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Abstract. In this article, we sutdy a multi-component Camassa-Holm-type

system. By employing the characteristic method, we obtain a class of pertur-

bational self-similar solutions with elliptical symmetry, whose velocity compo-
nents are governed by the generalized Emden equations. In particular, when

n = 1, these solutions constitute a generalization of that obtained by Yuen

in [38]. Interestingly, numerical simulations show that the analytical solutions
obtained can be used to describe the drifting phenomena of shallow water

flows. In addition, the method proposed can be extended to other mathemat-

ical physics models such as higher-dimensional Hunter-Saxton equations and
Degasperis-Procesi equations.

1. Introduction

Here, our concern is the investigation of analytical solutions of the multi-dimen-
sional Camassa-Holm-type system:

ρt = −∇ρ · u− ρ(∇ · u),

mt = −u · ∇m− (∇u)T ·m−m(∇ · u)− (∇ρ)T ρ ,
(1.1)

where u, m and ρ are vector fields on the n-torus Sn ' Rn/Zn. Here, it is assumed
that there exists a linear operator A such that m = Au, and that A takes a form of
αµ+ β −∆ with {α, β} = {0, 1} and α+ β 6= 2. While µ(u) =

∫
Sn u(x)dx denotes

the mean value operator.
Interest in such a system may trace back to the Camassa-Holm equation

ut − uxxt = −3uux + 2uxuxx + uuxxx , (1.2)

which was originally derived in [12] as an abstract equation with a bi-Hamiltonian
structure, and independently in [4] as a shallow water approximation. Due to
the distinguished features of complete integrability, there has been an extensive
literature devoted to the analysis of the Camassa-Holm equation. For example,
peakon solutions and their stability were investigated in [6, 7, 9, 34]. Geometric
properties were discussed in [8, 23, 33]. A condensed account of the geometric
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picture was found in [22, 27]. Subsequently, the two-component Camassa-Holm
equations

ρt = −ρux − ρxu ,
mt = −mxu− 2uxm− ρρx ,

(1.3)

with m = u − uxx was introduced by Chen et al [5] and independently by Falqui
[11]. Investigations showed that the two-component generalization of (1.2) version
shared analogous properties with the Camassa-Holm equation (see [10, 14, 16, 17]).
The closest relatives of the Camassa-Holm equation are the Hunter-Saxton (HS)
equation

− uxxt = 2uxuxx + uuxxx , (1.4)

and the (µ)-Hunter-Saxton (µHS) equation

2µ(u)ux − uxxt = 2uxuxx + uuxxx . (1.5)

The former first appeared in [18] as an asymptotic equation for rotators in liquid
crystals. While the latter was proposed by Khesin et al [20] and also appeared in
the work of Lenells et al wherein it was called the (µ)-Camassa-Holm equation [30].
The µHS equation is usually used to describe evolution of rotators in liquid crystals
with an external magnetic field and self-interaction. Similar to the Camassa-Holm
equation, both the HS and µHS equation have their associated two-component
analogue, which can be considered as the system (1.3) with m = −uxx and m =
µ(u)−uxx, respectively. All these equations have attracted great attentions among
the integrable systems and the partial differential equations communities due to
their nice mathematical properties and meaningful physical interpretations [18, 19,
20, 26, 28, 29, 30, 35, 36, 37, 41].

What needs to point out is that most works mentioned above concern with
the case n = 1 or 2. However, except for the work in [13, 21, 30], there has
not been many investigations carried out on the higher dimensional variations of
the Camassa-Holm-type system named above. Especially, no related work has been
done on construction of the analytical solutions. Since such equations are of interest
from the physical and the mathematical point of view as explained in, e.g.[13, 15,
24], this indeed gives us a strong push to pursue our present investigation.

In this paper, we would like to seek self-similar solutions for the multi-component
Camassa-Holm-type system. It is known that it is a hot topic to investigate such
type solutions in various models and many works have been done. For instance,
Barna [3] presented the self-similar solutions for the 3-dimensional Navier-Stokes
equations via a group theoretical method. Yuen [39] derived the self-similar solu-
tions to the compressible Euler equations by perturbing the velocity term. Yuen
[38, 40] also found that this kind of solutions existed in the two-component Camassa-
Holm equations. Recently, An and Yuen [1] obtained drifting solutions of self-
similar type for the compressible Navier-Stokes equations with density-dependent
viscosity. As we notice that the multi-component Camassa-Holm systems (1.1)
share some similarities with the equations given in [1, 3, 38, 39] in the form, it is
nature to inquire whether one can construct the self-similar solutions of perturba-
tional type for (1.1). In this paper, by using a characteristic method, we successfully
obtain the perturbational self-similar solutions for the multi-component Camassa-
Holm system. The main result is described in the following theorem.
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Theorem 1.1. For the multi-component Camassa-Holm system, there exists a fam-
ily of perturbational self-similar solutions:

ρ =
F (η)∏n

k=1 a
1/3
k (s)

,

ui =
a′i(s)
ai(s)

(xi − d∗i (t)) + ḋ∗i (t), for i = 1, 2, . . . , n

(1.6)

where

s = 3t, η =
n∑
k=1

(xk − d∗k(t)

a
1/3
k (s)

)2

, (1.7)

F (η) =
√
c20 − 3ξη(αµ− β). (1.8)

In the above, c0 and ξ are constants of integration. While, the auxiliary functions
ai(s) and d∗i (t) are determined by the following equations.
(I) In the case n = 1, the function ai(s) = a(s) = a(3t) is governed by the canonical
Emden equation [25]

a′′(s) =
ξ

a1/3(s)
,

a(0) = a0 > 0, ȧ(0) = a1 .

(1.9)

While, the perturbational function d∗i (t) = d∗(t) ∈ C2 is given by

d∗(t) = d0 +
1
3

∫ 3t

0

d1a
2/3
0

a2/3(s)
ds , (1.10)

where d0 and d1 are integration constants.
(II) In the case n > 1, the functions ai(s) = ai(3t) are determined by a modified
Emden equation with damping

a′′i (s) +
1
3
a′i(s)

n∑
k 6=i

a′k(s)
ak(s)

=
ξ

a
−1/3
i (s)

∏n
k=1 a

2/3
k (s)

, for i = 1, 2, . . . , n (n > 1) ,

ai(0) = ai0 > 0, ȧi(0) = ai1 .

(1.11)
While, the perturbational variables d∗i (t) ∈ C2 are given by an integral equation

d∗i (t) = di0 +
1
3

∫ 3t

0

di0a
1/3
i0

∏n
k=1 a

1/3
k0

ai1/3(s)
∏n
k=1 ak

1/3(s)
ds , (1.12)

where di0 and di1 are initial values.

Remark 1.2. It is noticed that when n = 1 and the function d∗(t) degenerates to
zero, namely d0 = d1 = 0, the solution given by (1.6) coincides with that obtained
by Yuen [38]. However, in other cases, we conclude that the solution is more general
than Yuen’s.

Remark 1.3. It is known that exact solutions are rare in compressible flows [32],
and, in fact, for fluid mechanics are general. Hence, results obtained in this paper
may provide valuable physical insight and may serve as benchmarks for testing
numerical solutions.
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Remark 1.4. We want to point out here that the method proposed can also be
extended to construct perturbational self-similar solutions of the higher-dimensional
HS, µHS and Degasperis-Procesi equations as well as other models whose forms are
analogous to the Camassa-Holm equation.

2. Solutions of the multi-dimensional CH-type system

Inspired by the work of [38], we present a particular class of analytical perturba-
tional solutions of the multi-dimensional Camassa-Holm-type equations (1.1). This
progress is achieved mainly due to the following novel important lemma.

Lemma 2.1. For the continuity equation of the multi-dimensional Camassa-Holm-
type system

ρt = −(∇ρ) · u− ρ(∇ · u), (2.1)
there exist solutions

ρ =
F
(x1−d∗1(t)

a
1/3
1 (3t)

,
x2−d∗2(t)

a
1/3
2 (3t)

, . . . ,
xn−d∗n(t)

a
1/3
n (3t)

)
∏n
i=1 a

1/3
i (3t)

,

ui =
a′i(3t)
ai(3t)

(xi − d∗i (t)) + ḋ∗i (t), for i = 1, 2, . . . , n

(2.2)

where ′ = d
ds , ai(s) > 0 and F is an arbitrary non-negative C1 function.

Proof. According to the work of An and Yuen’s in [39], we perturb the velocity in
the form

ρ = ρ(t, x), ui =
a′i(3t)
ai(3t)

(xi − d∗i (t)) + ḋ∗i (t) . (2.3)

Substitution of this ansatz into (2.1), yields

ρt + (∇ρ) · u + ρ(∇ · u)

=
∂

∂t
ρ+

n∑
i=1

∂

∂xi
ρ
[a′i(3t)
ai(3t)

(xi − d∗i (t)) + ḋ∗i (t)
]

+ ρ

n∑
i=1

a′i(3t)
ai(3t)

= 0 .
(2.4)

According to the classical characteristic method [31], we have
dt
1

=
dxi

a′i(3t)

ai(3t)
(xi − d∗i (t)) + ḋ∗i (t)

=
dρ

−
∑n
i=1

ρa′i(3t)

ai(3t)

, (2.5)

whence, the solution is

Ψ
( n∏
i=1

ρa
1/3
i (3t),

x1 − d∗1(t)

a
1/3
1 (3t)

,
x2 − d∗2(t)

a
1/3
2 (3t)

, . . . ,
xn − d∗n(t)

a
1/3
n (3t)

)
= 0 (2.6)

with an arbitrary function Ψ ∈ C1 such that ρ ≥ 0.
For convenience, we rewrite (2.6) in the explicit form

ρ =
F
(x1−d∗1(t)

a
1/3
1 (3t)

,
x2−d∗2(t)

a
1/3
2 (3t)

, . . . ,
xn−d∗n(t)

a
1/3
n (3t)

)
∏n
i=1 a

1/3
i (3t)

. (2.7)

The proof is complete. �

Remark 2.2. It needs to point out that the negative symbol in the perturbational
non-constant functions di for the velocity in (2.3) is critical to guarantee the use of
the characteristic method.
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On application of the above lemma, we obtain a class of perturbational self-
similar solutions for the multi-dimensional Camassa-Holm-type system. The result
is described as follows:

Theorem 2.3. For the multi-dimensional Camassa-Holm-type system (1.1), there
exists a class of analytical perturbational self-similar solutions

ρ =
F (η)∏n

k=1 a
1/3
k (s)

,

ui =
a′i(s)
ai(s)

(xi − d∗i (t)) + ḋ∗i (t), for i = 1, 2, . . . , n,

(2.8)

where

s = 3t , η =
n∑
k=1

(xk − d∗k(t)

a
1/3
k (s)

)2

, (2.9)

F (η) =
√
c20 − 3ξη(αµ− β) . (2.10)

In the above, c0 and ξ are constants of integration. While, the auxiliary functions
ai(s) = ai(3t) and the perturbational functions d∗i (t) are determined by the following
equations:
(I) In the case n = 1, the function ai(s) = a(s) = a(3t) is governed by the canonical
Emden equation [25]

a′′(s) =
ξ

a1/3(s)
,

a(0) = a0 > 0, ȧ(0) = a1 .

(2.11)

While, the perturbational function d∗i (t) = d∗(t) ∈ C2 is given by

d∗(t) = d0 +
1
3

∫ 3t

0

d1a
2/3
0

a2/3(s)
ds , (2.12)

where d0 and d1 are constants of integration.
(II) In the case n > 1, the functions ai(s) = ai(3t) are determined by the generalized
Emden dynamical system

a′′i (s) +
1
3
a′i(s)

n∑
k 6=i

a′k(s)
ak(s)

=
ξ

a
−1/3
i (s)

∏n
k=1 a

2/3
k (s)

, for i = 1, 2, . . . , n (n > 1)

ai(0) = ai0 > 0, ȧi(0) = ai1 .

(2.13)
While, the perturbational variables d∗i (t) ∈ C2 are given by the integral relations

d∗i (t) = di0 +
1
3

∫ 3t

0

di0a
1/3
i0

∏n
k=1 a

1/3
k0

ai1/3(s)
∏n
k=1 ak

1/3(s)
ds , (2.14)

where di0 and di1 are initial values.

Proof. It is clear, from the the above lemma, that the functions (2.8) indeed satisfy
the continuity equation of the multi-dimensional Camassa-Holm-type system (1.1).
In what follows, we only need to validate the functions (2.8) also hold for the second
equation.
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For the i-th momentum equation of the multi-dimensional Camassa-Holm-type
system (1.1), by defining an elliptically symmetric variable via

η =
n∑
k=1

(xk − d∗k(t)

a
1/3
k (s)

)2

(2.15)

and on using (2.8), we have

∂mi

∂t
+

n∑
k=1

uk
∂mi

∂xk
+

n∑
k=1

mk
∂ui
∂xk

+mi

n∑
k=1

∂uk
∂xk

+ ρ
∂ρ

∂xi

=
∂Aui
∂t

+
n∑
k=1

uk
∂Aui
∂xk

+
n∑
k=1

Auk
∂ui
∂xk

+Aui

n∑
k=1

∂uk
∂xk

+ ρ
∂ρ

∂xi

= (αµ− β)
∂

∂t

[a′i(s)
ai(s)

(xi − d∗i ) + ḋ∗i

]
+ 2(αµ− β)

[a′i(s)
ai(s)

(xi − d∗i ) + ḋ∗i

]
× ∂

∂xi

[a′i(s)
ai(s)

(xi − d∗i ) + ḋ∗i

]
+ (αµ− β)

[a′i(s)
ai(s)

(xi − d∗i ) + ḋ∗i

] n∑
k=1

∂

∂xk

[a′k(s)
ak(s)

(xk − d∗k) + ḋ∗k

]
+

F (η)∏n
k=1 a

1/3
k (s)

∂

∂xi

F (η)∏n
k=1 a

1/3
k (s)

= (αµ− β)
[(3a′′i (s)

ai(s)
− 3a′i

2(s)
a2
i (s)

)
(xi − d∗i )−

ḋ∗i a
′
i(s)

ai(s)
+ d̈∗i +

2a′i
2(s)

a2
i (s)

(xi − d∗i )

+
2ḋ∗i a

′
i(s)

ai(s)
+ ḋ∗i

n∑
k=1

a′k(s)
ak(s)

+
a′i(s)
ai(s)

n∑
k=1

a′k(s)
ak(s)

(xi − d∗i )
]

+
2F (η)F ′(η)∏n
k=1 a

2
3
k (s)

(xi − d∗i )

a
2
3
i (s)

= (αµ− β)
{3(xi − d∗i )

ai(s)

[
a′′i (s) +

1
3
a′i(s)

( n∑
k=1

a′k(s)
ak(s)

− a′i(s)
ai(s)

)
+

2
3(αµ− β)

F (η)F ′(η)

a
−1/3
i (s)

∏n
k=1 a

2
3
k (s)

]
+ d̈∗i + ḋ∗i

[a′i(s)
ai(s)

+
n∑
k=1

a′k(s)
ak(s)

]}
= (αµ− β)

{ 3(xi − d∗i )

a
2/3
i (s)

∏n
k=1 a

2
3
k (s)

[
ξ +

2
3(αµ− β)

F (η)F ′(η)
]

+ d̈∗i + ḋ∗i

[a′i(s)
ai(s)

+
n∑
k=1

a′k(s)
ak(s)

]}
if we require the arbitrary functions ai(s) satisfy the Emden equations:

a′′(s) =
ξ

a1/3(s)
, for n = 1, a1(s) = a(s) ,

a′′i (s) +
1
3
a′i(s)

n∑
k 6=i

a′k(s)
ak(s)

=
ξ

a
−1/3
i (s)

∏n
k=1 a

2/3
k (s)

,

for i = 1, 2, 3, . . . , n (n 6= 1)

ai(0) = ai0 > 0, ȧi(0) = ai1

(2.16)
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and di(t) governed by the equation

d̈∗i + ḋ∗i

[a′i(s)
ai(s)

+
n∑
k=1

a′k(s)
ak(s)

]
= 0 , d∗i (0) = di0 , ḋ∗i (0) = di1 , (2.17)

whence produces

d∗i (t) = di0 +
1
3

∫ 3t

0

di0a
1/3
i0

∏n
k=1 a

1/3
k0

ai1/3(s)
∏n
k=1 ak

1/3(s)
ds . (2.18)

So that the function F (η) is determined by

ξ +
2

3(αµ− β)
F (η)F ′(η) = 0 ,

F (0) = c0 ,
(2.19)

whence the solution is

F (η) =
√
c20 − 3ξη(αµ− β) with η =

n∑
k=1

(xk − d∗k(t)

a
1/3
k (s)

)2

. (2.20)

The proof is complete. �

To understand the possible behaviors that the solutions obtained may exhibit, we
perform some numerical simulations. Here we take the dimension of the equation
N = 2. Figure 1 shows the time evolutions of density function ρ given by (1.6) at
regular time intervals when α = 0, β = 1. From the figures, we can see that the
function ρ continuously move forward in the xy-plane with time changing. Such
phenomena can also be clearly noticed from the contour Figure 2. It is known that
the multi-component Camassa-Holm equations can be used to describe the shallow
water flows. Therefore, we conclude that the moving behaviors our solution reveals
are nothing but the drifting phenomena of the flow. When the parameters are
changed to α = 1, β = 0 and µ = 0.1, analogous behaviors can be seen in Figures
3 and 4.

Conclusion. It is known that the Camassa-Holm equation is an important inte-
grable model, which has attracted great attention in mathematical physics. How-
ever, unlike the large amount of papers referring to the case n = 1, 2, here we
have investigated the multi-variable variation of the Camassa-Holm-type equation,
namely the system (1.1). Such a system also has nice mathematical properties and
extensive physical applications (see references [13, 15, 24]). By using the character-
istic method, we have constructed a class of perturbational self-similar solutions of
the system (1.1) wherein the velocity components are governed by the generalized
Emden equations. It is noticed that when n = 1, these solutions are more gen-
eral than that was obtained by Yuen in [38]. What’s more important is that the
method proposed can be extended to construct perturbational solutions of other
mathematical physics models like higher-dimensional Hunter-Saxton equations and
Degasperis-Procesi equations. In addition, we hope that the perturbational self-
similar solutions obtained can be helpful in the physical areas such as fluid and
hydrodynamics. However, there are still some problems that needs further consid-
eration, for example, what are the properties of the generalized Emden equations?
Is the multi-component Camassa-Holm-type system, likewise the Camassa-Holm
equation, completely integrable? Does it admit peakon solutions? All these inter-
esting questions are worthy of our deep investigations in the future.
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Figure 1. Time evolutions of the density function ρ at a regular
time intervals ∆t = 3, with c0 = 20, ξ = 5, α = 0, β = 1.

Acknowledgments. This reserach was supported by the Fundamental Research
Funds for the Central Universities under Grant No. KYZ201649, the National Nat-
ural Science Foundation of China under Grant No. 11301269 and the Fundamental
Research Funds KJ2013036 for the Central Universities and the Research Grant
MIT/SRG13/13-14 from the Hong Kong Institute of Education.

References

[1] An, H. L.; Yuen, M. W.; Drifting solutions with elliptic symmetry for the compressible
Navier-Stokes equations with density-dependent viscosity, J. Math. Phys., 55 (2014) 053506.

[2] An, H. L.; Yuen, M. W.; Supplement to “self-similar solutions with elliptic symmetry for the

compressible Euler and Navier-Stokes equations in RN [17 (2012) 4524-4528]”, Commun.
Nonlinear Sci. Numer. Simul., 18 (2013), 1558-1561.

[3] Barna, I. F.; Self-similar solutions of three-dimensional Navier-Stokes equation, Commun.

Theor. Phys., 56 (2011), 745-750.
[4] Camassa, R.; Holm, D. D.; An integrable shallow water wave equation with peaked solitons,

Phys. Rev. Lett., 71 (1993), 1661-1664.
[5] Chen, M.; Liu, S. Q.; Zhang, Y.; A two-component generalization of the Camassa-Holm

equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15.



EJDE-2017/48 PERTURBATIONAL SELF-SIMILAR SOLUTIONS 9

Figure 2. Contour figures of the density function ρ with the time
intervals ∆t = 3, with c0 = 20, ξ = 5, α = 0, β = 1.

[6] Constantin, A.; Escher, J.; Well-posedness, global existence, and blowup phenomena for a
periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504.

[7] Constantin, A.; Strauss, W.; Stability of peakons, Comm. Pure Appl. Math,. 53 (2000),
603-610.

[8] Constantin, A.; Kolev, B.; On the geometric approach to the motion of inertial mechanical
systems, J. Phys. A: Math. Gen., 35 (2002), 51-79.

[9] Danchin, R.; A note on well-posedness for Camassa-Holm equation, J. Differential Equations,
192 (2003), 429-444.

[10] Escher, J.; Kohlmann, M.; Lenells, J.; The geometry of the two-component Camassa-Holm
and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436-52.

[11] Falqui, G.; On a Camassa-Holm type equation with two dependent variables, J. Phys. A:
Math. Gen., 39 (2006), 327-342.

[12] Fokas, A. S.; Fuchssteiner, B.; Symplectic structures, their Bäcklund transformation and
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