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EIGENVALUES OF STURM-LIOUVILLE OPERATORS AND
PRIME NUMBERS

RAUF AMİROV, İBRAHIM ADALAR

Abstract. We show that there is no function q(x) ∈ L2(0, 1) which is the po-

tential of a Sturm-Liouville problem with Dirichlet boundary condition whose
spectrum is a set depending nonlinearly on the set of prime numbers as sug-

gested by Mingarelli [7].

1. Introduction

We consider the Sturm-Liouville problem

−y′′ + q(x)y = (πN(λ))2y

y(0) = y(1) = 0,
(1.1)

with

N(λ) = λ, N(λ) =
λ

ln(λ)
, or N(λ) = li(λ) :=

∫ λ

0

dt

ln(t)
(1.2)

where li(x) is defined as in [1, p. 228]. A real number λ is called an eigenvalue
of (1.1) if it has a nontrivial solution. The set of all such eigenvalues is called the
spectrum of (1.1) .

The purpose of this note is to prove the following results.

Theorem 1.1. If N(λ) = λ/ ln(λ) then there is no function q ∈ L2[0, 1] such that
the spectrum of (1.1) is the set of prime numbers.

Theorem 1.2. If N(λ) = li(λ) then is no function q ∈ L2[0, 1] such that the
spectrum of (1.1) is the set of prime numbers.

The case N(λ) = λ was asked by Zettl [9, p.299] and answered by Mingarelli [7].
In turn, Mingarelli [7] asked the question answered by Theorems 1.1 and 1.2.

Our proofs are based on the asymptotic distribution of prime numbers and the
asymptotic distribution of the eigenvalues for N(λ) = λ. In fact, letting π(x)
denote the number of prime number less than or equal to x, by the Prime Number
Theorem, see [5], we have

lim
x→∞

π(x)
x

ln x

= 1 and lim
x→∞

π(x)
li(x)

= 1. (1.3)
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On the other hand for N(λ) = λ we have

πλn = nπ +

∫ 1

0
q(t)dt
2nπ

+O(n−2), (1.4)

see [2, (3.15), p. 81].

2. Main Results

Proof of Theorem 1.1. Suppose the exists q ∈ L2[0, 1] such that the spectrum of
(1.1) is the set of prime numbers. Let pn denote the n-th prime number. By (1.4),
see [2, 4, 8], ( πpn

ln(pn)

)2

= n2π2 +
∫ 1

0

q(t)dt+ cn (2.1)

where cn ∈ l2,
From the results by Dusart [3] we have

π(x) ≥ x

lnx
(1 +

1
lnx

+
1.8

ln2 x
) (2.2)

for x ≥ 32299. Hence

lim
n→∞

((
π
pn

ln pn

)2 − n2π2
)

= lim
n→∞

((
π
pn

ln pn

)2 − (π(pn))2π2
)

≤ − lim
n→∞

p2
n

ln4(pn)
= −∞.

(2.3)

Since (2.3) contradicts (1.4), the proof is complete. �

Proof of Theorem 1.2. The classical Littlewood theorem, see [6, 5], proves that
π(x)−li(x) changes sign infinitely often. More precisely, it establishes the existence
of increasing sequences {xn}n and {yn} converging to +∞ such that

lim
n→+∞

π(xn)− li(xn) = +∞ and lim
n→+∞

π(yn)− li(yn) = −∞. (2.4)

It is not difficult to see that if pj denotes the largest prime number less than or
equal to xj then

lim
n→+∞

π(pn)− li(pn) = +∞. (2.5)

Similarly, if pj denotes the smallest prime number greater than or equal to yj then

lim
n→+∞

π(pn)− li(pn) = −∞. (2.6)

Assuming that the set of prime numbers is the spectrum for N(λ) = li(λ) from
(2.1) we have

lim
n→∞

((πli(λn))2 − n2π2) =
∫ 1

0

q(t)dt,

which contradicts (2.5) and (2.6). This completes the proof. �
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