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Abstract. In this article, we prove global well-posedness for a family of one

dimensional nonlinear nonlocal Cauchy problems arising in elasticity. We con-

sider the equation

utt − δLuxx =
`
β ∗ [(1− δ)u+ u2n+1]

´
xx
,

where L is a differential operator, β is an integral operator, and δ = 0 or 1.
(Here, the case δ = 1 represents the additional doubly dispersive effect.) We

prove the global well-posedness of the equation in energy spaces.

1. Introduction

There is a new trend on nonlinear nonlocal differential equations , because there
exists a large class of problems in classical physics and continuum mechanics (clas-
sical field theories) that fall outside their traditional domain of application. The
nonlocal effect is closely connected to length scales. If the external length scales
(e.g. crack length, wavelength) are close to the internal scales (e.g. granular dis-
tance, lattice parameter), local theories fail and we need to rely on nonlocal theories
that can account for the long-range interatomic attractions; for example, (i) the en-
ergy balance law is postulated to remain in global form, and (ii) a material point
of the body is considered to be attracted by all points of the body, at all past times
[6].

In this article, we study a family of nonlinear nonlocal equations arising in elas-
ticity. Let u = u(t, x) = ∂xX(t, x) of the displacement X(t, x) in one-dimensional,
homogeneous, nonlinear and nonlocal elastic infinite medium. In general, u(t, x)
satisfies

utt = second derivative of the stress S(u).

We now introduce the scalar function β, which is the attenuation or influence
function aimed to inject in the constitutive law the nonlocal effect at the field x
produced by the local strain at x′:

S(u) :=
∫

R
β(|x− x′|)σ(u(x′, t))dx′.
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By decomposing the (classical) local stress σ(u) into its linear and nonlinear parts,

σ(u) = u+ g(u), g(0) = 0,

we have the following model [5]:

utt =
(
β ∗ (u+ g(u))

)
xx
, x ∈ R, t > 0, (1.1a)

u(0, x) = φ(x), (1.1b)

ut(0, x) = ψ(x), (1.1c)

where the subscripts denote partial derivatives and the symbol ∗ denotes convolu-
tion in the spatial variable. It is clear from (1.1a) that the well-posedness of the
Cauchy problem depends crucially on the structure of the kernel β. The choice
of appropriate kernel functions remains an interesting and hard open problem in
the nonlocal theory of elasticity, but some well known forms of kernel functions,
such as triangular or Dirac delta functions, are currently in use for engineering
problems, see [5, 6, 9] for examples of frequently used kernel functions. For further
motivations on the consideration of nonlinear nonlocal equations in elasticity see
the papers [1, 3, 4, 5, 6, 7, 8, 10, 12]. More recently, the global well-posedness of
(1.1) investigated in [5] with the kernel β of the form

0 < β̂(ξ) ≤ (1 + |ξ|2)−r/2, r > 3 (1.2)

and g(x) is a super-linear function satisfying a certain growth condition.
In this article, we provide another set of r and the nonlinearity g that provides the

global existence of solutions. More precisely, we assume the following conditions:

g(x) = x2n+1 for some n ∈ N,
6n+ 7
2n+ 3

< r ≤ 6n+ 2
2n+ 1

. (1.3)

The range of r will be computed in Section 2. We note that g is defocusing in the
sense

G(x) =
∫ x

0

g(s)ds =
x2n+2

2n+ 2
≥ 0 (1.4)

so that all the terms in the left-hand side of (2.3) are non-negative. Before stating
our result, we define the operator P:

P̂ u(ξ) = |ξ|−1
(
β̂(ξ)

)−1/2
û(ξ). (1.5)

Theorem 1.1. Suppose r and g satisfy the conditions in (1.3). For any initial
data φ, ψ ∈ H1(R) with additionally satisfying

E0 := ‖Pψ‖2L2(R) + ‖φ‖2L2(R) + 2
∫

R
G(φ(x))dx <∞,

there exists a unique global-in-time solution u ∈ C1([0,∞);H1(R)) of (1.1).

Remark 1.2. Let us compare our result with the global result in [5]. Although
the condition (1.4) is stronger than the condition G(u) ≥ −ku2 in [5], our result
improves the condition of r from r > 3 in [5] to the condition in (1.3) which is less
than 3.

We next consider a general class of doubly dispersive nonlinear nonlocal model
[2]:

utt − Luxx = (β ∗ g(u))xx, x ∈ R, t > 0, (1.6a)

u(0, x) = φ(x), (1.6b)
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ut(0, x) = ψ(x), (1.6c)

where the symbols of the operators L and β are given by

L̂(ξ) = (1 + |ξ|2)ρ/2, 0 < β̂(ξ) ≤ (1 + |ξ|2)−r/2. (1.7)

The operator L is a differential operator which provides a regularity to the linear
term, while β is an integral operator for the smoothness of the nonlinear term.
This equation models the bi-directional propagation of dispersive waves in a one
dimensional, homogeneous, nonlinearly and non-locally elastic infinite medium. For
a background of this equation, see [2] and some of the references cited therein. In
[2, [Theorem 6.3], the authors proved the global existence of a solution under the
conditions ρ + r > 1 and ρ + 2r ≥ 2 using the representation formula of u in the
Fourier variable.

In this article, we provide another set of ρ, r and the nonlinearity g that provides
the global existence of solutions. We assume that ρ, r and g satisfy the conditions

g(x) = x2n+1 for some n ∈ N, ρ+ r > 1. (1.8)

We fix the parameters as follows:

k ∈ N, 2k + 1 + ρ ≥ ρ+ r

2
+ 1, 2k ≥ r

2
,

1
2
< 2k + ρ < 2n+ 1.

Theorem 1.3. Suppose ρ, r and g satisfy the conditions in (1.8). Then for any
initial data φ ∈ H2k+1+ρ(R) and ψ ∈ H2k(R) with

E0 := ‖Pψ‖2L2(R) + ‖
√
Lβ−1φ‖2L2(R) + 2

∫
R
G(φ(x))dx <∞, (1.9)

there exists a unique global-in-time solution

u ∈ C([0,∞);H2k+1+ρ(R)) ∩ C1([0,∞);H2k(R))

such that

‖Put(t)‖2L2(R) + ‖
√
Lβ−1u(t)‖2L2(R) + 2

∫
R
G(u(t, x))dx = E0,

‖ut(t)‖2H2k(R) + ‖u(t)‖2H2k+1+ρ(R) ≤ C(E0, φ, ψ, t).
(1.10)

Notation. f̂(ξ) is the Fourier transform of f . Hs is the energy space whose norm
is given by

‖u‖2Hs(R) =
∫

R
(1 + |ξ|2)s|û(ξ)|2dξ.

All constants will be denoted by C that is a generic constant depending only on
the quantities specified in the context.

2. Proof of main restuls

We begin with a lemma dealing with the effect of composition by a smooth
functions.

Lemma 2.1 ([11]). For g(x) = x2n+1 and 0 ≤ s < 2n+ 1, we have

‖g(u)‖Hs(R) ≤ C(n, ‖u‖L∞(R))‖u‖H1(R),

‖g(u)− g(v)‖Hs(R) ≤ C(‖u‖L∞(R), ‖v‖L∞(R), ‖u‖Hs(R), ‖v‖Hs(R))‖u− v‖Hs(R).
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Proof of Theorem 1.1. Our analysis starts by rewriting (1.1) as a H1−valued ordi-
nary differential equations:

ut = v, u(0, x) = φ(x), (2.1a)

vt = K ∗ f(u), v(0, x) = ψ(x), (2.1b)

where f(u) = u + g(u) and K = βxx. We first note that K̂(ξ) ∈ L∞(R) from the
condition (1.3) with r > 2. So, K = βxx is a bounded operator in H1(R). Moreover,
Lemma 2.1 implies that K ∗ f(u) is locally Lipschitz on H1(R). Therefore, the
local well-posedness with initial data in H1(R) follows from the well-posedness of
the system of ordinary differential equations. Moreover, it is shown in [5, Lemma
3.9] that there exists a global solution in H1(R) if and only if for any T > 0

lim sup
t→T−

‖u(t)‖L∞(R) <∞.

Therefore, we focus on the L∞ norm of u. To this end, we rewrite (1.1a) as

P2utt + u+ g(u) = 0. (2.2)

where P is defined in (1.5). Multiplying (2.2) by 2ut and integrating in x, we have

‖Put(t)‖2L2(R) + ‖u(t)‖2L2(R) + 2
∫

R
G(u(t, x))dx = E0. (2.3)

As shown in [5], the first term on the left-hand side of (2.3) implies that

‖u(t)‖
H
r
2−1(R)

≤ C(E0).

By the Sobolev embedding, we have

‖u(t)‖
L

2
3−r (R)

≤ C(E0) for r < 3. (2.4)

Using this, we estimate the nonlinear term K∗g(u). By Hausdorff-Young inequality,

‖K ∗ g(u)‖L∞(R) ≤ C‖K‖Lq′ (R)‖g(u)‖Lq(R) ≤ C‖K̂‖Lq(R)‖g(u)‖Lq(R), 1 < q ≤ 2.

To bound ‖K̂‖Lq(R) = ‖|ξ|2β̂‖Lq(R), we need

(r − 2)q > 1. (2.5)

On the other hand, to bound ‖g(u)‖Lq(R) using (2.4), we also need

(2n+ 1)q ≤ 2
3− r

. (2.6)

By solving (2.5) and (2.6) for r, we have
6n+ 7
2n+ 3

< r.

Moreover, by choosing

r ≤ 6n+ 2
2n+ 1

we have q ≤ 2 from (2.6). Combining these two inequalities for r, we obtain that
6n+ 7
2n+ 3

< r ≤ 6n+ 2
2n+ 1

(2.7)

and under this condition, we have

‖K ∗ g(u)‖L∞(R) ≤ C(E0) (2.8)
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Moreover, since
5
2
<

6n+ 7
2n+ 3

,

K ∈ L2(R). Therefore,

‖K ∗ u‖L∞(R) ≤ ‖K‖L2(R)‖u‖L2(R) ≤ C(E0). (2.9)

We now bound ‖u‖L∞(R) using (2.8) and (2.9). Integrating (1.1) twice in time, we
have

u(t, x) = φ(x) + tψ(x) +
∫ t

0

(t− s)(K ∗ f(u(s)))ds.

Since
‖K ∗ f(u)‖L∞(R) ≤ ‖K ∗ u‖L∞(R) + ‖K ∗ g(u)‖L∞(R) ≤ C(E0),

we conclude that

‖u(t)‖L∞(R) ≤ ‖φ‖L∞(R) + t‖ψ‖L∞(R) + C(E0)t2. (2.10)

Therefore, ‖u(t)‖L∞(R) does not blow up in finite time. This completes the proof.
�

Proof of Theorem 1.3. We begin with the bounds of ‖u‖L2(R) and ‖u‖L∞(R). To
this end, we rewrite (1.6a) as

P2utt + Lβ−1u+ g(u) = 0. (2.11)

Multiplying (2.11) by 2ut and integrating in x, we have

‖Put(t)‖2L2(R) + ‖
√
Lβ−1u(t)‖2L2(R) + 2

∫
R
G(u)(t, x)dx = E0. (2.12)

Since √
L̂(ξ)(β̂(ξ))−1/2 ≥ (1 + |ξ|2)

ρ+r
4 and ρ+ r > 1

Equality (2.12) implies

‖u(t)‖L2(R) ≤ E0, ‖u(t)‖L∞(R) ≤ E0. (2.13)

We next obtain the energy estimates. Let
√
−∆ = Λ. Then, we have

d

dt
‖ut‖2H2k(R) +

d

dt

k∑
i=0

‖Λ2i
√
Lux‖2L2(R)

≤
k∑
i=0

‖Λ2iβxx ∗ g(u)‖2L2(R) + ‖ut‖2H2k(R).

(2.14)

Since for ρ+ r ≥ 1 and i = 0, 1, 2, . . . , k

(1 + |ξ|)2i|ξ|2(1 + |ξ|2)−
r
2 ≤ C(1 + |ξ|)2i|ξ|(1 + |ξ|2)

ρ
2 ≤ C(1 + |ξ|)2k+1+ρ,

by Lemma 2.1 we have
k∑
i=0

‖Λ2iβxx ∗ g(u)‖2L2(R) ≤ C‖g(u)‖2H2k+1+ρ(R)

≤ C(‖u‖L∞(R), n)‖u‖2H2k+1+ρ(R).

(2.15)
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Therefore, by (2.14), (2.15), (2.12) and (2.13),

‖ut(t)‖2H2k(R) + ‖u(t)‖2H2k+1+ρ(R)

≤ C(φ, ψ,E0) +
∫ t

0

‖ut(s)‖2H2k(R)ds

≤ C(φ, ψ,E0) +
∫ t

0

[‖ut(s)‖2H2k(R) + ‖u(s)‖2H2k+1+ρ(R)]ds

(2.16)

and thus by Gronwall’s inequality, we obtain

‖ut(t)‖2H2k(R) + ‖u(t)‖2H2k+1+ρ(R) ≤ C(φ, ψ,E0)et. (2.17)

To obtain a unique solution u, we iterate the equation by defining ul as a solution
of

ultt − Lulxx = βxx ∗ g(ul−1), (2.18a)

ul(0, x) = φ(x), (2.18b)

ult(0, x) = ψ(x). (2.18c)

Let ωl = ul − ul−1. Then, ωl satisfies

ωltt − Lωlxx = βxx ∗
[
g(ul−1)− g(ul−2)

]
, (2.19a)

ωl(0, x) = 0, ωlt(0, x) = 0. (2.19b)

By following the calculation above, we have

d

dt
‖Pωlt(t)‖2L2(R) +

d

dt
‖
√
Lβ−1ωl(t)‖2L2(R) ≤ C(E0)‖ωl−1‖2L2(R) + ‖ωlt‖2L2(R) (2.20)

and
d

dt
‖ωlt‖2H2k(R) +

d

dt
‖ωl(t)‖2H2k+1+ρ(R)

≤ C‖g(ul−1)− g(ul−2)‖2H2k+1+ρ(R) + ‖ωlt‖2H2k(R)

≤ C(φ, ψ,E0)‖ωl−1‖2H2k+1+ρ(R) + ‖ωlt‖2H2k(R).

(2.21)

This implies

sup
0≤t≤T

[
‖ωlt(t)‖2H2k(R) + ‖ωl(t)‖2H2k+1+ρ(R)

]
≤ C(φ, ψ,E0)T sup

0≤t≤T

[
‖ωl−1

t (t)‖2H2k(R) + ‖ωl−1(t)‖2H2k+1+ρ(R)

]
+ T sup

0≤t≤T

[
‖ωlt(t)‖2H2k(R) + ‖ωl(t)‖2H2k+1+ρ(R)

]
.

(2.22)

We take T > 0 such that T < 1/2 and C(φ, ψ,E0)T < 1/4. Then, {ul(t) : l ∈ N}
is a Cauchy sequence in E2k(T ) with

‖u‖E2k(T ) = sup
0≤t≤T

[
‖ut(t)‖H2k(R) + ‖u(t)‖H2k+1+ρ(R)

]
.

Therefore, there exists a unique local in-time solution in E2k(T ). Moreover, the
solution does not blow up in finite time by the global bound (2.17). This completes
the proof. �
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Concluding Remark. The present article is part of a research program whose ob-
jective is the investigation of general models arising in elasticity. The well-posedness
of nonlinear nonlocal elastic equations is of great scientific interest, physically rele-
vant and presents new challenges in the analysis. In this paper, we have established
the global well-posedness of (1.1) and (1.6) for large data with defocusing nonlin-
earity throughout our analysis. We believe that we can apply our method to other
models, such as peridynamics [12]; this equation is a model proposed to describe
the dynamical response of an infinite homogeneous elastic bar within the context
of the peridynamic formulation of elasticity theory.
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