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Abstract. We study the periodic modified KdV equation, where a periodic

in space and time breather solution is known from the work of Kevrekidis et
al. [19]. We show that these breathers satisfy a suitable elliptic equation, and

we also discuss via numerics its spectral stability. We also identify a source of
nonlinear instability for the case described in [19], and we conjecture that, even

if spectral stability is satisfied, nonlinear stability/instability depends only on

the sign of a suitable discriminant function, a condition that is trivially satisfied
in the case of non-periodic (in space) mKdV breathers. Finally, we present

a new class of breather solution for mKdV, believed to exist from geometric

considerations, and which is periodic in time and space, but has nonzero mean,
unlike standard breathers.

1. Introduction

1.1. Setting of the problem. In this article, we consider the breather solution
of the periodic modified Korteweg-de Vries (mKdV) equation

ut + (uxx + u3)x = 0, u(t, x) ∈ R, t ∈ R, x ∈ Tx := R/LZ; (1.1)

Here L > 0 is a fixed length to be determined later on. The above equation is a
well-known completely integrable model [1, 17, 22], with infinitely many conserved
quantities, and a suitable Lax-pair formulation.

Solutions of (1.1) are an invariant under space and time translations. Indeed,
for any t0, x0 ∈ R, u(t− t0, x− x0) is also a solution. Additionally, if c > 0 is any
number, then

√
c u(c3/2t,

√
cx) is also solution.

In addition to standard solitons, mKdV (1.1) do have periodic in space breather
solutions [19].

Definition 1.1 (Periodic breather). A KKSH periodic breather is a solution of
(1.1) of the form

B = B(t, x;α, β, k,m) := 2
√

2∂x
[

arctan
(β
α

sn(α(x+ δt), k)
nd(β(x+ γt),m)

)]
,

δ := α2(1 + k) + 3β2(m− 2), γ := 3α2(1 + k) + β2(m− 2),
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where sn(·) and nd(·) are the standard Jacobi elliptic functions.

(See (2.1) for a more detailed description and general definition of periodic
breather.) These breathers can be written using only two parametric variables,
say β and k, and have a characteristic period L = L(β, k), with L→ +∞ as k → 0.

1.2. Main results. In [7, 6, 8], we showed that aperiodic (in space) mKdV breath-
ers are stable in their energy space. In [9], we also showed evidence that sine-Gordon
breathers are stable. In this paper, we will make use of a combined theoretical-
numerical approach to conclude why periodic breathers may and may not be stable
in some particular regimes. We will need to introduce the following assumptions:

(A1) The kernel of a linearized operator around a breather is nondegenerate and
it satisfies the gap condition; and

(A2) There is a unique simple negative eigenvalue associated to this linear oper-
ator. (See p. 11 for a precise description.)

(A3) The following sign condition is satisfied: if M#[B] is the mass of the
breather solution in terms of β and k, and a1, a2 are “variational” pa-
rameters given in (2.8)-(2.9), then

∂ka1∂βM#[B]− ∂βa1∂kM#[B]
∂ka1∂βa2 − ∂ka2∂βa1

> 0. (1.2)

(See (3.12) for more details.)

Theorem 1.2. Under spectral assumptions (A1)–(A3), KKSH breathers are stable
for L-periodic H2-perturbations.

We also present numerical evidence (see Subsection 3.3) that assumptions (A1)
and (A2) are valid in generality. Assumption (A3) is only verified in a certain
regime of parameters, therefore it is expected that KKHS breathers may and may
not be stable, according to some particular condition. In Figure 9 we describe
numerically the meaning of assumption (A3). In particular, it is inferred that for
k small enough (depending only on β), assumption (A3) is satisfied. Additionally,
note that the condition k → 0+ is equivalent to take the spatial period L → +∞,
and formally recovering the standard mKdV aperiodic breather. (See (2.6) for this
fact.)

Moreover, we believe that the lack or invalidity of assumption (A3) is precisely
the source of instability in KKHS breathers, in the sense that if this assumption is
not satisfied, then they should be unstable, as it happens in the soliton case in the
regime of supercritical nonlinearities (see [30, Lemma 1.6] for example), and just
in agreement with the numerical computations performed by Kevrekidis et al. [19],
for which (1.2) is not satisfied.

1.3. Discussion. Assumption (A3) above is a sort of generalization of the We-
instein’s sign condition for soliton solutions, but it is different from the former
because it also considers a certain variation of energy (and not only mass), which
has been written above in terms of the mass only. Additionally, this sign condition
can be evaluated for non-periodic breathers such as mKdV and SG, and it is triv-
ially satisfied, see e.g. [9, eq. (3.23)] for the corresponding computation in the SG
case.

Additionally, assumption (A3) is needed for ensuring that one can “replace”
the first eigenfunction appearing from assumption (A2), which is an instability
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direction, by the breather itself. The advantage of this replacement comes from the
fact that a perturbative dynamics lying in the L2 orthogonal space to the breather
allows to control variations of the scalings of the breather, and moreover, their
dynamics has formally quadratic variation in time, meaning that if the error in our
initial data is of order η, then any bad variation of the scalings will be of order at
most η2, and therefore negligible for the stability result. At the rigorous level, the
conservation of mass allows to control the orthogonal direction to the breather itself
in terms of quadratic terms only. The procedure to replace the first eigenfunction
by the breather is standard, but needs to ensure that a certain denominator is never
zero, see e.g. [9, eq. (3.30)]. Under assumption (A3), such a denominator is never
zero. Recall that a similar result has been proved in [6, eq. (4.24)], see [16, 14, 30]
for more examples in the case of soliton solutions. Adding this new assumption,
our method of proof works as in the SG case.

1.4. New breathers. Finally, Section 4 deals with a new class of mKdV periodic
breathers, which have the nonstandard property of being of nonzero mean.

Theorem 1.3. Given any parameter µ > 0, there exists a periodic in space breather
solution Bµ, which is solution of (1.1) and satisfies the decomposition Bµ = µ+B̃µ,
where B̃µ has zero mean.

For an explicit formula for Bµ, the reader can consult Definition 4.1. As it is
explained in the last comments of this paper, it also satisfies a proper fourth order
elliptic equation.

This new breather has been conjectured to exist by several works on curvature
motion of closed curves on the plane, see e.g. [5, 21] and references therein. How-
ever, its description does not follow the ideas from [19], because KKHS breathers
are zero mean solutions. Instead we use, in a slightly different way, the method of
proof employed in our work [8], which links zero mean breathers with the corre-
sponding zero solution of the equation. In order to find a breather with a nonzero
mean, we use as starting point the nonzero constant solution µ, and then apply
twice a suitable Bäcklund transformation, as is done in [8]. Since the mean of a
modified KdV solution is a conserved quantity, this property will be also preserved
by the Bäcklund transformation, leading to the desired solution with the property
sought. Concerning this new breather, in this work we only study its simplest
properties, and describe its main differences with KKSH breathers, leaving its deep
understanding, by length reasons, to a forthcoming publication. For the moment,
we only advance that these breathers satisfy a suitable elliptic equation, as any
other breather in this article. Additionally, we conjecture that this breather should
be as stable as the constant solution u = µ is for the mKdV periodic dynamics.

1.5. Previous results. If one studies perturbations of solitons in (1.1) and more
general equations, the concepts of orbital, and asymptotic stability emerge naturally.
In particular, since energy and mass are conserved quantities, it is natural to expect
that solitons are stable in a suitable energy space. Indeed, H1-stability of mKdV
and more general solitons and multi-solitons has been considered e.g. in Benjamin
[11], Bona-Souganidis-Strauss [12], Weinstein [32], Maddocks-Sachs [23], Martel-
Merle-Tsai [24], Martel-Merle [25] and M. [29]. L2-stability of KdV solitons has
been proved by Merle-Vega [28]. Moreover, asymptotic stability properties for
gKdV equations have been studied by Pego-Weinstein [31] and Martel-Merle [26,
27], among many other authors.
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We also mention that, in addition to Theorems [9, Thm. 1.3], (1.2) and (1.3), the
more involved problem of asymptotic stability for breathers could been also consid-
ered, as far as a good and rigorous understanding of the associated spectral problem
is at hand. Usually, these spectral properties are harder to establish than the ones
involved in the stability problem (because the convergence problem requires the use
of weighted functions, which destroy most of breather’s algebraic properties). In
addition, breathers can have zero, positive or negative velocity, which means that
they do not necessarily decouple from radiation. However, it is worth to mention
that if the velocity of a periodic mKdV breather is positive, then there is local
strong asymptotic stability in the energy space, see [6].

This article is organized as follows. Section 2, and in particular, Theorem 2.1
are devoted to the proof that periodic KKHS breathers satisfy suitable elliptic
equations, and we find its variational structure. In Section 3, after some numerical
tests, we sketch the proof of Theorem 1.2 (see Theorem 3.1) and we conjecture (see
p. 15) that KKHS breathers have a dual stability/instability regime. Moreover,
assuming the validity of some numerical computations, we show that KKHS are
stable in a particular set of parameters. Finally, in Section 4 we present a new kind
of periodic mKdV breather whose main property is the fact that it has nonzero
mean.

2. Periodic mKdV breathers

2.1. Definitions. We consider now the case of the periodic (in space) mKdV equa-
tion. Periodic mKdV breathers (or KKSH breathers), in the sense of Definition 1.1,
were found by Kevrekidis, Khare, Saxena and Herring [18, 19] by using elliptic func-
tions and a matching of free parameters. More precisely, we consider the equation
(1.1) where

u : Rt × Tx 7→ Rx,
is periodic in space, and Tx = T = R/LZ = (0, L) denotes a torus with period L,
to be fixed later. Given α, β > 0, x1, x2 ∈ R and k,m ∈ [0, 1], KKSH breathers are
given by the explicit formula [18]

B = B(t, x;α, β, k,m, x1, x2) := ∂xB̃ := 2
√

2∂x
[

arctan
(β
α

sn(αy1, k)
nd(βy2,m)

)]
, (2.1)

with sn(·, k) and nd(·,m) the standard Jacobi elliptic functions of elliptic modulus
k and m, respectively, but now

y1 := x+ δt+ x1, y2 := x+ γt+ x2, (2.2)

δ := α2(1 + k) + 3β2(m− 2), γ := 3α2(1 + k) + β2(m− 2). (2.3)

See Figure 1 for a description of a KKHS breather solution and [2, 13] for a
more detailed account on the Jacobi elliptic functions sn and nd presented in (2.1).
Additionally, in order to be a periodic solution of mKdV, the parameters m, k, α
and β must satisfy the commensurability conditions on the spatial periods

β4

α4
=

k

1−m
, K(k) =

α

2β
K(m), (2.4)

where K denotes the complete elliptic integral of the first kind, defined as [13]

K(r) :=
∫ π/2

0

(1− r sin2(s))−1/2ds =
∫ 1

0

((1− t2)(1− rt2))−1/2dt, (2.5)
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and which satisfies
K(0) =

π

2
, lim

k→1−
K(k) =∞.

Under these assumptions, the spatial period is given by

L :=
4
α
K(k) =

2
β
K(m). (2.6)

Note that conditions (2.4) formally imply that B has only four independent pa-
rameters (e.g. β, k and translations x1, x2). Additionally, if we assume that the
ratio β/α stays bounded, we have that k approaches 0 as m is close to 1. Using
this information, the standard non periodic mKdV breather [6, eq. (1.8)] can be
formally recovered as the limit of very large spatial period L→ +∞, obtained e.g.
if k → 0. In that sense, we can think of (2.1) as a nontrivial periodic bifurcation
at infinity of the aperiodic mKdV breather.
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Figure 1. Graph of the KKSH breather at time t = 0, for β = 1,
k = 0.001, m = 0.999 and L = 12.398.

It is important to mention that conditions (2.4) impose a particular set of re-
strictions on k and m. In terms of k, one has k ∈ [0, k∗), with k∗ ∼ 0.058, while
m is decreasing with respect to k, with m(k = 0) = 1 and m(k ∼ k∗) ∼ 0. Below,
Figure 2 describes the behavior of k and m more clearly.

In what follows, we will use the convention that

m = m(k), α = α(β, k), (2.7)

obtained by solving m = m(k) in (2.4) numerically, and then solving for α alge-
braically.
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Figure 2. Graph of m as a function of k obtained solving condi-
tions (2.4). Although m runs from 0 to 1, not all values of k ∈ [0, 1]
are allowed, being the limiting value of k ∼ 0.05883626.
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2.2. Variational characterization. Our first result is the following theorem.

Theorem 2.1. Assume (2.4). Let B be any KKSH breather. Define

a1 := 2(β2(2−m)− α2(1 + k)) = −1
2

(δ + γ), (2.8)

a2 := α4(1 + k2 − 26k) + 2α2β2(2−m)(1 + k) + β4m2. (2.9)

Then B satisfies the generalized nonlinear elliptic equation

B(4x) + 5BB2
x + 5B2Bxx +

3
2
B5 − a1(Bxx +B3) + a2B = 0. (2.10)

See Section 5 for the proof of this result. We emphasize that the first condition
in (2.4) is essential for the proof of (2.10). However, we do not need the second
one. Note additionally that a1 and a2 converge to the corresponding constants for
the aperiodic mKdV case when k → 0 and m→ 1, see [6, eq. (1.8)].

Now we introduce the conserved quantities

M#[u](t) :=
1
2

∫
T
u2(t, x)dx, (2.11)

E#[u](t) :=
1
2

∫
T
u2
x(t, x)dx− 1

4

∫
T
u4(t, x)dx, (2.12)

F#[u](t) :=
1
2

∫
T
u2
xx(t, x)dx− 5

2

∫
T
u2u2

x(t, x)dx+
1
4

∫
T
u6(t, x)dx, (2.13)

which are preserved in the space

H2(T) := {v ∈ H2(0, L) : v(0) = v(L), vx(0) = vx(L)}, (2.14)

if u(t, ·) ∈ H2(T) is a solution of (1.1). The proof of this result is straightforward if
we work by density in a space of smooth functions and we note that u(t, 0) = u(t, L)
and ux(t, 0) = ux(t, L) for all time imply

ut(t, 0) = ut(t, 0), uxt(t, 0) = uxt(t, L),

and therefore, using (1.1), uxxx(t, 0) = uxxx(t, L).

Corollary 2.2. KKSH breathers are critical points of the functional

H#[u] := F#[u](t) + a1E#[u](t) + a2M#[u](t),

defined in the space H2(T) and preserved along the mKdV periodic flow.

As in the previous sections, the next step is the study of the nonlinear stability of
this solution. However, we must emphasize that the existence of a suitable elliptic
equation does not imply stability. Even worse, breathers with standard spectrum
may be nonlinearly unstable. Indeed, we present below compelling evidence that
periodic mKdV breathers are unstable under a suitable type of periodic perturba-
tions, at least for L not so large. (If L is large it seems that the periodic breather
is close in a certain topology to the aperiodic breather, which satisfies stability
properties in a very general open neighborhood.) Our results do agree with the
numerical ones obtained by Kevrekidis et al. [18, 19], and our numerical computa-
tions below. In this case, the periodic character of the solution leads to nontrivial
interactions between adjacent breathers, which probably play an important role in
the instability character of this solution.
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3. Spectral analysis of the periodic mKdV breather

3.1. Mathematical description. In this section we give further evidence of the
stable-unstable character of the KKSH breather solution depending on the param-
eters phase space. First of all, let us notice that, thanks to (2.10), the linearized
operator for a KKSH breather is given by the expression

L#[z] := z(4x) + (5B2 − a1)zxx + 10BBxzx

+
(
a2 + 5B2

x + 10BBxx +
15
2
B4 − 3a1B

2
)
z.

(3.1)

This operator is defined acting on functions in H2(T), T = (0, L), see (2.14), and
it reduces to the standard aperiodic mKdV breather operator (see [6, (4.1)]) as the
length of the interval tends to infinity (or k → 0). The constants a1 and a2 were
introduced in (2.8) and (2.9), and we assume the convention (2.7).

In the following lines, we analyze the spectral stability of the KKSH breather,
namely the understanding of the spectrum of L# in (3.1). First, we prove some
useful expression for the mass of a breather. As a second step, we compute numer-
ically the spectrum of L#, and conclude that it has the desired spectral properties.
Then, we analyze which property is the main responsible of the KKSH stability.

3.2. Mass calculations. The purpose of this paragraph is to compute the mass of
the KKSH breather as a function of k and β. This explicit function will be essential
for the study of the nonlinear stability of the solution.

First of all, recall the breather profile in (2.1). Since the mass M# in (2.11)
is conserved, we can simply assume t = x1 = x2 = 0 in (2.1)-(2.2). Consider the
functions F and G defined in (5.9), and the length of the interval L defined in (2.6).
We have from (5.13),

1
2

∫ L

0

B2 = 4α2β2F

G
(x = L)−4α2β2F

G
(x = 0)−2α2 k

β2

∫ L

0

(β2 sn2
1−α2 nd2

2). (3.2)

Now, note that from (2.4) and the periodic character of the involved functions, we
have

1
2

∫ L

0

B2 = 4βm
cd(β2L,m) sd(β2L,m)

nd(β2L,m)
− 4βm

cn(β2L,m) sn(β2L,m)

dn(β2L,m)

− 8αK(k) + 4αE(A(2K(k), k), k) + 4βE
(
A
(β

2
L,m

)
,m
)
,

(3.3)

where E denotes the complete elliptic integral of the second kind [13], defined as

E(r) :=
∫ π/2

0

(1− r sin2(s))1/2ds =
∫ 1

0

(1− t2)−1/2(1− rt2)1/2dt, (3.4)

and A is the Jacobi amplitude, that can be defined by

A(x, r) :=
∫ x

0

dn(s, r)ds. (3.5)

Some simple exact values for E are E(0) = π/2 and E(1) = 1, and for A are
A(0, r) = 0, A(K(r), r) = π

2 . Note also that E(A(2K(k), k), k) = E(A(0, k) +
π, k) = 2E(k). Using (2.4), (3.3) simplifies as follows:

1
2

∫ L

0

B2
0 = 4βE(m) + 8αE(k)− 8αK(k). (3.6)
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We are able to go one step further in the simplification of (3.6), using (2.4) again.
We have

k

1−m
=

1
16
K(m)4

K(k)4
. (3.7)

Hence, with these relations, (3.6) simplifies to the compact expression:

M#[B] =
1
2

∫ L

0

B2
0 = 4β

(
E(m) + 4

K(k)
K(m)

(E(k)−K(k))
)
. (3.8)

When k → 0, we have m→ 1, and M#[B]→ 4β, which is the value of the mass
of the aperiodic mKdV breather solution in the real line (see [6, p.6, Lemma 2.1]).

0.2 0.4 0.6 0.8 1.0
m

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Mð@BD
4 Β

0.85 0.90 0.95 1.00
m

0.95

1.00

1.05

1.10

     m = 0.985868   

Figure 3. Mass of the periodic breather M#[B]/4β as a function
of m. Note that the resulting function is decreasing except for
m & 0.98 (see zoom figure below), corresponding to k . 0.025, a
parameter region very close to the stable, aperiodic mKdV
breather.

For k 6= 0,m 6= 1, the dependence of the periodic mass (3.8) with respect to
the parameter m is computed in the following way: for each value of m, we solve
numerically the implicit equation (3.7) in k. We then substitute these two pairs of
values (m, k) verifying (3.7) inside the expression (3.8). The resulting plot of (3.8)
versus m is given in Figure 3.

3.3. Numerical analysis. Given the complicated functions that define the KKSH
breather and its related linearized operator, a rigorous description of the spectra
of L# (3.1) has escaped to us. We perform then some numerical simulations to
get a good understanding of these spectral properties. We could expect, given
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the instability results in [19], that the KKSH breather should give rise to a very
different spectrum, with respect to the previous aperiodic breathers. However, as
we will show later, this is not the case.

In the following lines we explain the main ideas of the numerical method used
to compute the eigenvalues of L#. The core of the algorithm is the same as in
the previous paper [9], the main difference being the required test functions, which
now must be periodic on [0, L]. We have used the classical orthonormal basis of
L2(0, L): { 1√

L
,

√
2
L

cos
(2πnx

L

)
,

√
2
L

sin
(2πnx

L

)}
,

where n ∈ {1, . . . , N}. For the standard numerical computations, it is sufficient to
take N = 40, although when approaching the critical values k → k∗ (m → 0) or
k → 0 (m→ 1), more and more test functions are naturally required.

-3 -2 -1 1 2 3

-2

-1

1

2

3

Figure 4. Periodic KKSH breather [19] at time t = 0 for β = 1,
m = 0.5, k = 0.057, here L ∼ 3.71. Although numerically unstable
[19], this breather leads to a linearized operator L# that possesses
a “standard” one negative eigenvalue and a two dimensional kernel
(3.9).

First of all, we run a specific computation for the case described in [19], which
the authors present as numerically unstable. In this case, β = 1, m = 0.5, k =
0.057, and L ∼ 3.71 (see Figure 4). Numerically, we have found that this breather
possesses the same spectral structure of all our previous breather solutions. To be
more precise, running our numerical algorithm with N = 40 test functions, we have
found the following approximations of the first four eigenvalues of L# :

{−4.86, −1.23× 10−8, 3.22× 10−10, 35.35}. (3.9)

Clearly the two components of the kernel are recovered with high precision (recall
that a second negative eigenvalue but very close to zero is unlikely just by continuity
arguments on the coefficients of the original breather), and a distinctive negative
eigenvalue appears, far from the kernel itself. This behavior repeats for all cases
we have studied.

As a second test, we perform several eigenvalue computations for the same pa-
rameter β = 1, and k moving. For the most difficult case, the one where k ap-
proaches the critical value ∼ 0.0588, we obtain the results described in Figure 5.
Also, in Figure 1, we exactly describe those eigenvalues, that we obtain for different
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-0.00004

-0.00002

Figure 5. The double zero kernel (purple box and brown dia-
mond) and the first positive eigenvalue (green triangle) of the lin-
earized operator L# around a periodic KKSH breather for N = 40,
β = 1 and k increasing. Note that the numerical method returns
only two eigenvalues very close to zero, as expected from the con-
jectured linear spectral stability. Inside, the representation of the
negative (blue circle) and double zero kernel. We used the notation
.x242 ≡ 0.058836242, x = 058836.

values of k. It is important to mention that we always get one negative eigenvalue
and a two dimensional kernel, as well as a clearly defined spectral gap.

k 1st. eig 2nd 3rd 4th

.x240 -0.00008 −7.750 · 10−10 −1.565 · 10−9 75.490

.x242 -0.00006 −6.449 · 10−10 −1.561 · 10−9 75.502

.x244 -0.00005 −5.952 · 10−10 −1.558 · 10−9 75.514

.x246 -0.00004 −6.333 · 10−10 −1.554 · 10−9 75.528

.x248 -0.00003 −6.830 · 10−10 −1.552 · 10−9 75.544

.x250 -0.00002 −6.160 · 10−10 −1.546 · 10−9 75.563

.x252 −9.189 · 10−6 −6.774 · 10−10 −1.541 · 10−9 75.589

.x254 −3.463 · 10−7 −1.135 · 10−6 −1.869 · 10−6 75.640

Table 1. The first four eigenvalues of L# for β = 1, x1 =
0.1, x2 = 0, and k varying from .x240 ≡ 0.058836240, x = 058836
to .x254, as in Figure 5. All computations were made with N = 40
test functions. The third and fourth columns represent approxi-
mate kernel of L#.

In the intermediate case, for pairs (k,m), with k = 0.01, . . . , 0.04, we obtain the
results described in Figure 6. Also, in the Table 2, we describe the eigenvalues of
L# that we obtain for different values of k. Once again, we obtain one negative
eigenvalue and a two dimensional kernel.
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Figure 6. For intermediate values of k: we plot the negative
eigenvalue, the double zero kernel and the fourth eigenvalue of
the linearized operator L# around a periodic KKSH breather, for
β = 1 and k increasing from 0.01 to 0.05, as expressed before in
Table 2. Note that the numerical method returns only two eigen-
values very close to zero, as expected from the conjectured linear
spectral stability. Computations were made with N = 50 test
functions.

k 1st eig. 2nd 3rd 4th

0.01 -5.343 1.023 · 10−6 0.0001 2.540

0.02 -6.751 5.905 · 10−10 2.683 · 10−6 3.561

0.03 -8.216 −2.651 · 10−9 1.163 · 10−6 5.067

0.04 -9.623 3.997 · 10−9 4.896 · 10−8 7.756

0.05 -9.922 −2.173 · 10−7 −1.143 · 10−8 14.329

Table 2. The first four eigenvalues of L# for β = 1, x1 = 0.1, x2 =
0, and k varying, as corresponding to Figure 6. All computations
were made with N = 50 test functions. The third and fourth
columns represent the approximate kernel of L#.

Finally, for the case, with k small, i.e. k ≈ 10−3, we obtain in Figure 7 the
description of the discrete spectra for the first four eigenvalues for the linearized
operator L#. Also, in the Table 3, we show the explicit numerical eigenvalues
which correspond to these small values of k. Once again, we obtain one negative
eigenvalue and a two dimensional kernel.

Therefore, we can certainly claim that there is strong evidence that, according
to numerical simulations, KKSH breathers have standard spectrum, in the sense
that they have only one negative eigenvalue, and a nondegenerate, two-dimensional
kernel. For clarity reasons, we present a rigorous statement of both properties for
the case of the periodic KKHS breather.

(A4) (Nondegeneracy of the kernel) For each k ∈ (0, k∗), x1, x2 ∈ R and β > 0,
kerL# is spanned by the two elements ∂x1B and ∂x2B; and there is a
uniform gap between the kernel and the bottom of the positive spectrum;

(A5) (Unique, simple negative eigenvalue) For each k ∈ (0, k∗), x1, x2 ∈ R
and β > 0, the operator L# has a unique simple, negative eigenvalue
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Figure 7. For k (small): the negative eigenvalue, the double zero
kernel and the fourth eigenvalue for the linearized operator L#

around a periodic KKSH breather, for β = 1 and k increasing
from 0.0005 to 0.0095, as expressed before in Table 3. Note that
the numerical method returns only two eigenvalues very close to
zero, as expected from the conjectured linear spectral stability.
Computations were made with N = 50 test functions.

k 1st eig. 2nd·10−6 3rd 4th

0.0095 -5.271 1.265 0.0001 2.495

0.0085 -5.127 1.962 0.0002 2.405

0.0075 -4.971 1.248 0.0142 2.316

0.0065 -4.828 5.092 0.0005 2.225

0.0055 -4.671 8.609 0.0009 2.134

k 1st eig. 2nd·10−5 3rd 4th

0.0045 -4.505 1.531 0.0017 2.040

0.0035 -4.327 2.919 0.0034 1.941

0.0025 -4.127 6.234 0.0073 1.833

0.0015 -3.883 16.47 0.0198 1.708

0.0005 -3.497 79.70 0.0983 1.530

Table 3. The first four eigenvalues for the linearized operator L#

around a periodic KKSH breather for β = 1, x1 = 0.1, x2 = 0, and
k varying in a sample of points of Figure 7. All computations were
made with N = 50 test functions. The third and fourth columns
represent respectively the approximate kernel of L#.

λ1 = λ1(β, k, x1, x2) < 0 associated to the unit L2-norm eigenfunction
B−1. Moreover, there is λ0

1 < 0 depending on β and k only, such that
λ1 ≤ λ0

1 for all x1, x2.

3.4. Duality stability/instability. Now the main problem is to figure out where
our nonlinear stability proof does/does not work. For this purpose, the discriminant

D = D(β, k) := ∂ka1∂βa2 − ∂ka2∂βa1 (a1, a2 from (2.8)− (2.9)), (3.10)

is the key element to check.
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Figure 8. Discriminant function D(1, k) in terms of k, as de-
scribed in (3.10). Note that D(1, k) changes sign (see zoom figure
inside) for k ≥ k∗ ∼ 0.0545.

To explain why this element is important, let us notice that from (2.10) and
(3.1), we readily have (compare with [9, Corollary (3.7)])

L#(∂kB) = ∂ka1(Bxx +B3)− ∂ka2B,

L#(∂βB) = ∂βa1(Bxx +B3)− ∂βa2B.

Therefore, as soon as D 6= 0,

B0,# :=
1
D

(∂ka1∂βB − ∂βa1∂kB), (3.11)

satisfies the equation
L#(B0,#) = −B,

see also [6, Corollary 4.5]. Using this fact, we can easily prove, as in [9, Propo-
sition (3.11)], that the eigenfunction associated to the negative eigenvalue of L#

can be replaced by the breather itself, which has better behavior in terms of er-
ror controlling, unlike the first eigenfunction. This simple fact allows us to prove
the nonlinear stability result as in the standard approach, without using scaling
modulations. Recall that using the first eigenfunction as orthogonality condition
does not guaranty a suitable control on the scaling modulation parameter, because
the control given by this direction might be not good enough to close the stability
estimates. However, the breather can be used as an alternative direction, and all
these previous arguments remain valid, exactly as in [6], provided the Weinstein’s
sign condition∫ L

0

B0,#B > 0
(
or equivalently

∫ L

0

B0,#L#[B0,#]<0

)
, (3.12)

do hold. Using (3.11), we are lead to the understanding of the quantity∫ L

0

B0,#B =
1
D

∫ L

0

(∂ka1∂βB − ∂βa1∂kB)B

=
1
D

(∂ka1∂βM#[B]− ∂βa1∂kM#[B]) =: HG(β, k),
(3.13)
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where M#[B] was computed in (3.8). Recall that a1 and a2 are almost explicit
from (2.8)-(2.9). An exact expression for HG(β, k) has escaped to us, however, we
can graph this new function in some interesting cases. In particular, for the case
considered in [19], we assume β = 1 and we graph D = D(1, k) and HG(1, k),
to obtain the results in Figure 8 and Figure 9. We note that condition (3.12)
holds provided k is small enough. However, the values for which HG(β, k) > 0 do
not coincide with the values for which the standard Weinstein’s condition (positive
derivative with respect to the scaling), deduced from Figure 3, holds true, and this
is totally natural for the case of breathers, as it was explained in [6, Corollary 2.2].

0.005 0.007 0.01
k

0.25

0.30

0.35

0.40

0.02 0.04 0.05
k

0.5

1.0

1.5

2.0

2.5

3.0

0.0545 0.055
k
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5

10

0.0565 0.0575
k

-0.8
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-0.6

-0.5

-0.4

-0.3

Figure 9. Weinstein’s condition HG(β, k) (3.13), for the periodic
KKSH breather, in the case β = 1, for k ∈ [0.0045, 0.01] (above
left), for k ∈ [0.01, 0.054] (above right), k ∈ [0.054, 0.056] (below
left), and k ∈ [0.056, 0.058] (below right). In order to run our
argument for a stability proof [6], we require HG(1, k) > 0, which
is only satisfied for k < k∗, where k∗ ∼ 0.0545 is the approximate
point where D(1, k) vanishes (see Figure 8). Note also that the
case k ∼ 0.057 assumed in [19], that leads to instability, is not
included in the stability region described in Theorem 3.1, but in
the region where HG(1, k) < 0.

Now we are ready to fully state assumption (A3) described in the introduction
of this paper.

(A6) (Positive generalized Weinstein’s condition) The following generalized We-
instein’s type sign condition is satisfied: ifM#[B] is the mass of the breather
solution (3.8) in terms of β and k, and a1, a2 are the variational parameters
given in (2.8)-(2.9), then

HG(β, k) =
1
D

(∂ka1∂βM#[B]− ∂βa1∂kM#[B]) > 0. (3.14)
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Now we can present a rigorous statement for Theorem 1.2.

Theorem 3.1. Under assumptions (A4)–(A6), KKHS breathers are orbitally stable
under small, L-periodic H2 perturbations. More precisely, there are η0 > 0 and
K0 > 0, only depending on β and k, such that if 0 < η < η0 and if u0 is L-periodic
with

‖u0 −B(t = 0, ·; 0, 0)‖H2(T) < η,

then there are real-valued parameters x1(t) and x2(t) for which the global H2, L-
periodic solution u(t) of (1.1) with initial data u0 satisfies

sup
t∈R
‖u(t)−B(t, ·;x1(t), x2(t))‖H2(T) < K0η,

with similar estimates for the derivatives of the shift parameters x1, x2.

Proof. The proof of this result is completely similar to the proof of [9, Theorem
(2.5)], after following the same steps (see also [6] for a proof in the scalar mKdV
case). Assumption (A3) is used to ensure that an expression like [9, eq. (3.30)] has
a nonzero denominator. �

Additionally, we conjecture the following alternative stability theory for KKSH
breathers:

Conjecture 3.2. Assume that HG(β, k) < 0. Then B is unstable under small
H2(T) perturbations.

Examples of unstable structures that have a nondegenerate kernel and only one
negative eigenvalue are solitons for the nonlinear Klein-Gordon equation in Rt×Rdx:

utt −∆u+ u+ up = 0, p > 1.

Note that this result cannot be deduced from the Grillakis-Shatah-Strauss method,
since breathers are not simple solitary waves. Here, unlike our case, the lack of
stability is related to the absence of a scaling symmetry controlling the negative
direction (appearing because of the negative eigenvalue). Another type of instability
result suggested very recently is motivated by the existence of an stable “internal
mode” which triggers a nonlinear unstable dynamics in NLS and discrete models.
See the works [15, 20] for further reading and more references.

4. Periodic mKdV breathers with nonzero mean

4.1. Introduction. Although KKSH breathers are periodic in space, the are still
zero-mean solutions. We would like to see if nonzero mean periodic breather solu-
tions may exist. (Non periodic and nonzero mean breather solutions of mKdV were
already known, see [3, 5].) By periodic breather we refer to the object in Definition
1.1, that is, any solution that is periodic in time and space, having two independent
and different space variables (i.e. not being a one profile solution being translated
over time, as solitons are), and finally, having oscillatory behavior, unlike standard
2-soliton solutions. Numerical evidence of the existence of these solutions was given
by the first author in [5], since these solutions are connected with the (nonzero)
curvature of the planar curve evolving according to a particular law. For more
details about this connection, see e.g. [5].

For the case of the mKdV equation, we have been able to obtain a new set of
periodic breather solutions of (1.1) with nonzero mean. More explicitly,
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Definition 4.1. Given c1, c2, µ > 0, p, q nonzero integers, with p, q coprime, such
that the following commensurability condition is satisfied1

2µ2 − c1
2µ2 − c2

=
p2

q2
, (4.1)

we define the breather B = B(t, x; c1, c2, µ, p, q) by the formula

B := µ+ 2
√

2∂x arctan
(f(t, x)
g(t, x)

)
, (4.2)

where

ρ :=
√
c1 +

√
c2√

c1 −
√
c2
,

f(t, x) := −
√

2µρ
(√

c1 −
√
c2 +

√
2µ2 − c2 tan y2 −

√
2µ2 − c1 tan y1

)
,

g(t, x) := 2µ2 +
(√

2µ2 − c1 tan y1 −
√
c1

)(√
2µ2 − c2 tan y2 −

√
c2

)
.

Here
y1 =

1
2

√
2µ2 − c1(x− δt), y2 =

1
2

√
2µ2 − c2(x− γt), (4.3)

and the speeds are
δ := µ2 + c1, γ := µ2 + c2.

Note that condition (4.1) is imposed in order to obtain a truly periodic solution,
see the formulae for f and g. The spatial period of this breather is given by L =

2πq√
2µ2−c1

. See also Figure 10-11 for some drawings of different breather solutions,

depending on the parameters c1, c2, µ, p and q.

-100 -50 50 100
p ® 23

2

4

6

q ® 22

Figure 10. Periodic breather of (1.1) with non zero mean. The
parameters here are c1 = 1.65, c2 = 2.95, p = 23, q = 22, and the
period L is ∼ 35.7

Recall that KKSH breathers cannot have any admissible set of parameters k and
m; they are constrained by conditions in (2.4). Here, the only condition that we

1Note that each ci is less than 2µ2.
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Figure 11. Periodic breather of (1.1) with non zero mean, for
parameters c1 = 20.65, c2 = 21.95, p = 17, q = 16.

need to satisfy is (4.1). Therefore, given nonnegative integers p and q, with p and
q coprime, and given c1 < 2µ2, then there is a unique c2 solution to (4.1). In that
sense, µ being fixed, the breather in (4.2) has three different degrees of freedom
(in addition to shifts), two of them being discrete. Finally, in terms of p and q,
the larger these integers are, the more oscillatory the breather solution is. Note
additionally that this breather has not been constructed by using Jacobi functions,
but only standard periodic functions, a fact that simplifies many computations.

It is also relevant to mention that the construction of a breather solution with
different patterns as the usually required can be very involved. For example, a
different class of periodic breather was discovered by Blank et al. in [10]. This
particular solution is constructed for the so called φ4 model, by assuming that
the equation is no longer autonomous, but it has suitable, well-chosen periodic
coefficients.

4.2. Sketch of proof of Theorem 1.3. We will use the Bäcklund Transformation
for mKdV (see [8] for a rigorous setting of the computations below) to construct
this solution. Given a solution u0 of the form u0 = ∂xũ0 of mKdV and fixed
constants a1, a2 ∈ R, a1 6= a2, we can construct a second u1 = ∂xũ1 and third
solution u2 = ∂xũ2 by setting

u1 − u0 = a1 sin
( ũ1 + ũ0√

2

)
, and u2 − u0 = a2 sin

( ũ2 + ũ0√
2

)
.

These two solutions can be combined to construct a fourth solution u through the
permutability condition [8]:

tan
( ũ− ũ0

2
√

2

)
= −

(a1 + a2

a1 − a2

)
tan

( ũ2 − ũ1

2
√

2

)
. (4.4)

Fix µ > 0. Starting with the constant solution u0 = µ, ũ0 = µx and two constants
a1 =

√
2c1, a2 =

√
2c2, c1, c2 > 0, we have

u1 − µ =
√

2c1 sin
( ũ1 + µx√

2

)
, u2 − µ =

√
2c2 sin

( ũ2 + µx√
2

)
. (4.5)
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Looking for a solution of the form ui = ∂xũi, i = 1, 2, we obtain

ũi(t, x) = −µx+ 2
√

2 arctan
( 1

2µ

(
−
√

2ci

+
√

4µ2 − 2ci tan
(√4µ2 − 2ci

2
√

2
(x− (µ2 + ci)t)

)))
.

(4.6)

The factor (µ2 +ci)t in the above solution appears as a constant of integration, and
it is chosen in such a form that ui is actually solution to mKdV. Calling y1 = x+δt,
y2 = x+ γt as in (4.3), and ρ =

√
c1+
√
c2√

c1−
√
c2

, the desired breather (4.2) is obtained by
using (4.4) with u0 = µ, u1, u2 from (4.6):

B = µ+ 2
√

2∂x arctan
(f(t, x)
g(t, x)

)
,

where,

f(t, x) := −
√

2µρ
(√

c1 −
√
c2 +

√
2µ2 − c2 tan y2 −

√
2µ2 − c1 tan y1

)
,

g(t, x) := 2µ2 +
(√

2µ2 − c1 tan y1 −
√
c1

)(√
2µ2 − c2 tan y2 −

√
c2

)
.

The fact that this is a solution of mKdV is a tedious, lengthy but straightforward
computation.

4.3. Final comments. A detailed study of this new breather solution will be done
elsewhere. For the moment, we advance that B (4.2) satisfies the elliptic ODE

B4x − (c1 + c2 − 4µ2)(Bxx + 3µ(B − µ)2 + (B − µ)3)

+ (c1 − 2µ2)(c2 − 2µ2)(B − µ) + 5(B − µ)B2
x + 5(B − µ)2Bxx

+
3
2

(B − µ)5 + 5µB2
x +

15
2
µ(B − µ)4 + 10µ(B − µ)Bxx + 10µ2(B − µ)3 = 0.

In particular, B is a critical point of the functional

Hµp[w](t) := Fµp[w](t) + (c1 + c2− 4µ2)Eµp[w](t) + (c1− 2µ2)(c2− 2µ2)Mµp[w](t),

where Mµp and Eµp are defined as follows:

Mµp[w](t) :=
1
2

∫
R

(w − µ)2(t, x)dx = Mµp[w](0), (4.7)

Eµp[w](t) :=
1
2

∫
R
w2
x − µ

∫
R

(w − µ)3 − 1
4

∫
R
(w − µ)4 = Eµp[w](0), (4.8)

Fµp[w](t) :=
1
2

∫
R
w2
xxdx− 5µ

∫
R

(w − µ)w2
x dx+

5
2
µ2

∫
R

(w − µ)4dx

− 5
2

∫
R
(w − µ)2w2

xdx+
3µ
2

∫
R

(w − µ)5 +
1
4

∫
R

(w − µ)6dx
(4.9)

is a third conserved quantity for the mKdV equation. Finally, it is interesting to
note that we can recover the aperiodic breather with nonzero mean (see [3, 4])
choosing in (4.2) complex conjugate scalings

√
c1 = β + iα,

√
c2 = β − iα. For the

sake of simplicity, we only show a picture of it in Figure 12.
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Figure 12. Aperiodic mKdV breather with non zero mean at
t = 0.2 with β = 1, α = 4, µ = 0.5, obtained from the periodic
breather (4.2).

5. Appendix: Proof of Theorem 2.1

Let B be a periodic KKSH breather. Without loss of generality, we can assume
x1 = x2 = 0, and after taking time derivative we assume t = 0, since (1.1) is
invariant under space and time translations, as well as (2.1). Recall that from (2.1)

B̃t := δB̃1 + γB̃2,

where B̃j := ∂xj
B̃. We also have [2, 13]:

sn′(s, k) = cn(s, k) dn(s, k),
(

dn(s, k) :=
1

nd(s, k)

)
,

cn′(s, k) = − sn(s, k) dn(s, k), dn′(s, k) = −k sn(s, k) cn(s, k),

and cn(0, k) = dn(0, k) = 1, sn(0, k) = 0.
We start with some notation. Let

sn1 := sn(αy1, k), cn1 := cn(αy1, k), dn1 := dn(αy1, k);

sn2 := sn(βy2,m), cn2 := cn(βy2,m), dn2 := dn(βy2,m).

We have

B̃ = 2
√

2 arctan
(β
α

sn1 dn2

)
.

Define

h := α cn1 dn1 dn2−βm sn1 sn2 cn2, h̃ := αδ cn1 dn1 dn2−βmγ sn1 sn2 cn2,
(5.1)

so that
hx = −

[
α2 sn1 dn2(k cn2

1 + dn2
1) + 2αβm cn1 dn1 sn2 cn2

+ β2m sn1 dn2(cn2
2− sn2

2)
]
,

(5.2)

and
ht = −

[
α2δ sn1 dn2(k cn2

1 + dn2
1) + αβm(δ + γ) cn1 dn1 sn2 cn2

+ β2mγ sn1 dn2(cn2
2− sn2

2)
]
.

(5.3)
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Similarly,

g := α2 + β2 sn2
1 dn2

2, gx = 2β2 sn1 dn2(α cn1 dn1 dn2−βm sn1 sn2 cn2), (5.4)

gt = 2β2 sn1 dn2(αδ cn1 dn1 dn2−βmγ sn1 sn2 cn2) = 2β2 sn1 dn2 h̃. (5.5)

Then

B =
2
√

2αβh
g

, B(x = 0) = 2
√

2β,

B̃t = δB̃1 + γB̃2 =
2
√

2αβh̃
g

, B̃t(x = 0) = 2
√

2βδ.

Similarly,

Bx =
2
√

2αβĥ
g2

, ĥ := hxg − gxh. (5.6)

It is not difficult to check that hx(x = 0) = gx(x = 0) = 0. In particular Bx(x =
0) = 0. From this identity we see that

Bxx(x = 0) =
2
√

2αβĥx
g2

(x = 0) = −2
√

2β[(2 + 3m)β2 + (1 + k)α2].

First of all, from (1.1) and (2.3) we have

B̃t +Bxx +B3 = (B̃t +Bxx +B3)(x = 0) = 0.

This identity can be proved to hold for any t, x1, x2 ∈ R. On the other hand, if

M :=
1
2

∫ x

0

B2, Mt =
∫ x

0

BBt,

we have

BB̃t −Mt +
1
2
B2
x +

1
4
B4 = (BB̃t +

1
2
B2
x +

1
4
B4)(x = 0) =:

1
2
c0,

where for t = x1 = x2 = 0 we have that c0 is explicitly given by

c0 := 16β2[α2(1 + k) + β2(3m− 4)]. (5.7)

However, in the general case, c0 may depend on time.
Replacing in (2.10) we obtain

B(4x) + 5BB2
x + 5B2Bxx +

3
2
B5 − a1(Bxx +B3) + a2B

= −(Bt + 3B2Bx)x + 5BB2
x + 5B2Bxx +

3
2
B5 − a1(Bxx +B3) + a2B

= −Btx −BB2
x + 2B2Bxx +

3
2
B5 − a1(Bxx +B3) + a2B

= −Btx −B(c0 − 2BB̃t + 2Mt −
1
2
B4)− 2B2(B3 + B̃t)

+
3
2
B5 + a1B̃t + a2B

= −Btx − 2BMt + a1B̃t + (a2 − c0)B.

(5.8)

Now we prove that this last quantity is identically zero. We compute Mt. Denote

F :=
1

2α
sn1 sn′1 +

1
2β

nd2 nd′2, G := β2 sn2
1 +α2 nd2

2, (5.9)
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where, with a slight abuse of notation we denote

sn′1 := sn′(αy1, k), cn′1 := cn′(αy1, k), dn′1 := dn′(αy1, k);

and so on. We claim that

B2 = 8α2β2(
F

G
)x − 4α2 k

β2
(β2 sn2

1−α2 nd2
2). (5.10)

Indeed, from (2.1) we have

B2 = 8α2β2α
2 nd2

2 sn′21 +β2 sn2
1 nd′22 −2αβ sn1 nd2 sn′1 nd′2

(β2 sn2
1 +α2 nd2

2)2
. (5.11)

Note that

FxG− FGx =
1
2

(sn′21 + sn1 sn′′1 + nd′22 + nd2 nd′′2)(β2 sn2
1 +α2 nd2

2)

− (β sn1 sn′1 +α nd2 nd′2)(β sn1 sn′1 +α nd2 nd′2).

Now using the well-known JEF identities (see [2, 13]) and replacing above we obtain

FxG− FGx = α2 nd2
2 sn′21 +β2 sn2

1 nd′22 −2αβ sn1 sn′1 nd2 nd′2

+
1
2

(β2k sn6
1 +α2k nd2

2 sn4
1 +β2(m− 1) sn2

1 dn4
2 +α2(m− 1) dn6

2)

= α2 nd2
2 sn′21 +β2 sn2

1 nd′22 −2αβ sn1 nd2 sn′1 nd′2

+
k

2
sn4

1(β2 sn2
1 +α2 nd2

2) +
(m− 1)

2
nd4

2(β2 sn2
1 +α2 nd2

2).

Therefore, from (5.11),

B2 = 8α2β2 (FxG− FGx)
G2

− 4α2β2 k sn4
1 +(m− 1) nd4

2

(β2 sn2
1 +α2 nd2

2)
. (5.12)

Since β4

α4 = k
1−m , (5.12) simplifies as follows:

B2 = 8α2β2(
F

G
)x − 4α2 k

β2
(β2 sn2

1−α2 nd2
2),

as desired. From (5.10) we have

1
2

∫ x

0

B2 = 4α2β2F

G
− 4α2β2F

G
(0)− 2α2 k

β2

∫ x

0

(β2 sn2
1−α2 nd2

2). (5.13)

Since
F

G
=
β sn1 cn1 dn1 dn2

2 +αm sn2 cn2 nd2

2αβg
=:

h̄

2αβg
,

we obtain

Mt = 2αβ
(gh̄t − gth̄)

g2
− 2αβ

( (gh̄t − gth̄)
g2

(x = 0)
)∣∣∣
t=0

− 2α2 k

β2
(δβ2 sn2

1−γα2 nd2
2 +γα2).

The second term above can be computed explicitly. We have

Mt = 2αβ
(gh̄t − gth̄)

g2
− 2β2(δ +mγ)− 2α2 k

β2
(δβ2 sn2

1−γα2 nd2
2 +γα2).
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Let us calculate Btx. Using (5.6), we have

Btx =
2
√

2αβ
g3

(gĥt − 2gtĥ).

Now we compute the term −Btx − 2BMt. We have

−Btx − 2BMt = −2
√

2αβ
g3

[
ĥtg − 2gtĥ+ 4αβ(gh̄t − gth̄)h

− 4α2 k

β2
g2(δβ2 sn2

1−γα2 nd2
2 +γα2)h

]
+ 4β2(δ +mγ)B.

(5.14)

We consider the term ĥ+ 2αβhh̄. We have

ĥ+ 2αβhh̄ = hxg + h(2αβh̄− gx). (5.15)

The term 2αβh̄− gx reads now

2αβh̄− gx = 2αβ(β sn1 cn1 dn1 dn2
2 +αm sn2 cn2 nd2)

− 2β2(α sn1 cn1 dn1 dn2
2−mβ sn2

1 sn2 cn2 dn2)

= 2βm sn2 cn2(α2 nd2 +β2 sn2
1 dn2)

= 2βm sn2 cn2 nd2 g.

Consequently, (5.15) = g(hx + 2βm sn2 cn2 nd2 h), and replacing in (5.14),

−Btx − 2BMt

= −2
√

2αβ
g2

[
ĥt − 2gt(hx + 2βm sn2 cn2 nd2 h) + 4αβh̄th

− 4α2 k

β2
g(δβ2 sn2

1−γα2 nd2
2 +γα2)h

]
+ 4β2(δ +mγ)B.

(5.16)

Since ĥt = htxg + hxgt − gxth− gxht, we are left to compute the term

4βh(αh̄t −
1

4β
gtx −m sn2 cn2 nd2 gt)− hxgt − gxht. (5.17)

Note that
αh̄t −

1
4β
gtx = (αh̄− 1

4β
gx)t.

From (5.4) we have

αh̄− 1
4β
gx = m sn2 cn2 nd2 g +

1
2
β
[
α sn1 cn1 dn1 dn2

2−βm sn2
1 sn2 cn2 dn2

]
,

and

(5.17) = 4βm(sn2 cn2 nd2)tgh+ 2β2h
[
α sn1 cn1 dn1 dn2

2−βm sn2
1 sn2 cn2 dn2

]
t

− (hxgt + gxht)

= 4β2mγ(sn2 cn2 nd2)′gh+ 2β2h
[
α sn1 cn1 dn1 dn2

2−βm sn2
1 sn2 cn2 dn2

]
t

− (hxgt + gxht).

Now we have

(α sn1 cn1 dn1 dn2
2−βm sn2

1 sn2 cn2 dn2)t

= α2δ dn2
2[dn2

1(cn2
1− sn2

1)− k sn2
1 cn2

1]− 2αβm(δ + γ) sn1 cn1 dn1 sn2 cn2 dn2



EJDE-2017/56 BREATHER SOLUTIONS 23

− β2mγ sn2
1[dn2

2(cn2
2− sn2

2)−m sn2
2 cn2

2],

and since h = α cn1 dn1 dn2−βm sn1 sn2 cn2,

2β2h(α sn1 cn1 dn1 dn2
2−βm sn2

1 sn2 cn2 dn2)t

= 2β2
[
α3δ cn1 dn1 dn3

2[dn2
1(cn2

1− sn2
1)− k sn2

1 cn2
1]

− 2α2βm(δ + γ) sn1 cn2
1 dn2

1 sn2 cn2 dn2
2

− αβ2mγ sn2
1 cn1 dn1 dn2[dn2

2(cn2
2− sn2

2)−m sn2
2 cn2

2]

− α2βmδ sn1 sn2 cn2 dn2
2[dn2

1(cn2
1− sn2

1)− k sn2
1 cn2

1]

+ 2αβ2m2(δ + γ) sn2
1 cn1 dn1 sn2

2 cn2
2 dn2

+ β3m2γ sn3
1 sn2 cn2[dn2

2(cn2
2− sn2

2)−m sn2
2 cn2

2]
]
.

On the other hand, using (5.3), (5.2), (5.4) and (5.5),

− (gthx + gxht)

= 2β2 sn1 dn2

[
(αδ cn1 dn1 dn2−βmγ sn1 sn2 cn2)(α2 sn1 dn2(k cn2

1 + dn2
1)

+ 2αβm cn1 dn1 sn2 cn2 +β2m sn1 dn2(cn2
2− sn2

2))

+ (α cn1 dn1 dn2−βm sn1 sn2 cn2)(α2δ sn1 dn2(k cn2
1 + dn2

1)

+ αβm(δ + γ) cn1 dn1 sn2 cn2 +β2mγ sn1 dn2(cn2
2− sn2

2))

= 2β2
[
2α3δ sn2

1 cn1 dn1 dn3
2(k cn2

1 + dn2
1)

+ α2βm(3δ + γ) sn1 cn2
1 dn2

1 sn2 cn2 dn2
2

+ αβ2m(δ + γ) sn2
1 cn1 dn1 dn3

2(cn2
2− sn2

2)

− α2βm(δ + γ) sn3
1 sn2 cn2 dn2

2(k cn2
1 + dn2

1)

− αβ2m2(δ + 3γ) sn2
1 cn1 dn1 sn2

2 cn2
2 dn2−2β3m2γ sn3

1 sn2 cn2 dn2
2(cn2

2− sn2
2)
]
.

Rearranging similar terms, and using the identities [13]

sn2
1 + cn2

1 = 1, k sn2
1 + dn2

1 = 1, m cn2
2 +1−m = dn2

2, . . . ,

and the fact that kα4 = (1−m)β4, we obtain

2β2h(α sn1 cn1 dn1 dn2
2−βm sn2

1 sn2 cn2 dn2)t − (hxgt + gxht)

= 2β2
[
α3δ cn1 dn1 dn3

2(dn2
1 +k sn2

1 cn2
1) + β3m2γ sn3

1 sn2 cn2(sn2
2 dn2

2− cn2
2)

− α2βmγ sn1 sn2 cn2 dn2
2(dn2

1 +k sn2
1 cn2

1)

− αβ2mδ sn2
1 cn1 dn1 dn2(sn2

2 dn2
2− cn2

2)
]

= 2β2(αδ cn1 dn1 dn2−βmγ sn1 sn2 cn2)(α2 dn2
2(dn2

1 +k sn2
1 cn2

1)

+ β2m sn2
1(cn2

2− sn2
2 dn2

2))

= 2β2h̃[α2 dn2
2(1− k sn4

1) + β2 sn2
1 dn2

2−(1−m)β2 sn2
1−β2m sn2

1 sn2
2 dn2

2]

= 2β2h̃[dn2
2{α2(1− k sn4

1) + β2 sn2
1−β2 sn2

1(1− dn2
2)} − α4β−2k sn2

1]

= 2β2h̃g(dn2
2−α2β−2k sn2

1).
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From (5.16) we conclude that
−Btx − 2BMt

= −2
√

2αβ
g

[
htx + 2h̃(β2 dn2

2−α2k sn2
1) + 4β2mγ(sn2 cn2 nd2)′h

− 4α2 k

β2
(δβ2 sn2

1−γα2 nd2
2 +γα2)h

]
+ 4β2(δ +mγ)B.

(5.18)

Note that [13] (sn2 cn2 nd2)′ = cn2
2− sn2

2 +m sn2
2 cn2

2 nd2
2. Consequently,

4β2mγ(sn2 cn2 nd2)′ − 4α2 k

β2
(δβ2 sn2

1−γα2 nd2
2 +γα2)

= 4β2mγ(cn2
2− sn2

2)− 4α2kδ sn2
1 +4β2γ nd2

2(m2 sn2
2 cn2

2 +k
α4

β4
(1− dn2

2))

= 4β2mγ(cn2
2− sn2

2)− 4α2kδ sn2
1 +4β2mγ sn2

2 nd2
2(m cn2

2 +k
α4

β4
)

= 4β2mγ(cn2
2− sn2

2)− 4α2kδ sn2
1 +4β2mγ sn2

2 = 4β2mγ cn2
2−4α2kδ sn2

1 .

Finally we compute htx. From (5.3) we have

htx = −
[
α2(k cn2

1 + dn2
1)(αδ cn1 dn1 dn2−βm(2δ + γ) sn1 sn2 cn2)

+ β2m(cn2
2− sn2

2)(α(δ + 2γ) cn1 dn1 dn2−βmγ sn1 sn2 cn2)

− 4α2kδ sn2
1(α cn1 dn1 dn2)− 4β2γ(βm sn1 sn2 cn2) dn2

2

]
.

Using the last two identities and some standard simplifications, (5.18) becomes

−Btx − 2BMt

= −2
√

2αβ
g

[
[−α2(1 + k)δ + β2((2−m)δ + 2mγ)](α cn1 dn1 dn2)

+ [α2(1 + k)(2δ + γ) + β2(2− 3m)γ](βm sn1 sn2 cn2)
]

+ 4β2(δ +mγ)B

= −a1B̃t − ã2B,

where a1 is defined in (2.8), and

ã2 = α4(1 + k)2 − 2α2β2(1 + k)(m+ 6) + β4(2−m)(18−m).

Comparing this with (5.8) we have (c0 is given by (5.7))

a2 = ã2 + c0 = α4(1 + k)2 + 2α2β2(1 + k)(2−m) + β4(m2 + 28m− 28).

Finally we use that kα4 = β4(1−m) to obtain

a2 = α4(1 + k2 − 26k) + 2α2β2(1 + k)(2−m) + β4m2,

as in (2.9). The proof is complete.
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