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EXISTENCE OF POSITIVE SOLUTIONS TO PERTURBED
NONLINEAR DIRICHLET PROBLEMS INVOLVING

CRITICAL GROWTH
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Abstract. We consider the following perturbed nonlinear elliptic problem

with critical growth

−ε2∆u+ V (x)u = f(x)|u|p−2u+
α

α+ β
K(x)|u|α−2u|v|β , x ∈ RN ,

−ε2∆v + V (x)v = g(x)|v|p−2v +
β

α+ β
K(x)|u|α|v|β−2v, x ∈ RN ,

u(x), v(x)→ 0 as |x| → ∞.
Using variational methods, we prove the existence of positive solutions.

1. Introduction

In this article, we discuss the following perturbed elliptic system involving critical
growth

−ε2∆u+ V (x)u = f(x)|u|p−2u+
α

α+ β
K(x)|u|α−2u|v|β , x ∈ RN ,

−ε2∆v + V (x)v = g(x)|v|p−2v +
β

α+ β
K(x)|u|α|v|β−2v, x ∈ RN ,

u(x), v(x)→ 0 as |x| → ∞,

(1.1)

where 2 < p < 2∗, α > 1, β > 1 satisfy α+ β = 2∗, 2∗ = 2N/(N − 2)(N ≥ 3) is the
critical Sobolev exponent. We assume that V (x),K(x), f(x) and g(x) satisfy the
following conditions:

(H1) V ∈ C(RN ,R), V (0) = infx∈RN V (x) = 0 and there exists b > 0 such that
the set νb := {x ∈ RN : V (x) < b} has finite Lebesgue measure;

(H2) K(x) ∈ C(RN ,R), 0 < infx∈RN K(x) ≤ supx∈RN K(x) <∞;
(H3) f(x), g(x) are bounded and positive functions.
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Set α = β, f(x) = g(x) and u = v. Then (1.1) reduces to the semilinear scalar
perturbed elliptic equation with critical growth

−ε2∆u+ V (x)u = f(x)|u|p−2u+
1
2
K(x)|u|2

∗−2u, x ∈ RN ,

u(x)→ 0 as |x| → ∞.
(1.2)

Many studies on problem (1.2) can be found in literature [3, 4, 7, 8, 9, 11, 12, 13, 20].
For example, Ding and Lin [12] established the existence of positive solutions of
(1.2) as well as those solutions changed sign exactly once.

The semilinear elliptic system involving subcritical exponents on bounded do-
main has also been widely studied [5, 10, 21, 22, 23]. Wu [23] obtained multiplicity
results of nontrivial nonnegative solutions of the elliptic system

−∆u = λf(x)|u|q−2u+
α

α+ β
h(x)|u|α−2u|v|β , x ∈ Ω,

−∆v = µg(x)|v|q−2v +
β

α+ β
h(x)|u|α|v|β−2v, x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω.

(1.3)

For the case of a bounded domain, system (1.1) involving critical terms with
ε = 1 was studied in [14, 15, 17, 18]. Hsu and Lin [17] considered the problem

−∆u = λ|u|q−2u+
2α

α+ β
|u|α−2u|v|β , x ∈ Ω,

−∆v = µ|v|q−2v +
2β

α+ β
|u|α|v|β−2v, x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.4)

where α+ β = 2∗. Liu and Han [18] studied the system

−∆u = λu+
α

α+ β
|u|α−2u|v|β , x ∈ Ω,

−∆v = µv +
β

α+ β
|u|α|v|β−2v, x ∈ Ω,

u(x) = v(x) = 0 on ∂Ω,

(1.5)

where λ, µ ≥ 0 and λ+ µ > 0, α, β > 1 satisfying α+ β = 2∗.
Many papers were devoted to the existence results of elliptic boundary valued

problems on bounded domain with the Sobolev critical exponents. However, to
the known of our knowledge, no studies were conducted on the existence of semi-
classical solutions to (1.1) in RN . In this paper, we study system (1.1) in the whole
space involving the critical growth. The main difficulty of this problem is the lack
of compactness of the Sobolev embedding. To overcome this difficulty, we follow the
approach originally developed in [21]. Namely, we will show that the corresponding
energy functional of problem (1.1) satisfies the compactness condition at the levels
less than some certain constant c. Our result complements the study made in
[17, 18, 23] in the sense that, in those papers, only the subcritical growth or the
problem on bounded domain were considered.
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Let λ = ε−2. Then (1.1) can be rewritten as

−∆u+ λV (x)u = λf(x)|u|p−2u+
λα

α+ β
K(x)|u|α−2u|v|β , x ∈ RN ,

−∆v + λV (x)v = λg(x)|v|p−2v +
λβ

α+ β
K(x)|u|α|v|β−2v, x ∈ RN ,

u(x), v(x)→ 0 as |x| → ∞.

(1.6)

Since (1.1) and (1.6) are equivalent, then we will focus on system (1.6).

Theorem 1.1. Assume (H1)–(H3) hold. Then for any σ > 0, there is Λσ > 0 such
that if λ > Λσ, problem (1.6) has at least one solution (uλ, vλ) that satisfies

p− 2
2p

∫
RN

(|∇uλ|2 + |∇vλ|2 + λV (x)(|uλ|2 + |vλ|2)) ≤ σλ1−N2 . (1.7)

This article is organized as follows. In section 2, we show the (PS)c condition
holds for Iλ with some level c. In section 3, we obtain that the functional associated
to (1.2) possesses the mountain geometry structure. Section 4 is devoted to the
proof of the main result.

2. Palais-Smale condition

Let E = Eλ × Eλ be the Hilbert space with norm

‖(u, v)‖E = (
∫

RN
(|∇u|2 + λV (x)u2 + |∇v|2 + λV (x)v2))

1
2 ,

for any (u, v) ∈ E. Meanwhile, the space

Eλ = {u ∈ H1(RN ) :
∫

RN
λV (x)u2 <∞ , λ > 0}

is a Hilbert space equipped with the inner product

(u, v)Eλ =
∫

RN
(∇u∇v + λV (x)uv).

We will show the existence of nontrivial solutions of (1.6) by searching for critical
points of the functional associated to (1.6),

Iλ(u, v) =
1
2

∫
RN

(|∇u|2 + λV (x)u2 + |∇v|2 + λV (x)v2)

− λ

p

∫
RN

(f(x)|u|p + g(x)|v|p)− λ

α+ β

∫
RN

K(x)|u|α|v|β .

In fact, the critical points of the functional Iλ are the weak solutions of (1.6). Recall
that the weak solution (u, v) of (1.6) satisfies∫

RN
(∇u∇ϕ+ λV (x)uϕ+∇v∇ψ + λV (x)vψ)

= λ

∫
RN

(f(x)|u|p−2uϕ+ g(x)|v|p−2vψ) +
λα

α+ β

∫
RN

K(x)|u|α−2u|v|βϕ

+
λβ

α+ β

∫
RN

K(x)|u|α|v|β−2vψ,

for all (ϕ,ψ) ∈ E. Based on the assumptions of Theorem 1.1, we can show that
Iλ ∈ C1(E,R) [19].
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Notation. Lp(RN ), 1 ≤ p <∞, denotes the Lebesgue spaces with ‖ · ‖p. The dual
space of a Banach space E will be denoted by E∗. Br := {x ∈ RN : |x| ≤ r} is the
ball in RN . c, ci represent various positive constants.

Let C∞0 (RN ) denote the collection of smooth functions with compact support.
o(1) denotes o(1)→ 0 as n→∞. Let Sα,β be the best Sobolev embedding constant
defined by

Sα,β = inf
u,v∈H1(RN )

∫
RN (|∇u|2 + |∇v|2)( ∫

RN |u|α|v|β
) 2
α+β

. (2.1)

We have

Sα,β =
(

(
α

β
)

β
α+β + (

β

α
)

α
α+β

)
S,

where S is the best Sobolev embedding constant defined by

S = inf
u∈H1(RN )

∫
RN |∇u|

2( ∫
RN |u|2

∗)2/2∗ .
Next, we will find the range of c where the (PS)c condition holds for the functional
Iλ.

Definition 2.1. Let I ∈ C1(E,R).
(1) A sequence {zn} ⊂ E is called a (PS)c sequence in E for I if I(zn) = c+o(1)

and I ′(zn) = o(1) strongly in E∗ as n→∞.
(2) I satisfies (PS)c condition if any (PS)c sequence {zn} in E for I has a

convergent subsequence.

Lemma 2.2. If the sequence {(un, vn)} ⊂ E is a (PS)c sequence for Iλ, then we
have c ≥ 0 and {(un, vn)} is bounded in the space E.

Proof. We have

Iλ(un, vn)− 1
p
I ′λ(un, vn)(un, vn)

=
1
2
‖(un, vn)‖2E −

λ

p

∫
RN

(f(x)|un|p + g(x)|vn|p)−
λ

α+ β

∫
RN

K(x)|un|α|vn|β

− 1
p

[‖(un, vn)‖2E − λ
∫

RN
(f(x)|un|p + g(x)|vn|p)− λ

∫
RN

K(x)|un|α|vn|β ]

= (
1
2
− 1
p

)‖(un, vn)‖2E + (
1
p
− 1
α+ β

)λ
∫

RN
K(x)|un|α|vn|β .

From this and 2 < p < 2∗, we obtain

Iλ(un, vn)− 1
p
I ′λ(un, vn)(un, vn) ≥ (

1
2
− 1
p

)‖(un, vn)‖2E .

Since Iλ(un, vn)→ c and I ′λ(un, vn)→ 0, the conclusion follows. �

Lemma 2.3. There exists a subsequence {(unj , vnj )} such that for any ε > 0, there
is rε > 0 with r ≥ rε

lim sup
j→∞

∫
Bj\Br

(|unj |d + |vnj |d) ≤ ε

where 2 ≤ d < 2∗.
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Proof. By Lemma 2.2, the (PS)c sequence {(un, vn)} for Iλ is bounded in E. So,
we assume (un, vn) ⇀ (u, v) in E, un → u, vn → v a.e. in RN and (un, vn)→ (u, v)
in Ldloc(RN )× Ldloc(RN ) for any 2 ≤ d < 2∗. For each j ∈ N, we have∫

Bj

(|un|d + |vn|d)→
∫
Bj

(|u|d + |v|d).

Thus, there exists n0 ∈ N such that∫
Bj

(|un|d + |vn|d − |u|d − |v|d) <
1
j
,

for all n ≥ n0 + 1. Without loss of generality, we choose nj = n0 + j such that∫
Bj

(|unj |d + |vnj |d − |u|d − |v|d) <
1
j
.

It is easy to show that there is a rε satisfying∫
RN\Br

(|u|d + |v|d) < ε for all r ≥ rε.

Since ∫
Bj\Br

(|unj |d + |vnj |d)

<
1
j

+
∫

RN\Br
(|u|d + |v|d) +

∫
Br

(|u|d − |unj |d + |v|d − |vnj |d).

In connection with (un, vn)→ (u, v) in Ldloc(RN )×Ldloc(RN ), the lemma follows. �

Let η ∈ C∞(R+, [0, 1]) be a smooth function satisfying η(t) = 1 if t ≤ 1 and
η(t) = 0 if t ≥ 2. Define ũj(x) = η(2|x|/j)u(x) and ṽj(x) = η(2|x|/j)v(x), then

(ũj , ṽj)→ (u, v) in E as j →∞. (2.2)

Lemma 2.4. One has

lim
j→∞

|
∫

RN
f(x)(|unj |p−2unj − |unj − ũj |p−2(unj − ũj)− |ũj |p−2ũj)ϕ| = 0,

lim
j→∞

|
∫

RN
g(x)(|vnj |p−2vnj − |vnj − ṽj |p−2(vnj − ṽj)− |ṽj |p−2ṽj)ψ| = 0

uniformly in (ϕ,ψ) ∈ E with ‖(ϕ,ψ)‖E ≤ 1.

The proof of the above lemma is similar to the one [12, Lemma 3.4], so we omit
it.

Lemma 2.5. Passing to a subsequence, we have

Iλ(un − ũn, vn − ṽn)→ c− Iλ(u, v),

I ′λ(un − ũn, vn − ṽn)→ 0 in E∗.

Proof. From (un, vn) ⇀ (u, v) and (ũn, ṽn)→ (u, v) in E, we obtain

Iλ(un − ũn, vn − ṽn)

= Iλ(un, vn)− Iλ(ũn, ṽn)

+
λ

p∗

∫
RN

K(x)(|un|α|vn|β − |un − ũn|α|vn − ṽn|β − |ũn|α|ṽn|β)
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+
λ

p

∫
RN

f(x)(|un|p − |un − ũn|p − |ũn|p)

+
λ

p

∫
RN

g(x)(|vn|p − |vn − ṽn|p − |ṽn|p) + o(1).

Similar to the proof of Brézis-Lieb Lemma [6], it is easy to obtain

lim
n→∞

∫
RN

K(x)(|un|α|vn|β − |un − ũn|α|vn − ṽn|β − |ũn|α|ṽn|β) = 0,

lim
n→∞

∫
RN

f(x)(|un|p − |un − ũn|p − |ũn|p) = 0,

lim
n→∞

∫
RN

g(x)(|vn|p − |vn − ṽn|p − |ṽn|p) = 0.

Observing that Iλ(un, vn)→ c and Iλ(ũn, ṽn)→ Iλ(u, v), we have

Iλ(un − ũn, vn − ṽn)→ c− Iλ(u, v).

In addition, for any (ϕ,ψ) ∈ E, we obtain

I ′λ(un − ũn, vn − ṽn)(ϕ,ψ)

= I ′λ(un, vn)(ϕ,ψ)− I ′λ(ũn, ṽn)(ϕ,ψ) +
λα

α+ β

∫
RN

K(x)
(
|un|α−2un|vn|β

− |un − ũn|α−2(un − ũn)|vn − ṽn|β − |ũn|α−2ũn|ṽn|β
)
ϕ

+
λβ

α+ β

∫
RN

K(x)
(
|un|α|vn|β−2vn − |un − ũn|α|vn − ṽn|β−2(vn − ṽn)

− |ũn|α|ṽn|β−2ṽn

)
ψ

+ λ

∫
RN

f(x)
(
|un|p−2un − |un − ũn|p−2(un − ũn)− |ũn|p−2ũn

)
ϕ

+ λ

∫
RN

g(x)
(
|vn|p−2vn − |vn − ṽn|p−2(vn − ṽn)− |ṽn|p−2ṽn

)
ψ.

It is standard to check that

lim
n→∞

∫
RN

K(x)(|un|α−2un|vn|β − |un − ũn|α−2(un − ũn)|vn − ṽn|β

− |ũn|α−2ũn|ṽn|β)ϕ = 0,

lim
n→∞

∫
RN

K(x)(|un|α|vn|β−2vn − |un − ũn|α|vn − ṽn|β−2(vn − ṽn)

− |ũn|α|ṽn|β−2ṽn)ψ = 0

uniformly in ‖(ϕ,ψ)‖E ≤ 1. By Lemma 2.4 and I ′λ(un, vn) → 0, we complete the
proof. �

Set u1
n = un − ũn and v1

n = vn − ṽn, then un − u = u1
n + (ũn − u) and vn − v =

v1
n + (ṽn − v). Then (un, vn) → (u, v) in E if and only if (u1

n, v
1
n) → (0, 0) in E.

Observe that

Iλ(u1
n, v

1
n)− 1

2
I ′λ(u1

n, v
1
n)(u1

n, v
1
n) =

(1
2
− 1
α+ β

)
λ

∫
RN

K(x)|u1
n|α|v1

n|β

+ (
1
2
− 1
p

)λ
∫

RN
(f(x)|u1

n|p + g(x)|v1
n|p)
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≥ λ

N
K0

∫
RN
|u1
n|α|v1

n|β ,

where K0 = infx∈RN K(x) > 0. In connection with Iλ(u1
n, v

1
n) → c − Iλ(u, v) and

I ′λ(u1
n, v

1
n)→ 0 in E∗, we obtain∫

RN
|u1
n|α|v1

n|β ≤
N(c− Iλ(u, v))

λK0
+ o(1). (2.3)

In addition, by (H2) and (H3), for any b > 0, there is a constant Cb > 0 such that∫
RN

(K(x)|u1
n|α|v1

n|β + f(x)|u1
n|p + g(x)|v1

n|p)

≤ b(‖u1
n‖22 + ‖v1

n‖22) + Cb

∫
RN
|u1
n|α|v1

n|β .

Let Vb(x) := max{V (x), b}, where b is the positive constant in the assumption
(H1). Since the set νb := {x ∈ RN : V (x) < b} has finite Lebesgue measure and
(u1
n, v

1
n)→ (0, 0) in L2

loc(RN )× L2
loc(RN ), we have∫

RN
V (x)(|u1

n|2 + |v1
n|2) =

∫
RN

Vb(x)(|u1
n|2 + |v1

n|2) + o(1). (2.4)

Thus

Sα,β

(∫
RN
|u1
n|α|v1

n|β
) 2
α+β ≤

∫
RN

(|∇u1
n|2 + |∇v1

n|2)

=
∫

RN
(|∇u1

n|2 + |∇v1
n|2 + λV (x)|u1

n|2 + λV (x)|v1
n|2)

−
∫

RN
λV (x)(|u1

n|2 + |v1
n|2)

= λ

∫
RN

(K(x)|u1
n|α|v1

n|β + f(x)|u1
n|p + g(x)|v1

n|p)

− λ
∫

RN
Vb(x)(|u1

n|2 + |v1
n|2) + o(1)

≤ λCb
∫

RN
|u1
n|α|v1

n|β + o(1).

From (2.3), we have

Sα,β ≤ λCb(
∫

RN
|u1
n|α|v1

n|β)1− 2
α+β + o(1)

≤ λCb(
N(c− Iλ(u, v))

λK0
)

2
N + o(1)

= λ1− 2
N Cb(

N

K0
)

2
N (c− Iλ(u, v))

2
N + o(1).

Set α0 = S
N
2
α,βC

−N2
b N−1K0. This implies α0λ

1−N2 ≤ c− Iλ(u, v) + o(1).

Lemma 2.6. Let (H1)–(H3) be satisfied. Then, for any (PS)c sequence {(un, vn)}
for Iλ, there exists a constant α0 > 0 (independent of λ) such that the functional
Iλ(u, v) satisfies the (PS)c condition for all c < α0λ

1−N2 .
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Proof. We can check that, for any (PS)c sequence {(un, vn)} ⊂ E with (un, vn) ⇀
(u, v), either (un, vn)→ (u, v) or c− Iλ(u, v) ≥ α0λ

1−N2 .
On the contrary, suppose that (un, vn) 6→ (u, v); then

lim inf
n→∞

‖(un, vn)‖E > 0

and c − Iλ(u, v) > 0. Based on the above conclusions, we easily get that the
functional Iλ(u, v) satisfies the (PS)c condition for all c < α0λ

1−N2 . �

3. Mountain-pass structure

We consider λ ≥ 1 and check that the functional Iλ possesses the mountain-pass
structure.

Lemma 3.1. Assume that (H1)–(H3) are satisfied. Then there exists αλ, ρλ > 0
such that

Iλ(u, v) > 0 if 0 < ‖(u, v)‖E < ρλ, Iλ(u, v) ≥ αλ if ‖(u, v)‖E = ρλ.

Proof. Note that

Iλ(u, v) =
1
2

∫
RN

(|∇u|2 + λV (x)u2 + |∇v|2 + λV (x)v2)

− λ

p

∫
RN

(f(x)|u|p + g(x)|v|p)− λ

α+ β

∫
RN

K(x)|u|α|v|β .

It is clear that, for each s ∈ [2, 2∗], there is cs such that if λ ≥ 1,

‖u‖s ≤ cs‖u‖Eλ for all u ∈ Eλ.
By Young inequality, we have

|u|α|v|β ≤ α

α+ β
|u|α+β +

β

α+ β
|v|α+β .

Furthermore, we obtain∫
RN

K(x)|u|α|v|β ≤ c1(‖u‖2
∗

2∗ + ‖v‖2
∗

2∗) ≤ c1c2∗‖(u, v)‖2
∗

E . (3.1)

Combining (H3) and (3.1), there is a constant cδ such that

Iλ(u, v) ≥ 1
4
‖(u, v)‖2E − cδ‖(u, v)‖2

∗

E =
1
4
‖(u, v)‖2E(1− 4cδ‖(u, v)‖2

∗−2
E ).

Set ρλ = ( 1
8cδ

)
1

2∗−2 , it implies

Iλ(u, v) ≥ 1
8
ρ2
λ =: αλ > 0 if ‖(u, v)‖E = ρλ.

The proof is complete. �

Lemma 3.2. For any finite dimensional subspace F ⊂ E, we have

Iλ(u, v)→ −∞ as ‖(u, v)‖E →∞ for (u, v) ∈ F.

Proof. From assumptions (H2) and (H3), it follows that

Iλ(u, v) ≤ 1
2
‖(u, v)‖2E − λc0‖(u, v)‖pp for all (u, v) ∈ F.

In connection with the fact that all norms in a finite-dimensional space are equiv-
alent and p > 2, we easily get the desired conclusion. �
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Lemma 3.3. For any σ > 0, there is Λσ > 0 such that for each λ ≥ Λσ, there
exists ēλ ∈ E with ‖ēλ‖E > ρλ, we have Iλ(ēλ) ≤ 0 and

max
t≥0

Iλ(tēλ) ≤ σλ1−N2 ,

where ρλ is defined in Lemma 3.1.

Proof. Define the functionals

Φλ(u, v) =
1
2

∫
RN

(|∇u|2 + λV (x)|u|2 + |∇v|2 + λV (x)|v|2)− λc0
∫

RN
(|u|p + |v|p),

Ψλ(u, v) =
1
2

∫
RN

(|∇u|2 + |∇v|2 + V (λ−
1
2x)(|u|2 + |v|2))− c0

∫
RN

(|u|p + |v|p).

We obtain that Φλ ∈ C1(E) and Iλ(u, v) ≤ Φλ(u, v) for all (u, v) ∈ E. Observe
that

inf
{∫

RN
|∇φ|2 : φ ∈ C∞0 (RN ,R), ‖φ‖p = 1

}
= 0.

For any δ > 0, there are φδ, ψδ ∈ C∞0 (RN ,R) with ‖φδ‖p = ‖ψδ‖p = 1 such that

supp(φδ, ψδ) ⊂ Brδ(0) and ‖∇φδ‖22, ‖∇ψδ‖22 < δ.

Let eλ(x) = (φδ(
√
λx), ψδ(

√
λx)), then supp eλ ⊂ B

λ−
1
2 rδ

(0). Furthermore,

Φλ(teλ) = λ1−N2 Ψλ(tφδ, tψδ).

It is clear that

max
t≥0

Ψλ(tφδ, tψδ) ≤
p− 2

2p(pc0)
2
p−2

{∫
RN

(|∇φδ|2 + V (λ−
1
2x)|φδ|2)

} p
p−2

+
p− 2

2p(pc0)
2
p−2

{∫
RN

(|∇ψδ|2 + V (λ−
1
2x)|ψδ|2)

} p
p−2

.

Combining V (0) = 0 and supp(φδ, ψδ) ⊂ Brδ(0), there is Λδ > 0 such that for all
λ ≥ Λδ, we have

max
t≥0

Φλ(tφδ, tψδ) ≤ λ1−N2
(p− 2)

p(pc0)
2
p−2

(2δ)
p
p−2 .

Thus, for all λ ≥ Λδ,

max
t≥0

Iλ(teλ) ≤ λ1−N2
(p− 2)

p(pc0)
2
p−2

(2δ)
p
p−2 . (3.2)

For any σ > 0, we can choose δ > 0 enough small such that

(p− 2)

p(pc0)
2
p−2

(2δ)
p
p−2 ≤ σ

and eλ(x) = (φδ(
√
λx), ψδ(

√
λx)). Taking Λδ = Λσ, there is t̄λ > 0 such that

‖t̄λeλ‖E > ρλ and Iλ(teλ) ≤ 0 for all t ≥ t̄λ. By (3.2), ēλ = t̄λeλ satisfies the
requirements. �
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4. Proof of Theorem 1.1

Define
cλ = inf

γ∈Γλ
max
t∈[0,1]

Iλ(γ(t)),

where Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = ēλ}. In addition, for any σ > 0 with
σ < α0, there is Λσ > 0 such that λ ≥ Λσ. We can take cλ satisfying cλ ≤ σλ1−N2 .

From the above results, the functional Iλ satisfies (PS)cλ condition and has the
mountain-pass structure if cλ ≤ σλ1−N2 . Hence, there is (uλ, vλ) ∈ E such that

Iλ(uλ, vλ) = cλ and I ′λ(uλ, vλ) = 0.

That is to say, (uλ, vλ) is a weak solution of (1.6). Similar to the arguments in [12],
we also obtain that (uλ, vλ) is a positive least energy solution. Furthermore,

Iλ(uλ, vλ) = Iλ(uλ, vλ)− 1
p
I ′λ(uλ, vλ)(uλ, vλ)

≥ (
1
2
− 1
p

)‖(uλ, vλ)‖2E .

This shows that
p− 2

2p
‖(uλ, vλ)‖2E ≤ Iλ(uλ, vλ) = cλ ≤ σλ1−N2 .

The proof is complete.
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