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PERIODIC OSCILLATIONS OF THE RELATIVISTIC
PENDULUM WITH FRICTION

QIHUAI LIU, LÜKAI HUANG, GUIRONG JIANG

Abstract. We consider the existence and multiplicity of periodic oscillations

for the forced pendulum model with relativistic effects by using the Poincaré-

Miranda theorem. Some detailed information about the bound for the period
of forcing term is obtained. To support our analytical work, we also consider

a forced pendulum oscillator with the special force γ0 sin(ωt) including a suf-

ficiently small parameter. The result shows us that for all ω ∈ (0,+∞), there
exists a 2π/ω periodic solution under our settings.

1. Introduction

In this article, we consider the existence and multiplicity of periodic oscillations
for the forced pendulum model with relativistic effects(

x′√
1− x′2

c2

)′
+ kx′ + a sinx = p(t), (1.1)

where c > 0 is the speed of light in the vacuum, k > 0 is a possible viscous friction
coefficient and p is a continuous and T -periodic forcing term with mean value zero

p̄ =
1
T

∫ T

0

p(t) dt = 0.

This equation has received much attention as a prototype of equation with singu-
lar φ-Laplacian (see [5] and [1, 3, 6]). An essential difference between the relativistic
and the newtonian (c = +∞) case has been explained in [9]. In [9], Torres proved
the following theorem.

Theorem 1.1. Let us assume that 2cT ≤ 1. For any a, k and any continuous
T -periodic function p(t) with mean value zero, (1.1) has at least one T -periodic
solution.

The proof of the above theorem is an interesting application of the Schauder fixed
point theorem. The bound in Theorem 1.1 was improved to 2cT ≤ 4

√
3 ≈ 6.9282

in [10] for the general pendulum-type equation was considered, see also [2, 4].
Motivated by [9], in this paper we give detailed information on the bounds for

T which depend on the parameters a, k and the forcing term p. Without loss of
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generality, we assume a ≥ 0; otherwise we only require replacing x with x+ π. Let
us define

‖p‖∞ = sup
t∈[0,T ]

|p(t)|,

and the constant

c∗ =
c
(
kTc∗ + 3kπ + 2(a+ ‖p‖∞)T

)√
c2 +

(
kTc∗ + 3kπ + 2(a+ ‖p‖∞)T

)2 < c. (1.2)

Our main result reads as follows.

Theorem 1.2. For any values a, k and for any continuous and T -periodic function
p(t) with mean value zero satisfying 2c∗T ≤ 2π, (1.1) has at least two distinct T -
periodic solutions.

The proof of Theorem 1.2 is an elementary application of a variation of the
Poincaré-Miranda theorem (see [11]) which will be given in the next section. We
remark that the two distinct T -periodic solutions in Theorem 1.2 are indeed geo-
metrically different periodic solutions, which generalizes Theorem 1.1. Moreover,
when k or ‖p‖∞ tend to infinity, we show that c∗ → c so that 2cT ≤ 2π. This case
does not improve the previous bound.

To support our analytical work, based on the method of averaging, we also
consider the existence of periodic oscillations for a special forced pendulum oscillator
with a sufficiently small parameter ε,(

x′√
1− x′2

c2

)′
+ ε2kx′ + a sinx = ε3γ0 sin(ωt), (1.3)

where ω2 = a+ ε2β0 with β0 > 0. We summarize our results as follows.

Theorem 1.3. For any γ0, k, β0 > 0 and ω > 0, (1.3) has at least one 2π/ω-
periodic solution when ε is sufficiently small. Moreover, this periodic solution is
stable for k > 0 and is unstable for k < 0.

Noticed that T = 2π/ω → +∞ as ω → 0. Thus, in this case, (1.3) does not meet
the hypotheses of Theorem 1.1. From (1.2) we also see that c∗ → 0 when ε → 0,
satisfying the hypotheses of Theorem 1.2.

In Section 2, we introduce a variation of the Poincaré-Miranda theorem in two-
dimensional case which is used to prove Theorem 1.2. We prove Theorem 1.2 in
Section 3. In the last section, we prove Theorem 1.3 using the method of averaging
and perform some numerical simulations.

2. A variation of the Poincaré-Miranda theorem

We first introduce a variation of the Poincaré-Miranda theorem (see [8, 11] for
instance) in two-dimensional case, which goes back to Poincaré (1883) and has
been used many times in the study of boundary value problems and the existence
of periodic solutions. For an example see [7] and the references therein.

Consider the closed rectangle

D = {(x, y) ∈ R2 : α1 ≤ x ≤ α2, β1 ≤ y ≤ β2},
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where αi, βi (i = 1, 2) are constants such that α1 < α2, β1 < β2. The boundary of
the rectangle consists of four faces as follows:

V 1
− = {(x, y) ∈ R2 : x = α1, β1 ≤ y ≤ β2},
V 1

+ = {(x, y) ∈ R2 : x = α2, β1 ≤ y ≤ β2},
V 2
− = {(x, y) ∈ R2 : y = β1, α1 ≤ x ≤ α2},
V 2

+ = {(x, y) ∈ R2 : y = β2, α1 ≤ x ≤ α2}.

We say that a continuous map F = (F1, F2) : D → R2 satisfies the bend-twist
condition on D provided that

F1(V 1
−)F1(V 1

+) ≤ 0, F2(V 2
−)F2(V 2

+) ≤ 0

or
F2(V 1

−)F2(V 1
+) ≤ 0, F1(V 2

−)F1(V 2
+) ≤ 0,

where Fj(V i−)Fj(V i+) ≤ 0 means that Fj(V i−) ≤ 0 and Fj(V i+) ≥ 0, or Fj(V i−) ≥ 0
and Fj(V i+) ≤ 0; Fj(V i±) < 0 (resp. Fj(V i±) > 0) means that Fj(x, y) ≤ 0 (resp.
Fj(x, y) ≥ 0) for all (x, y) ∈ V i± and there exists at least (x0, y0) ∈ V i± such that
Fj(x0, y0) < 0 (resp. Fj(x0, y0) > 0); and Fj(V i±) = 0 means that Fj(x, y) = 0 for
all (x, y) ∈ V i±, i, j = 1, 2.

Theorem 2.1 (See [11, Theorem 2.1]). Assume the continuous map F : D → R2

satisfies the bend-twist condition, then there exists at least one point (x0, y0) ∈ D
such that F (x0, y0) = 0.

3. Proof of Theorem 1.2

Equation (1.1) is equivalent to the plane system

x′ =
c(y − kx)√
c2 + (y − kx)2

, (3.1)

y′ = −a sinx+ p(t). (3.2)

Let α, β be positive constants and

‖p‖∞ = sup
t∈[0,T ]

|p(t)|, λ = kT, µ = β + kα+ (a+ ‖p‖∞)T.

Define φ : (−∞,+∞)→ (−c, c) by

φ(u) =
cu√
c2 + u2

.

It is easy to verify that φ is an increasing homeomorphism such that φ(−u) =
−φ(u).

Lemma 3.1. Assume that p(t) is a continuous T -periodic function. Then for any
values a, k and any initial value (x0, y0) ∈

{
(x, y)

∣∣ |x| ≤ α, |y| ≤ β and α, β > 0
}

,
the solution (x(t;x0, y0), y(t;x0, y0)) of (3.1)-(3.2) with the initial value (x0, y0)
satisfies

|x′(t)| ≤ c∗(α, β) < c, ∀t ∈ [0, T ],

where c∗, depending on α, β, is a solution of u = φ(λu+ µ).
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Proof. First we note that |x′(t)| ≤ c1 := c for all t ∈ [0, T ]. Hence |x(t)| ≤ α+ c1T
for all t ∈ [0, T ], and by (3.2) we see that |y(t)| ≤ β+ (a+ ‖p‖∞)T for all t ∈ [0, T ].
Therefore,

|y(t)− kx(t)| < kα+ β + (a+ c1k + ‖p‖∞)T = λc1 + µ, ∀t ∈ [0, T ].

Let c2 := φ(λc1 + µ). By (3.2), we have |x′(t)| ≤ c2 for all t ∈ [0, T ]. Obviously,
c2 < c1. Repeating this argument we have a sequence {cn}n∈N defined by cn =
φ(λcn−1 + µ).

Since φ is an increasing homeomorphism and c2 < c1, we know that c3 = φ(λc2+
µ) < φ(λc1 + µ) = c2, . . . , cn = φ(λcn−1 + µ) < φ(λcn−2 + µ) = cn−1, . . . . That is,
{cn}n∈N is a decreasing sequence. On the other hand, |cn| = |φ(λcn−1 + µ)| < c.
Hence {cn}n∈N converges to some value c∗ <∞. Since φ is continuous, by passing
we have c∗ = φ(λc∗ + µ), that is

c∗ = φ(λc∗ + µ)

=
c
(
kTc∗ + β + kα+ (a+ ‖p‖∞)T

)√
c2 +

(
kTc∗ + β + kα+ (a+ ‖p‖∞)T

)2 .
�

Proof of Theorem 1.2. Let γ = 3
2kπ + (a + ‖p‖∞)T and c∗ = c∗(3π/2, γ). Let us

construct a rectangle as follows

D1 = {(x, y) ∈ R2 : −π
2
≤ x ≤ π

2
,−γ ≤ y ≤ γ}.

The boundary is of D1 is given by

V 1
− = {(x, y) ∈ D1 : x = −π

2
},

V 1
+ = {(x, y) ∈ D1 : x =

π

2
}

V 2
− = {(x, y) ∈ D1 : y = −γ},
V 2

+ = {(x, y) ∈ D1 : y = γ}.

Let (x(t;x0, y0), y(t;x0, y0)) be the solution of (3.1) and (3.2) with the initial value
(x0, y0) ∈ D1. Define the continuous mapping F : R2 → R2 by

F (x0, y0) =
(
F1(x0, y0)
F2(x0, y0)

)
= (P − id)(x0, y0),

where P denotes the Poincaré mapping associated with system (3.1)-(3.2).
(i) When (x0, y0) ∈ V 1

−, using Lemma 3.1 we know that

|x′(t)| < c∗, ∀t ∈ [0, T ].

Then it follows that

−π
2
− c∗t ≤ x(t) ≤ −π

2
+ c∗t, ∀t ∈ [0, T ].

When t ∈ [0, π/c∗], we know that

−π
2
≤ −c∗t

2
≤
x(t) + π

2

2
≤ c∗t

2
≤ π

2
, ∀t ∈ [0, T ].
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Then it follows that, for any t ∈ [0, π/c∗],(
cos

c∗t

2

)2

≤
(

cos
x(t) + π

2

2

)2

≤ 1.

Therefore, ∫ π/c∗

0

[− sinx(t)] dt =
∫ π/c∗

0

cos
[
x(t) +

π

2
]

dt

=
∫ π/c∗

0

[
2
(

cos
x(t) + π

2

2
)2 − 1

]
dt

≥
∫ π/c∗

0

[
2
(

cos
c∗t

2
)2 − 1

]
dt = 0.

Therefore, we have

y(T )− y(0) =
∫ T

0

[−a sinx(t)] dt

=
∫ π/c∗

0

[−a sinx(t)] dt+
∫ T

π/c∗

[−a sinx(t)] dt

≥ −a
(
T − π

c∗

)
≥ 0.

(3.3)

The above inequality is obtained by the hypothesis 2c∗T ≤ 2π.
When (x0, y0) ∈ V 1

+, using the same arguments, we have
π

2
− c∗t < x(t) <

π

2
+ c∗t, ∀t ∈ [0, T ].

When t ∈ [0, π/c∗], we know that

π

2
≤ π − c∗t

2
≤
x(t) + 3π

2

2
≤ π +

c∗t

2
≤ 3π

2
, ∀t ∈ [0, T ].

Similarly, for any t ∈ [0, π/c∗], we have(
cos

c∗t

2
)2 ≤ ( cos

x(t) + 3π
2

2
)2 ≤ 1.

Therefore, ∫ π/c∗

0

[− sinx(t)] dt = −
∫ π/c∗

0

cos
[
x(t) +

3π
2
]

dt

= −
∫ π/c∗

0

[
2
(

cos
x(t) + 3π

2

2
)2 − 1

]
dt

≤ −
∫ π/c∗

0

[
2
(

cos
c∗t

2
)2 − 1

]
dt = 0.

Therefore,

y(T )− y(0) =
∫ T

0

[−a sinx(t)] dt

=
∫ π/c∗

0

[−a sinx(t)] dt+
∫ T

π/c∗

[−a sinx(t)] dt

≤ a
(
T − π

c∗

)
≤ 0.

(3.4)
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The last inequality is obtained by the hypothesis 2c∗T ≤ 2π. From (3.3) and (3.4),
we have that F2(V 1

−)F2(V 1
+) ≤ 0.

(ii) When (x0, y0) ∈ V 2
−, using the inequality |x′(t)| ≤ c∗ we know that, for all

t ∈ [0, T ],

−3π
2
≤ −c∗T −

π

2
≤ x(t) ≤ π

2
+ c∗T ≤

3π
2
.

Then using (3.2) we know that

y(t)− kx(t) = y0 +
∫ t

0

(−a sinx(s) + p(s)) ds− kx(t)

≤ −γ + (a+ ‖p‖∞)T +
3
2
kπ = 0, t ∈ [0, T ].

Since φ is a continuous homeomorphism such that φ(0) = 0, we have φ(u)u ≥ 0.
Then it follows that x′(t) = φ(y(t)− kx(t)) ≤ 0 for all t ∈ [0, T ], which yields

x(T )− x(0) =
∫ T

0

x′(τ) dτ ≤ 0. (3.5)

When (x0, y0) ∈ V 2
+, we also know that for all t ∈ [0, T ], |x(t)| ≤ 3π

2 , and

y(t)− kx(t) = y0 +
∫ t

0

(−a sinx(s) + p(s)) ds− kx(t)

≥ γ − (a+ ‖p‖∞)T − 3
2
kπ = 0, t ∈ [0, T ].

With the same arguments we have x(T )− x(0) ≥ 0. Therefore,

F1(V 2
−)F1(V 2

+) ≤ 0.

We have verified that F satisfies the bend-twist condition on D1. By Theorem
1.1, there exists at least one point (x1, y1) ∈ D1 such that F (x1, y1) = 0, which is
corresponding to a fixed point of the Poincaré mapping.

Similarly, we can construct the rectangle

D2 = {(x, y) ∈ R2 :
π

2
≤ x ≤ 3π

2
,−γ ≤ y ≤ γ}.

With the same arguments, we can verify that F satisfies the bend-twist condition
on D2 and obtain another fixed point of the Pincaré mapping in D2.

Let V = D1 ∩ D2. To prove that such two fixed points of F are distinct, it
is sufficient to prove that there is no T -periodic solution with the initial value on
V . Assume that (x(t; π2 , y0), y(t; π2 , y0)) is a T -periodic solution of (3.1) and (3.2).
Then we know that {x(t; π2 , y0)

∣∣t ∈ [0, T ]} is contained in [0, π], since the maximum
of the derivative of x(t) is c∗ and c∗T ≤ π. Then we have

y(T )− y(0) =
∫ T

0

[−a sinx(t)] dt ≤
∫ π/(3c∗)

0

[−a sinx(t)] dt < 0.

Therefore, we obtain two distinct fixed points, which are corresponding to two
distinct T -periodic solutions of equation (1.1). �
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4. Numerical examples and proof of Theorem 1.3

First we prove Theorem 1.3 by using the method of averaging. Recall that(
x′√

1− x′2

c2

)′
+ ε2kx′ + a sinx = ε3γ0 sin(ωt), (4.1)

where ω2 = a+ ε2β0 and ε is a small parameter.
Equation (4.1) is equivalent to the plane system

x′ =
c(y − ε2kx)√
c2 + (y − ε2kx)2

,

y′ = −a sinx+ ε3γ0 sin(ωt).
(4.2)

Let x = εu, y = εv and ε = ε2. We expand system (4.2) into the form of power
series by

u′ = v + εf1(u, v, t) = v −
(
ku+

1
2
c−2v3

)
ε+O(ε2),

y′ = −ω2u+ εf2(u, v, t) = −ω2u+ β0uε+
1
6
ω2u3ε+ εγ0 sinωt+O(ε2).

(4.3)

Using the van der Pol transformation

u = q sinωt+ p cosωt, v = ω(q cosωt− p sinωt),

we obtain
q′ = ε

(
f1(u, v, t) sinωt+

cosωt
ω

f2(u, v, t)
)

+O(ε2),

p′ = ε
(
f1(u, v, t) cosωt− sinωt

ω
f2(u, v, t)

)
+O(ε2).

(4.4)

Then it follows that

q′ = εF1(q, p, t, ε)

=
1

48c2ω

(
ω
(

9p(p2 + q2)ω3 + 3c2
(
− 8kq + p(p2 + q2)ω

)
+ 4
(
− 3p3ω3 + c2(6kq + p3ω)

)
cos(2ωt) + p(p2 − 3q2)ω(c2 + 3ω2) cos(4ωt)

+ 2
(
− 3q(3p2 + q2)ω3 + c2(−12kp+ 3p2qω + q3ω)

)
sin(2ωt)

− q(−3p2 + q2)ω(c2 + 3ω2) sin(4ωt)
)

+ 24c2
(
(p+ p cos(2ωt) + q sin(2ωt))β0 + sin(2ωt)γ0

))
) +O(ε2),

and

p′ = εF2(q, p, t, ε)

=
1

48c2ω

(
ω
(
− 9q(p2 + q2)ω3 − 3c2

(
8kp+ q(p2 + q2)ω

)
+ 4
(
− 3q3ω3 + c2(−6kp+ q3ω)

)
cos(2ωt)− q(−3p2 + q2)ω(c2 + 3ω2) cos(4ωt)

− 2
(
− 3p(p2 + 3q2)ω3 + c2

(
p3ω + 3q(4k + pqω)

))
sin(2ωt)

− p(p2 − 3q2)ω(c2 + 3ω2) sin(4ωt)
)

− 48c2 sin(ωt)
(
p cos(ωt)β0 + sin(ωt)(qβ0 + γ0)

))
+O(ε2).
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It is not difficult to obtain the averaging system

q̄′ = εG1(q̄, p̄)

= ε
ω

2π

∫ 2π
ω

0

F1(q̄, p̄, t, 0) dt

= ε
1
16
ω
(
p(p2 + q2)− 8kq

ω
+

3p(p2 + q2)ω2

c2
+

8pβ0

ω2

)
,

p̄′ = εG2(q̄, p̄)

= ε
ω

2π

∫ 2π
ω

0

F2(q̄, p̄, t, 0) dt

= −ε
ω
(
3q(p2 + q2)ω3 + c2

(
8kp+ q(p2 + q2)ω

))
+ 8c2(qβ0 + γ0)

16c2ω
.

(4.5)

The other equilibrium points of system (4.5) correspond to the solutions of

G1(q̄, p̄) =
1

16c2
(
ωc2pr2 − 8kc2q + 3ω3pr2 +

8c2β0

ω
p
)

= 0,

G2(q̄, p̄) = − 1
16c2

(
ωc2qr2 + 8kc2p+ 3ω3qr2 +

8c2β0

ω
q +

8c2γ0

ω

)
= 0,

where r2 = q2 + p2, which is equivalent to

q = −
(ω2(c2 + 3ω2)

8c2γ0
r2 +

β0

γ0

)
r2, p = −kω

γ0
r2.

Thus, r satisfies

Φ(r) =
(ω2(c2 + 3ω2)

8c2γ0
r2 +

β0

γ0

)2

r2 +
(kω
γ0

)
r2 − 1 = 0.

Since Φ(0) = −1 < 0 and Φ(+∞) = +∞, by the intermediate value theorem we
know that there is a r∗ ∈ (0,+∞) such that Φ(r∗) = 0. The Jacobi determinant of
(G1, G2) at r∗ is

J =
∂(G1, G2)
∂(q, p)

∣∣∣
(q,p)=(q(r∗),p(r∗))

=
k2

4
+

3p4ω2

256
+

3
128

p2q2ω2 +
3q4ω2

256
+

9p4ω4

128c2

+
9p2q2ω4

64c2
+

9q4ω4

128c2
+

27p4ω6

256c4
+

27p2q2ω6

128c4

+
27q4ω6

256c4
+
p2β0

8
+
q2β0

8
+

3p2ω2β0

8c2
+

3q2ω2β0

8c2
+

β2
0

4ω2
> 0,

for β0 > 0. The Jacobi Matrix has a pair of conjugate imaginary eigenvalues λ1,2

which satisfy that Re(λ1,2) = −k/2. With the classical arguments of averaging
theory, we know that system (4.4) has a 2π/ω-periodic solution (qε, pε) such that
(qε, pε) → (q(r∗), p(r∗)) as ε → 0, which yields a 2π/ω-periodic solution x(t) of
(4.1). The periodic solution x(t) is stable for k > 0, while it is unstable for k < 0.
Now we have finished the proof of Theorem 1.3.

To support our analytical work, we numerically simulate the 2π/ω-periodic so-
lution of (4.3) for ω = 0.001, k = 1, β0 = 2, γ0 = 1, c = 100. We obtain that the
rest point of (4.4) is (q(r∗), p(r∗)) = (−0.50000,−0.00025), the Jacobi determi-
nant of (G1, G2) at (q(r∗), p(r∗)) is 1.0× 106 and the corresponding eigenvalues are
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5000 10 000 15 000 20 000
t

-0.4
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0.2

0.4

u

5000 10 000 15 000 20 000
t

-0.0004

-0.0002

0.0002

0.0004

v

(a) (b)

Figure 1. Profiles of the 2π/ω-periodic solution (u, v) of (4.3)
with ω = 10−3, k = 1, β0 = 2, γ0 = 1, c = 100, ε = 10−5.

λ1,2 = −0.5± 1000i. We depict the corresponding stable 2π/ω-periodic solution of
(4.3) in figure 1.
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