2L2 − C(ε)‖u‖2

∗
s

L2∗s

From Lemma 2.2, there exist constants ρ > 0 and δ > 0 independent of λ such that
for ‖u‖ = ρ, Iλ(u) ≥ δ. On the other hand, (A22) implies

Iλ(u) ≤ 1
2
‖u‖2 − 1

2
‖u‖2

∗
s

L2∗s
− D

2p
‖u‖pLp .

Set v0 ∈ Hs(RN ) such that v0 ≥ 0, v0 6= 0. Since Iλ(tv0)→ −∞ as t→ +∞, then
there exists t0 such that Iλ(t0v0) < 0 as ‖t0v0‖ > ρ. Set v = t0v0, then (i) and (ii)
hold. So, the conditions of Theorem 3.4 are satisfied. Therefore, for almost every
λ ∈ [1/2, 1], there exists a BPS sequence {un} for Iλ at the MP value cλ. Now, we
show un ≥ 0. Let un = u+

n + u−n . Using u−n as a test function, since f(t) ≡ 0 for all
t ≤ 0, we have

(I ′λ(un), u−n ) =
∫

RN

(−∆)s/2un(−∆)s/2u−n +
∫

RN

V (x)(unu−n )− λ
∫

RN

f(un)u−n

=
∫

RN

(−∆)s/2un(−∆)s/2u−n +
∫

RN

V (x)|u−n |2.

Since for every x, y ∈ RN , we have (u+
n (x)− u+

n (y)) (u−n (x)− u−n (y)) ≥ 0, it follows
that

(un(x)− un(y))
(
u−n (x)− u−n (y)

)
=
(
u+
n (x)− u+

n (y)
) (
u−n (x)− u−n (y)

)
+
(
u−n (x)− u−n (y)

)2
≥
(
u−n (x)− u−n (y)

)2
.

Thus ∫
RN

(−∆)s/2un(−∆)s/2u−n =
∫

RN

∫
RN

(un(x)− un(y)) (u−n (x)− u−n (y))
|x− y|N+2s

≥
∫

RN

∫
RN

(u−n (x)− u−n (y))2

|x− y|N+2s

=
∫

RN

|(−∆)s/2u−n |2.

Therefore, from (I ′λ(un), u−n )→ 0, we have ‖u−n ‖ → 0. The proof is complete. �

From the argument above, we obtain a BPS for Iλ at the level cλ. To get the
convergence of the BPS sequence, we give some lemmas and propositions.

Lemma 3.6. Assume (A20)–(A24) hold. If max{2, 2∗s − 2} < p < 2∗s, then

cλ <
s

Nλ
N−2s

2s

S
N
2s
s .
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Proof. Let ϕ ∈ C∞0 (RN ) is a cut-off function with support B2 such that ϕ ≡ 1 on
B1 and 0 ≤ ϕ ≤ 1 on B2, where Br denotes the ball in RN of center at origin and
radius r. For ε > 0, we define ψε(x) = ϕ(x)Uε(x), where

Uε(x) = κε−
N−2s

2

(
µ2 +

∣∣ x

εS
1
2s
s

∣∣2)−N−2s
2
.

By [13], Ss can be achieved by Uε(x). Let vε = ψε

‖ψε‖
L

2∗s
, then ‖(−∆)s/2vε‖2L2 ≤

Ss +O(εN−2s). From [17], we have the estimates

‖vε‖2L2 =


O(ε2s), N > 4s,
O(ε2s ln 1

ε ), N = 4s,
O(εN−2s), N < 4s,

and

‖vε‖pLp =

{
O(ε

2N−(N−2s)p
2 ), p > N

N−2s ,

O(ε
(N−2s)p

2 ), p < N
N−2s .

By (A22), for any t > 0,

Iλ(tvε) =
t2

2

∫
RN

|(−∆)s/2vε|2 + V (x)|vε|2 − λ
∫

RN

F (tvε)

=
t2

2
‖vε‖2 − λ

∫
RN

F (tvε)

≤ t2

2
‖vε‖2 −

λ

2∗s
t2
∗
s − Dtp

2p
‖vε‖pLp .

Obviously, Iλ(tvε) → −∞ as t → +∞ and Iλ(tvε) > 0 for t > 0 small. Let

g(t) = t2

2 ‖vε‖
2 − λ

2∗s
t2
∗
s . Then tε =

(‖vε‖2
λ

) 1
2∗s−2 is the maximum point of g(t).

For ε < 1, by the definition of vε, there exists t1 > 0 small enough such that

max
t∈(0,t1)

Iλ(tvε) ≤
t2

2
‖vε‖2 <

s

Nλ
N−2s

2s

S
N
2s
s .

Since Iλ(tvε)→ −∞ as t→ +∞, it is easy to obtain that there exists t2 > 0 such
that

max
t∈(t2,+∞)

Iλ(tvε) <
s

Nλ
N−2s

2s

S
N
2s
s .

If t ∈ [t1, t2],

max
t∈[t1,t2]

Iλ(tvε) ≤ max
t∈[t1,t2]

{g(t)− Dtp1
2p
‖vε‖pLp} ≤ g(tε)−

Dtp1
2p
‖vε‖pLp

For g(tε), we have

g(tε) =
s

Nλ
N−2s

2s

(‖vε‖2)
N
2s

=
s

Nλ
N−2s

2s

(
‖(−∆)s/2vε‖2L2 +

∫
RN

V (x)|vε|2
) N

2s

≤ s

Nλ
N−2s

2s

(
Ss +O(εN−2s) + C‖vε‖2L2

) N
2s

.
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By (a+ b)q ≤ aq + q(a+ b)q−1b, where a > 0, b > 0, q > 1, we have

g(tε) ≤
s

Nλ
N−2s

2s

(
S

N
2s
s +

N

2s

(
Ss +O(εN−2s)

+ C‖vε‖2L2

)N−2s
2s (

O(εN−2s) + C‖vε‖2L2

) )
≤ s

Nλ
N−2s

2s

S
N
2s
s +O(εN−2s) + C‖vε‖2L2 .

Thus

max
t∈[t1,t2]

Iλ(tvε) ≤
s

Nλ
N−2s

2s

S
N
2s
s +O(εN−2s) + C‖vε‖2L2 −

Dtp1
2p
‖vε‖pLp .

Next, we estimate maxt∈[t1,t2] Iλ(tvε) in three cases.

Case 1: If N > 4s, then N
N−2s < 2, with p > max{2, 2∗s − 2}, we have p > N

N−2s .
So

max
t∈[t1,t2]

Iλ(tvε) ≤
s

Nλ
N−2s

2s

S
N
2s
s +O(εN−2s) +O(ε2s)−O(ε

2N−(N−2s)p
2 ).

From p > 2, N > 4s, then 2N−(N−2s)p
2 < 2s < N − 2s. Thus, for ε > 0 small

enough, we obtain
max
t∈[t1,t2]

Iλ(tvε) <
s

Nλ
N−2s

2s

S
N
2s
s .

Case 2: If N = 4s, then 2 < p < 4. For ε > 0 small enough, we obtain

max
t∈[t1,t2]

Iλ(tvε) ≤
s

Nλ
N−2s

2s

S
N
2s
s +O(εN−2s) +O(ε2s ln

1
ε

)−O(ε4s−sp)

≤ s

Nλ
N−2s

2s

S
N
2s
s +O

(
ε2s(1 + ln

1
ε

)
)
−O(ε4s−sp)

<
s

Nλ
N−2s

2s

S
N
2s
s ,

since

lim
ε→0+

ε4s−sp

ε2s(1 + ln 1
ε )
→ +∞.

Case 3: If 2s < N < 4s, then N
N−2s > 2, with p > max{2, 2∗s − 2}, we have

p > N
N−2s . So

max
t∈[t1,t2]

Iλ(tvε) ≤
s

Nλ
N−2s

2s

S
N
2s
s +O(εN−2s)−O(ε

2N−(N−2s)p
2 ).

From p > 4s
N−2s , then 2N−(N−2s)p

2 < N − 2s. For ε > 0 small enough, we obtain

max
t∈[t1,t2]

Iλ(tvε) <
s

Nλ
N−2s

2s

S
N
2s
s .

The proof is complete. �

In (1.2), if V (x) ≡ V (∞), for λ ∈ [1/2, 1], the family of functionals I∞λ :
Hs(RN ) 7→ R, defined as

I∞λ (u) =
1
2

∫
RN

|(−∆)s/2u|2 + V (∞)|u|2 − λ
∫

RN

F (u),

plays an important role in our paper. Similar as that in [20, 38], we can derive the
following result.
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Lemma 3.7. For λ ∈ [1/2, 1], if wλ ∈ Hs(RN ) is a nontrivial critical point of I∞λ ,
then there exists γλ ∈ C([0, 1], Hs(RN )) such that γλ(0) = 0, I∞λ (γλ(1)) < 0, wλ ∈
γλ[0, 1] and maxt∈[0,1] I

∞
λ (γλ(t)) = I∞λ (wλ).

Lemma 3.8 ([37]). If f satisfies (A20)–(A22) and max{2, 2∗s − 2} < p < 2∗s, then
for almost every λ ∈ [1/2, 1], I∞λ has a positive ground state solution.

Lemma 3.9. If V (x) ≡ V (∞) > 0 and (A20) and (A21) hold, then there exists
a constant δ > 0 independent of λ such that any nontrivial critical point u of I∞λ
satisfies I∞λ (u) ≥ δ.

Proof. Letting u be a nontrivial critical point of I∞λ , from the Pohozăev identity
(3.2), we have

I∞λ (u) =
s

N

∫
RN

|(−∆)s/2u|2.

Since (A20) and (A21) hold, for any ε > 0, there exists C(ε) > 0 such that∫
RN

|(−∆)s/2u|2 + V |u|2 ≤ ε
∫

RN

|u|2 + C(ε)
∫

RN

|u|2
∗
s .

Thus,
∫

RN |(−∆)s/2u|2 ≤ C
∫

RN |u|2
∗
s . On the other hand, by the Sobolev embed-

ding theorem, we have
∫

RN |u|2
∗
s ≤ C̃(

∫
RN |(−∆)s/2u|2)

2s∗
2 . Since u 6= 0, there exists

a constant δ0 > 0 such that
∫

RN |(−∆)s/2u|2 ≥ δ0 and so I∞λ (u) ≥ δ := sδ0/N . The
proof is complete. �

Now, we give the decomposition of a BPS sequence.

Proposition 3.10. Assume (A20)–(A25) hold. If max{2, 2∗s − 2} < p < 2∗s, for
almost every λ ∈ [1/2, 1], {un} given in Lemma 3.5 is the BPS sequence at the

MP value cλ. Moreover, cλ < s

Nλ
N−2s

2s

S
N
2s
s . Then there exist a subsequence, still

denoted by {un}, an integer k ∈ N∪{0} and vjλ ∈ Hs(RN ) for 1 ≤ j ≤ k, such that
(i) un → uλ weakly in Hs(RN ) and I ′λ(uλ) = 0,
(ii) vjλ 6= 0, vjλ ≥ 0 and I∞

′

λ (vjλ) = 0 for 1 ≤ j ≤ k,
(iii) cλ = Iλ(uλ) +

∑k
j=1 I

∞
λ (vjλ),

(iv) ‖un − u0 −
∑k
j=1 v

j
λ(· − yjn)‖ → 0.

where |yjn| → ∞ and |yin − yjn| → ∞ as n→∞ for any i 6= j.

Proof. For λ ∈ [1/2, 1], let {un} ⊂ Hs(RN ), un ≥ 0 be given in Lemma 3.5. Since
{un} is bounded, there exist a subsequence denoted by {un} and uλ ∈ Hs(RN )
satisfying un → uλ weakly in Hs(RN ) and un → uλ a.e. in RN . It is not hard to
verify that I ′λ(uλ) = 0.
Step 1. Let v1

n = un − uλ. If v1
n → 0 strongly in Hs(RN ), the Proposition holds

with k = 0.
Step 2. We claim that if v1

n 6→ 0 strongly, then limn→∞ supz∈RN

∫
B1(z)

|v1
n|2 > 0.

Since Iλ(un)→ cλ, by Lemma 3.3, we have

cλ − Iλ(uλ) = Iλ(v1
n) + o(1). (3.3)

Since v1
n ⇀ 0, by (A24) and Lemma 2.2, we have

I∞λ (v1
n)− Iλ(v1

n) =
∫

RN

(V (∞)− V (x))|v1
n|2
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=
∫
BR(0)

(V (∞)− V (x))|v1
n|2 +

∫
RN\BR(0)

(V (∞)− V (x))|v1
n|2

→ 0.

Consequently,
cλ − Iλ(uλ) = I∞λ (v1

n) + o(1). (3.4)
Suppose limn→∞ supz∈RN

∫
B1(z)

|v1
n|2 = 0. By Lemma 2.3, we have

v1
n → 0 in Lt(RN ), ∀t ∈ (2, 2∗s). (3.5)

Let f(t) = h(t) + (t+)2∗s−1, from (A20) and (A21), for any ε > 0, there exists
C(ε) > 0 such that∣∣ ∫

RN

H(v1
n)
∣∣ ≤ ε(∫

RN

|v1
n|2 + |v1

n|2
∗
s

)
+ C(ε)

∫
RN

|v1
n|r,

where r < 2∗s. Since v1
n ∈ Hs(RN ), from (3.5), we obtain∣∣ ∫

RN

H(v1
n)
∣∣ ≤ εC + o(1),

which implies
∫

RN H(v1
n) = o(1) since ε is small enough. Furthermore, by the

Brezis-Lieb lemma, we have∫
RN

|v1
n|2
∗
s =

∫
RN

|un|2
∗
s −

∫
RN

|uλ|2
∗
s + o(1).

Thus, (3.3) reduces to

cλ − Iλ(uλ) =
1
2
‖v1
n‖2 −

λ

2∗s

∫
RN

|v1
n|2
∗
s + o(1). (3.6)

Noting that I ′λ(un)v1
n → 0 and I ′λ(uλ)v1

n = 0, by direct calculation, we obtain

‖v1
n‖2 − λ

∫
RN

(f(un)− f(uλ)) v1
n = I ′λ(un)v1

n − I ′λ(uλ)v1
n → 0.

By Lemma 3.2,∫
RN

(f(un)− f(u))v1
n =

∫
RN

f(v1
n)v1

n + o(1)‖v1
n‖

=
∫

RN

h(v1
n)v1

n +
∫

RN

|v1
n|2
∗
s + o(1)‖v1

n‖.

By (3.5) and similar argument as above, we have∫
RN

(f(un)− f(uλ)) v1
n =

∫
RN

|v1
n|2
∗
s + o(1).

Therefore,

‖v1
n‖2 − λ

∫
RN

|v1
n|2
∗
s = o(1). (3.7)

Combining (3.6) with (3.7), we obtain cλ − Iλ(uλ) = s
N ‖v

1
n‖2 + o(1).

Noting that I ′λ(uλ) = 0, from Pohozǎev identity (3.2) and Sobolev embedding
theorem, we obtain

Iλ(uλ)

=
s

N

∫
RN

|(−∆)s/2uλ|2 −
1

2N

∫
RN

〈∇V (x), x〉u2
λ
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≥ s

N

∫
RN

|(−∆)s/2uλ|2 −
1

2NSs
‖max{〈∇V (x), x〉, 0}‖

L
N
2s

∫
RN

|(−∆)s/2uλ|2.

Condition (A25) implies Iλ(uλ) ≥ 0. Thus cλ−Iλ(uλ) < s

Nλ
N−2s

2s

S
N
2s
s . On the other

hand, since v1
n 6→ 0 strongly, there exists a constant l > 0 such that ‖v1

n‖2 → l. Set
‖(−∆)s/2v1

n‖2L2 = l̃ < l, then

Ss = inf
u∈Hs(RN ),u6=0

‖(−∆)s/2u‖2L2

‖u‖2
L2∗s

≤ l̃

( lλ )
2
2∗s

≤ l 2s
N λ

N−2s
N .

So we have l ≥ S
N
2s
s

λ
N−2s

2s

. Consequently, cλ − Iλ(uλ) ≥ s

Nλ
N−2s

2s

S
N
2s
s , which is a

contradiction. The claim is true.
Step 3. From the argument in step 2, if vn ⇀ 0, then

lim
n→∞

sup
z∈RN

∫
B1(z)

|v1
n|2 > 0.

Thus, after extracting a subsequence if necessary, there exist {z1
n} ⊂ RN and v1

λ ∈
Hs(RN ) such that |z1

n| → ∞ and
(i) limn→∞

∫
B1(z1n)

|v1
n|2 > 0,

(ii) v1
n(·+ z1

n) ⇀ v1
λ 6= 0,

(iii) I∞
′

λ (v1
λ) = 0.

Clearly (i), (ii) are standard and the point is to show (iii). Set u1
n = v1

n(·+ z1
n). To

prove I∞
′

λ (v1
λ) = 0, it suffices to prove I∞

′

λ (u1
n) → 0. For any ϕ ∈ C∞0 (RN ), from

I ′λ(v1
n)→ 0, we have

I ′λ(v1
n)ϕ(· − z1

n)

=
∫

RN

(−∆)s/2v1
n(x+ z1

n)(−∆)s/2ϕ(x)dx+
∫

RN

V (x+ z1
n)v1

n(x+ z1
n)ϕ(x)dx

−
∫

RN

f(v1
n(x+ z1

n))ϕ(x)dx

=
∫

RN

(−∆)s/2u1
n(x)(−∆)s/2ϕ(x)dx+

∫
RN

V (x+ z1
n)u1

n(x)ϕ(x)dx

−
∫

RN

f(u1
n(x))ϕ(x)dx→ 0.

Since |z1
n| → ∞ and ϕ ∈ C∞0 (RN ), by (A24), we obtain∫

RN

V (x+ z1
n)u1

n(x)ϕ(x)dx→
∫

RN

V (∞)u1
n(x)ϕ(x)dx.

Thus,

I∞
′

λ (u1
n) =

∫
RN

(−∆)s/2u1
n(x)(−∆)s/2ϕ(x)dx+

∫
RN

V (∞)u1
n(x)ϕ(x)dx

−
∫

RN

f(u1
n(x))ϕ(x)dx→ 0.

Then we obtain I∞
′

λ (v1
λ) = 0 since u1

n ⇀ v1
λ. On the other hand, from (3.4), it is

easy to see that cλ − Iλ(uλ) = I∞λ (u1
n) + o(1).
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So, we obtain a bounded sequence {u1
n} with u1

n ⇀ v1
λ 6= 0 satisfying

I∞λ (u1
n)→ cλ − Iλ(uλ), I∞

′

λ (u1
n)→ 0, I∞

′

λ (v1
λ) = 0.

Let v2
n = u1

n − v1
λ. Then un = uλ + v1

λ(· − z1
n) + v2

n(· − z1
n). If v2

n → 0 strongly in
Hs(RN ), we have

cλ − Iλ(uλ) = I∞λ (v1
λ),

‖un − uλ − v1
λ(· − z1

n)‖ → 0.

If v2
n 6→ 0 strongly, similarly as (3.3) and (3.4), we have

cλ − Iλ(uλ)− I∞λ (v1
λ) = I∞λ (v2

n) + o(1), I∞
′

λ (v2
n)→ 0.

By the same argument as step 2, we obtain limn→∞ supz∈RN

∫
B1(z)

|v2
n|2 > 0. Then,

there exist {z2
n} ⊂ RN and v2

λ 6= 0 such that |z2
n| → ∞ and

(i) limn→∞
∫
B1(z2n)

|v1
n|2 > 0,

(ii) v2
n(·+ z2

n) ⇀ v2
λ,

(iii) I∞
′

λ (v2
λ) = 0.

Set u2
n = v2

n(·+ z2
n). Then, {u2

n} is a bounded sequence satisfying u2
n ⇀ v2

λ and

I∞λ (u2
n)→ cλ − Iλ(uλ)− I∞λ (v1

λ), I∞
′

λ (u2
n)→ 0.

Let v3
n = u2

n − v2
λ. Then un = uλ + v1

λ(· − z1
n) + v2

λ(· − z1
n − z2

n) + v3
n(· − z1

n − z2
n).

If v3
n → 0 strongly in Hs(RN ), we have

cλ = Iλ(uλ) + I∞λ (v1
λ) + I∞λ (v2

λ),

‖un − uλ − v1
λ(· − z1

n)− v2
λ(· − z1

n − z2
n)‖ → 0.

Otherwise, we repeat the procedure above. From Lemma 3.9, we can terminate our
arguments by repeating the above proof by finite k steps. That is, let yjn =

∑j
i=1 z

i
n,

then

cλ = Iλ(uλ) +
k∑
j=1

I∞λ (vjλ),

‖un − uλ −
k∑
j=1

vjλ(· − yjn)‖ → 0.

Step 4. Now, we show that after extracting a subsequence of {yjn} and redefining
{vjλ} if necessary, (iii), (iv) hold for |yjn| → ∞ and |yin−yjn| → ∞ as n→∞ for any
i 6= j. Let A = {1, 2, ···, k}. From un−uλ−

∑k
j=1 v

j
λ(·−yjn)→ 0 and un → uλ a.e. in

RN , we obtain that
∑k
j=1 v

j
λ(·−yjn)→ 0 a.e. in RN . Since vjλ ≥ 0 for any j, it follows

that |yjn| → ∞. For yin, assume Ai = {yjn : |yin − yjn| is bounded for n}, then up to
a sequence, there exists some ṽiλ ∈ Hs(RN ) such that

∑
j∈Ai

vjλ(·+ yin − yjn)→ ṽiλ
strongly in Hs(RN ). Then ‖un − uλ − ṽiλ(· − yin) −

∑
j∈(A\Ai)

vjλ(· − yjn)‖ → 0.
Since vjλ(j ∈ A) is the critical point of I∞

′

λ , we have I∞
′

λ (ṽiλ) = 0. Then we redefine
viλ := ṽiλ, and then ‖un − uλ −

∑
j∈(A\Ai)∪{i} v

j
λ(· − yjn)‖ → 0 holds as n→∞. By

repeating the argument above at most (k−1) times and redefining {vjλ} if necessary,
there exists Λ ⊂ A such that

|yjn| → ∞, |yin − yjn| → ∞, ∀i 6= j, n→∞,
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‖un − uλ −
∑
j∈Λ

vjλ(· − yjn)‖ → 0.

The proof is complete. �

If V (x) ≡ V > 0, we can get the similar decomposition of the BPS sequence for
the autonomous problem (1.2). Denote the energy functional of autonomous prob-
lem (1.2) and auxiliary energy functional by J and Jλ (λ ∈ [1/2, 1]) respectively.
Let cλ be the MP value for Jλ, then we have the following result.

Corollary 3.11. Assume V (x) ≡ V > 0 and (A20)–(A22) hold. For λ ∈ [1/2, 1],
if {un} ⊂ Hs(RN ) is a sequence such that un ≥ 0, ‖un‖ < ∞, Jλ(un) → cλ and

J ′λ(un) → 0, furthermore cλ < s

Nλ
N−2s

2s

S
N
2s
s . Then there exist a subsequence of

{un}, an integer l ∈ N ∪ {0} and wjλ ∈ Hs(RN ) for 1 ≤ j ≤ l such that
(i) un → uλ weakly in Hs(RN ) with J ′λ(uλ) = 0,

(ii) wjλ 6= 0, wjλ ≥ 0 and J ′λ(wjλ) = 0 for 1 ≤ j ≤ l,
(iii) cλ = Jλ(uλ) +

∑l
j=1 Jλ(wjλ),

(iv) ‖un − u0 −
∑l
j=1 w

j
λ(· − yjn)‖ → 0,

where |yjn| → ∞ and |yin − yjn| → ∞ as n→∞ for any i 6= j.

The proof of the above corollary is similar to Proposition 3.10, we omit it here.
Now, we complete the proof of the existence of solutions of the auxiliary problems
(3.1).

Lemma 3.12. Assume (A20)–(A25) hold. If max{2, 2∗s − 2} < p < 2∗s, then for
almost every λ ∈ [1/2, 1], Iλ has a positive critical point uλ satisfying ‖uλ‖ ≥ δ
where δ > 0 independent of λ.

Proof. From Lemmas 3.5 and 3.6, there exists a bounded sequence {un} ⊂ Hs(RN ),

un ≥ 0 and 0 < cλ <
s

Nλ
N−2s

2s

S
N
2s
s , such that

Iλ(un)→ cλ, I ′λ(un)→ 0.

Then un → uλ ≥ 0 weakly in Hs(RN ). It is obvious that uλ is a critical point of
Iλ.

Now, we claim uλ 6= 0. If uλ = 0, from Proposition 3.10, we can deduce that
k > 0 since c > 0, and

cλ =
k∑
j=1

I∞λ (vjλ) ≥ m∞λ := inf{I∞λ (u) : u ∈ Hs(RN ), u 6= 0, I∞
′

λ (u) = 0}, (3.8)

where I∞
′

λ (vjλ) = 0(j = 1, 2, . . . , k). On the other hand, we infer that

cλ < m∞λ , (3.9)

which is contradictory to (3.8) and then the claim is true.
From Lemma 3.8, we let vλ be the least energy solution of

(−∆)su+ V (∞)u = λf(u).

By Lemma 3.7, there exists γλ(t) satisfying γλ(0) = 0, I∞λ (γλ(1)) < 0, vλ ∈ γλ[0, 1]
and

max
t∈[0,1]

I∞λ (γλ(t)) = I∞λ (vλ) = m∞λ .
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By (A24), we have
Iλ(γλ(t)) < I∞λ (γλ(t)), ∀t ∈ [0, 1],

and from the definition of cλ it follows that

cλ ≤ max
t∈[0,1]

Iλ(γλ(t)) < max
t∈[0,1]

I∞λ (γλ(t)) = m∞λ .

Since (A20) and (A21) hold, by the same argument as that in Lemma 3.9, there
exists a constant δ0 > 0 independent of λ such that

∫
RN |(−∆)s/2uλ|2 ≥ δ0 since

uλ 6= 0. Thus, there exists a δ > 0 independent of λ such that ‖uλ‖ ≥ δ. The proof
is complete. �

4. Proof of Theorem 1.1

Lemma 3.12 shows that for almost every λ ∈ [1/2, 1], Iλ(u) has a positive critical
point uλ. Thus we obtain a critical point sequence {uλ} satisfying I ′λ(uλ) = 0. In
the following, we first show that {uλ} is a BPS sequence of I and then prove the
convergence of {uλ} as λ→ 1. By analyzing the properties of minimizing sequence,
we complete the proof of the existence of ground state solutions of (1.2). First, we
show the uniform boundedness of {uλ}.

Proposition 4.1. Assume (A20)–(A25) hold. If max{2, 2∗s − 2} < p < 2∗s, then
{uλ} is bounded uniformly and there exists δ > 0 independent of λ such that
Iλ(uλ) ≥ δ.

Proof. Since uλ is the critical point of Iλ(u), from the Pohozǎev identity (3.2), we
have

Iλ(uλ) =
s

N

∫
RN

|(−∆)s/2uλ|2 −
1

2N

∫
RN

〈∇V (x), x〉|uλ|2. (4.1)

From Proposition 3.10, Iλ(uλ) ≤ cλ ≤ c1/2 for any λ ∈ [1/2, 1]. By the Hölder
inequality and Sobolev embedding theorem,∫

RN

|(−∆)s/2uλ|2 =
N

s
Iλ(uλ) +

1
2s

∫
RN

〈∇V (x), x〉|uλ|2

≤ N

s
c 1

2
+

1
2sSs

‖max{〈∇V (x), x〉, 0}‖
L

N
2s

∫
RN

|(−∆)s/2uλ|2.

Condition (A25) implies that
∫

RN |(−∆)s/2uλ|2 is bounded uniformly independent
of λ. Next, we show that ‖uλ‖L2 is bounded uniformly independent of λ. From
I ′λ(uλ)uλ = 0, we have

∫
RN |(−∆)s/2uλ|2 +

∫
RN V (x)|uλ|2 = λ

∫
RN f(uλ)uλ. Then,

by (A20) and (A21),

V0

∫
RN

|uλ|2 ≤
∫

RN

|(−∆)s/2uλ|2 +
∫

RN

V (x)|uλ|2

≤ λε
∫

RN

|uλ|2 + λC(ε)
∫

RN

|uλ|2
∗
s

≤ ε
∫

RN

|uλ|2 + C(ε)
∣∣∣ ∫

RN

|(−∆)s/2uλ|2
∣∣∣2∗s/2.

Therefore, ‖uλ‖L2 is bounded uniformly. Now, we prove that Iλ(uλ) ≥ δ > 0. From
Lemma 3.12, there exists δ0 > 0 independent of λ such that ‖uλ‖ ≥ δ0. On the
other hand,

Iλ(uλ)
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≥ s

N

∫
RN

|(−∆)s/2uλ|2 −
1

2N

∫
RN

max{〈∇V (x), x〉, 0}|uλ|2

≥ s

N

∫
RN

|(−∆)s/2uλ|2 −
1

2NSs
‖max{〈∇V (x), x〉, 0}‖

L
N
2s

∫
RN

|(−∆)s/2uλ|2.

Condition (A25) implies that there exists δ > 0 independent of λ such that

Iλ(uλ) ≥ δ (4.2)

The proof is complete. �

In the following, we denote uλ by uλj
and let λj → 1 as j →∞.

Lemma 4.2. Assume (A20)–(A25) hold, if max{2, 2∗s − 2} < p < 2∗s, then the
sequence {uλj

} is a BPS sequence for I satisfying lim supj→∞ I(uλj
) ≤ c1 and

‖uλj‖ 6→ 0.

Proof. From Lemma 3.12, we have ‖uλj
‖ 6→ 0. It follows from Proposition 4.1 that

‖uλj
‖ is bounded uniformly, and consequently

∫
RN F (uλj

) is bounded by (A20) and
(A21). Property (iii) in Proposition 3.10 shows that Iλj

(uλj
) ≤ cλj

for any uλj
.

Thus, from

I(uλj ) = Iλj (uλj ) + (λj − 1)
∫

RN

F (uλj ), (4.3)

we obtain lim supj→∞ I(uλj ) ≤ c1 and I ′(uλj )→ 0. �

Completion of the proof of the Theorem 1.1. From Lemma 4.2, inequality (4.2),
and (4.3), there exists a subsequence still denoted by {uλj

} satisfying

(i) {uλj
} is bounded,

(ii) I(uλj
)→ c ≤ c1,

(iii) I ′(uλj
)→ 0,

where c > 0. That is to say, there exists a BPS sequence {uλj} satisfying the
assumptions of Lemma 3.12 for λ = 1. Thus, there exists a nontrivial critical point
u0 for I satisfying I(u0) ≤ c1.

Next, we show the existence of a ground state solution. Let

m = inf{I(u) : u ∈ Hs(RN ), u 6= 0, I ′(u) = 0}.

Obviously, m ≤ I(u0) ≤ c1 = s
N S

N
2s
s . Set {un} be a sequence of nontrivial critical

points of I satisfying I(un) → m. Since I(un) is bounded, similar proof as that
in Proposition 4.1 for λ = 1, we obtain that {un} is bounded uniformly and there
exists δ > 0 such that I(un) ≥ δ > 0. Thus m > 0. So, {un} is a BPS sequence
satisfying the following conditions,

(i) {un} is bounded,
(ii) I(un)→ m ≤ c1,

(iii) I ′(un) = 0,

From Proposition 3.10, there exists ũ such that I ′(ũ) = 0 and I(ũ) ≤ m.
Now, we claim ũ 6= 0. Otherwise, ũ = 0. Then, by Proposition 3.10, we have

m =
k∑
j=1

I∞(wj) ≥ m∞ := inf{I∞(u) : u ∈ Hs(RN ), u 6= 0, I∞
′
(u) = 0}
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for k > 0 and wj(j = 1, 2, . . . , k) are the critical points of I∞. On the other hand,
similar argument as that in Lemma 3.12, there exists γ(t) such that

max
t∈[0,1]

I∞(γ(t)) = m∞.

From the definition of c1, we obtain m ≤ c1 ≤ maxt∈[0,1] I(γ(t)). By (A24), we
obtain

m ≤ c1 < m∞,

which is a contradiction. Thus, the claim is true. Then I(ũ) ≥ m since I ′(ũ) = 0
and ũ 6= 0. So, there exists a critical point ũ 6= 0 such that I(ũ) = m. The proof is
complete. �
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