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POSITIVE LYAPUNOV EXPONENT OF DISCRETE ANALYTIC
JACOBI OPERATOR

KAI TAO

Communicated by Zhaosheng Feng

Abstract. In this article, we study the Lyapunov exponent of discrete an-

alytic Jacobi operator with a family of special mappings on the torus. By
applying the theory of subharmonic functions, we prove that the Lyapunov

exponent is positive, if the coupling number is large.

1. Introduction

Consider the discrete Jacobi operator on l2(Z):

(Hxφ)(n) = −a(Tn+1(x))φ(n+ 1)− ā(Tn(x))φ(n− 1) + λv(Tn(x))φ(n)

= Eφ(n), n ∈ Z,
(1.1)

where a(x), v(x) are analytic functions on T := R/Z, a(x) is not identically zero
and T (x) is a mapping from T to T, satisfying

Tn(x) = x+ f(n), (1.2)

where f(n) is some function from Z to T. Note that this Jacobi operator can be
expressed as (

φ(n+ 1)
φ(n)

)
= Mn(x,E)

(
φ(1)
φ(0)

)
,

where

Mn(x,E) =
0∏

j=n−1

1
a(T j+1(x))

(
λv(T j(x))− E −ā(T j(x))
a(T j+1(x)) 0

)
is called the transfer matrix of (1.1). Since a(x) is analytic, we know that the
number of its zeros is finite. So for almost every x ∈ T, the matrix Mn(x,E) can
be defined. Let

Ln(E) =
1
n

∫
T

log ‖Mn(x,E)‖dx.

Then the Lyapunov exponent of the Jacobi equation is defined as

L(E) = lim inf
n→∞

Ln(E). (1.3)
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We remark here that we use lim inf instead of lim, so that definition (1.3) applies
to a generic T (x). Moreover, from [10], we have that there exists a constant C(λ)
such that

0 ≤ L(E) ≤ C(λ).

It is well known that non-uniformly hyperbolic dynamic system has many prop-
erties, and it is the essential condition for the Anderson Localization, which is a
central topic in our field and named by Anderson in [3]. Also, even if T (x) is
not ergodic, the positive Lyapunov exponent, defined by the lower limit, is also an
important topic in the spectrum theory.

The main result of this paper reads as follows.

Theorem 1.1. There exists λ0 = λ0(v, a) > 0 such that when the coupling number
|λ| > λ0, then for any T (x) : T→ T having the form (1.2), we have

L(E) ≥ c log |λ| for all E,

where c is a constant depending only on v and a.

This topic comes from the following discrete analytic Schrödinger operator which
has been studied by many researchers:

(Sxφ)(n) = φ(n+ 1) + φ(n− 1) + λv[x+ f(n)]φ(n) = Eφ(n), n ∈ Z.

The most focused one is the shift, i.e. f(n) = nω, and there are many influential
works for it, including [BG], [GS] and [AJ]. Such many works shew various results
about dynamical system and spectrum theory, including the Anderson localization,
Hölder continuity, cantor spectrum and so on. Among these works, the following
non-perturbative positive Lyapunov exponent theorem (first proved in [9]) plays a
key role: there exist λ0 = λ0(v) and c = c(v) such that L(E) > c log |λ| for any
irrational ω and |λ| > λ0. Clearly, our result is an extension of this result.

Instead of the shift, there are some other articles concerning on the Schrödinger
operator with other mappings. Krüger [8] proved that for the polynomial mapping

f(n) = adn
d + · · ·+ a1n,

and for any constant c > 0,

meas{E : L(E) < c} → 0

as d→ +∞; for any ε > 0, there exists λ0(d, ε) such that

meas{E : L(E) < log |λ|} < ε

for all |λ| > λ0. He expected that for any λ 6= 0 and any nonconstant analytic v(x),
the Lyapunov exponent is positive for all E when d ≥ 2. It is obvious that our
Theorem 1.1 answers this question for the large coupling number. Moreover, if the
potential becomes v(Tn(x)) = cos(2πnρ + x), where ρ is not an integer, Bourgain
had shown the positive Lyapunov exponent with small λ in [4].

For the Lyapunov exponent of the Jacobi operator, the work [7] is the most
famous. They considered the following called extended Harper’s model, which is a
case of Jacobi operator with the shift:

a(x) = λ3 exp[−2πi(x+
β

2
)] + λ2 + λ1 exp[2πi(x+

β

2
)], 0 ≤ λ2, 0 ≤ λ1 + λ3,

v(x) = 2 cos(2πx).
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Then the Lyapunov exponent on the spectrum is zero when 0 ≤ λ1 + λ3 ≤ λ2

and 1 ≤ λ2, or max{1, λ2} ≤ λ1 + λ3, and is given by the following formula when
0 ≤ λ1 + λ3 ≤ 1, and 0 ≤ λ2 ≤ 1:

L(E) =

log
(

1+
√

1−4λ1λ3
2 max{λ1,λ3}

)
, if 0 ≤ λ2 ≤ λ1 + λ3 ≤ 1;

log
(

1+
√

1−4λ1λ3

λ2+
√
λ2

2−4λ1λ3

)
, if 0 ≤ λ1 + λ3 ≤ λ2 ≤ 1.

It is easy to see that L(E) ≈ − log λ̂ when λ̂(:= max{λ1, λ2, λ3}) is small enough.
Thus, this formula satisfies Theorem 1.1 as 1/λ̂ ' λ, and the zero Lyapunov expo-
nent part also shows that it is necessary to assume that the coupling number λ is
large enough.

Define

La(E) = lim inf
n→∞

1
n

∫
T

log ‖
0∏

j=n−1

A(T j(x), E)‖dx,

where

A(x,E) =
(
λv(x)− E −ā(x)
a(T (x)) 0

)
.

It is easy to see that L(E) = La(E)−D, where D is a constant defined by

D :=
∫

T
log |a(x)|dx.

Note that D � log λ with large λ. Thus, we only need to prove the following result.

Lemma 1.2. If |λ| > λ0, then

La(E) ≥ 2c log |λ| for all E,

where λ0 and c are the same as in Theorem 1.1.

In Section 3, it is proved that Lemma 1.2 is also valid for the more general matrix

A(x,E) :=


λv11(x)− E v12(x) . . . v1m(x)
v21(x) v22(x) . . . v2m(x)

...
...

. . .
...

vm1(x) vm2(x) . . . vmm(x)

 , (1.4)

where every vij(x) is an analytic function on T.
This article is organized as follows. In Section 2, we introduce some properties

about the subharmonic functions, especially the inequality of subharmonic functions
under harmonic measure. The proof of Lemma 1.2 with the general matrix (1.4) is
presented in Section 3.

2. Subharmonic Functions

Let u(z) be a real function defined on some domain Ω ∈ C.

Definition 2.1 (Subharmonic Function). We call u(z) a subharmonic function on
Ω if

(1) u(z) : Ω→ [−∞,+∞);
(2) u(z) is upper semicontinuous from Ω into [−∞,+∞);
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(3) for any z1 ∈ Ω, there exists r1 = r1(z1) > 0 such that for any 0 < r < r1

holds

u(z1) ≤ 1
2π

∫ 2π

0

u
(
z1 + reiθ

)
dθ. (2.1)

Remark 2.2. We recall the following the Jensen formula

1
2π

∫ 2π

0

log
∣∣f(z0 + reiθ

)∣∣dθ = log |f(z0)|+
∑

|z−z0|<r,f(z)=0

log
r

|z − z0|
,

which makes u(z) = log |f(z)| be subharmonic in Ω, when f(z) is an analytic
function in Ω. Similarly, for fixed f(n) and E, un(z) = 1

n log ‖Ma
n(z, E)‖ is also a

subharmonic function.

Lemma 2.3. Let u(z) ∈ C2(Ω). Then∫∫
D(z0,r0)

(
log

r0

|z − z0|
)
∆u(x, y) dx dy =

∫ 2π

0

u
(
z0 + r0e

iθ
)
dθ − 2πu(z0).

Proof. Recall the Green’s formula∫∫
A

(g∆f − f∆g) dx dy =
∮
∂A

(
g
∂f

∂n
− f ∂g

∂n

)
ds.

Define A = {z : ρ < |z − z0| < r0}. Then∫∫
A

(g∆f − f∆g) dx dy = r0

∫
Γr0

(g∂rf − f∂rg) dθ − ρ
∫

Γρ

(g∂rf − f∂rg) dθ,

where Γr = {z : |z − z0| = r}. Taking f = u(z) and g = log r0
|z−z0| , we obtain

∆g(z) = 0, ∀z ∈ A ,

g(z) = 0, ∀z ∈ Γr0 ,

∂rg(z) = −1
r
, ∀z ∈ Γr.

Thus∫∫
A

(
log

r0

|z − z0|

)
∆u(x, y) dx dy

=
∫ 2π

0

u(z0 + r0e
iθ)dθ −

∫ 2π

0

u(z0 + ρeiθ)dθ − ρ log
r0

ρ

∫ 2π

0

∂ru(z0 + ρeiθ)dθ.

Let ρ→ 0, then

A → D(z0, r0),∫ 2π

0

u(z0 + ρeiθ)dθ → 2πu(z0),

ρ log
r0

ρ

∫ 2π

0

∂ru(z0 + ρeiθ)dθ ≤ ρ log
r0

ρ
C(u)→ 0.

Now the proof is complete. �

Corollary 2.4. Let u(z) ∈ C2(Ω), then u(z) is subharmonic if and only if ∆u(z) ≥
0 for any z ∈ Ω.
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Proof. It is easy to see that if ∆u(z) ≥ 0 for any z ∈ Ω, then∫∫
D(z0,r0)

(
log

r0

|z − z0|

)
∆u(x, y) dx dy =

∫ 2π

0

u
(
z0 + r0e

iθ
)
dθ − 2πu(z0) ≥ 0,

since log r0
|z−z0| ≥ 0 for any |z − z0| ≤ r0.

Now we show that if u(z) is subharmonic, Lemma 2.3 implies ∆u(z) ≥ 0 for any
z ∈ Ω. Indeed, assume that ∆u(z0) < 0 for some z0 ∈ Ω. Then ∆u(z) ≤ −δ for
any |z − z0| < r0, with some δ0 > 0 and r0 > 0. Therefore,∫∫

D(z0,r0)

(
log

r0

|z − z0|

)
∆u(x, y) dx dy ≤ −δ0

∫∫
D(z0,r0)

(
log

r0

|z − z0|
)
dx dy

≤ −δ
∫∫
|z−z0|< r0

2

(
log

r0

|z − z0|
)
dx dy

≤ −π
4
δ0r

2
0 log 2 < 0,

which contracts to Lemma 2.3 and the definition of the subharmonic function. �

Remark 2.5. It is well known that u(z) is harmonic if and only if ∆u(z) = 0
for any z ∈ Ω. In the sense of distribution, we can define ∆u for the continuous
function u(z). Thus, u(z) is subharmonic if and only if ∆u(z) ≥ 0 for any z ∈ Ω.

Definition 2.6. Given a domain Ω and a function f ∈ C(∂Ω), the Dirichlet prob-
lem for f on Ω is to find a function u ∈ C(Ω̄) such that ∆u = 0 on Ω and u

∣∣
∂Ω

= f .

Then the following results deals with the Dirichlet problem on the upper half-
plane H.

Lemma 2.7. Suppose that f ∈ C(R ∪ {∞}). Then there exists a unique function
u = uf ∈ C(H ∪ {∞}) such that u is harmonic on H and u

∣∣
∂H = f .

Before giving the proof, we show the following lemma, which was first proved in
[1].

Lemma 2.8 (Ahlfors). Suppose the function u(z) is subharmonic and bounded
above on a region Ω such that Ω̄ 6= C. Let F be a finite subset of ∂Ω and suppose

lim sup
z→ζ

u(z) ≤ 0 (2.2)

for all ζ ∈ ∂\F . Then u(z) ≤ 0 on Ω.

Proof of Lemma 2.7. Assume that f is real valued and f(∞) = 0. For ε > 0, let us
take disjoint open intervals Ij = (tj , tj+1) and real constants cj , j = 1, . . . , n, such
that the step function

fε(t) =
n∑
j=1

cjχIj

satisfies
‖f − fε‖L∞(R) < ε. (2.3)

Set

uε(z) =
n∑
j=1

cjµ(z, Ij ,H),
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where

µ(z, Ij ,H) =
1
π

arg
(z − tj+1

z − tj

)
=

1
π
=[log(z − tj+1)− log(z − tj)].

If t ∈ R\∂Ij , then
n∑
j=1

µ(z, Ij ,H)→ 1 as z →
n⋃
j=1

Ij ,

n∑
j=1

µ(z, Ij ,H)→ 0 as z → R\
n⋃
j=1

Īj , (2.4)

which imply limH3z→t uε(z) = fε(t). Therefore, by (2.3) and (2.2),

sup
H
|uε1(z)− uε2(z)| < ε1 + ε2.

Consequently the limit
u(z) := lim

ε→0
uε(z)

exists, and the limit u(z) is harmonic on H and satisfies

sup
H
|u(z)− uε(z)| ≤ 2ε.

We claim that
lim sup
z→t

|uε(z)− f(t)| ≤ ε (2.5)

for all t ∈ R. It is clear that (2.5) holds when ζ 6∈
⋃n
j=1 ∂Ij . To verify (2.5) at the

endpoint tj+1 ∈ ∂Ij ∩ Ij+1, by (2.4) and Lemma 2.8, we have

sup
H

∣∣∣cjµ(z, Ij ,H)+cj+1µ(z, Ij+1,H)−
(cj + cj+1

2

)
µ(z, Ij ∪Ij+1,H)

∣∣∣ ≤ ∣∣cj − cj+1

2

∣∣,
where

lim
z→tj+1

(cj + cj+1

2
)
µ(z, Ij ∪ Ij+1,H) =

cj + cj+1

2
.

Hence all limit values of uε(z) at tj+1 lie in the closed interval with endpoints cj
and cj+1, and then (2.3) yields (2.5) for the endpoint tj+1.

Let t ∈ R. By (2.5)

lim sup
z→t

|u(z)− f(t)| ≤ sup
H
|u(z)− uε(z)|+ lim sup

z→t
|uε(z)− f(t)| ≤ 3ε.

The same estimate holds if t = ∞. Therefore u extends to be continuous on
H and u

∣∣
∂H = f . The uniqueness of u follows immediately from the maximum

principle. �

For a < b, elementary calculus gives

µ(x+ iy, (a, b),H) =
∫ b

a

y

(t− x)2 + y2

dt

π
.

If E ⊂ R is measurable, the harmonic measure of E at z ∈ H is defined as

µ(z, E,H) =
∫
E

y

(t− x)2 + y2

dt

π
.

For z = x+ iy ∈ H, the density

Pz(t) =
1
π

y

(x− t)2 + y2
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is called the Poisson kernel for H. If f ∈ C(R ∪ {∞}), the proof of Lemma 2.7
shows that

uf (z) =
∫

R
f(t)Pz(t)dt,

and for this reason uf is also called the Poisson integral of f .
Now we consider the Dirichlet problem on a Jordan domain Ω, which will be

solved by the following Carathéodory lemma.

Lemma 2.9 (Carathéodory). Let ψ be a conformal mapping from the unit disc D
onto a Jordan domain Ω. Then ψ has continuous extension to D, and the extension
is a one-to-one map from D onto Ω.

Let E be a measurable set on ∂D, then define the harmonic measure of E at
z ∈ D to be

µ(z, E,D) := µ(ψ(z), ψ(E),H), (2.6)
where ψ is any conformal map of D onto H. By Lemma 2.8 the definition (2.6) does
not depend on the choice of ψ. It follows by the change of variables ψ(z) = i 1+z

1−z
that

µ(z, E,D) =
∫
E

1− |z|2

|eiθ − z|2
dθ

2π
.

By Lemma 2.9, if f is continuous on ∂D, the solution of the Dirichlet problem for
f on D is

u(z) = uf (z) =
∫
∂D
f(ζ)dµζ(z, ∂D,D)

=
∫ 2π

0

f(eit)
1− |z|2

|eiθ − z|2
dθ

2π

=
1

2π

∫ 2π

0

f(eiθ)
1− r2

1− 2r cos(θ − t) + r2
dθ, ∀z = reit ∈ D,

where the kernel

PD(θ) =
1

2π
1− |z|2

|eiθ − z|2
=

1
2π

1− r2

1− 2r cos(θ − t) + r2
, z = reiθ

is the Poisson kernel for the disc and the function u = uf is called the Poisson
integral of f on D.

Let ψ be a conformal mapping from the unit disc onto the Jordan domain Ω, f
be a continuous function on Γ = ∂Ω. Then f ◦ ψ is also continuous on ∂D, and

u(z) := uf (z) =
∫ 2π

0

f ◦ ψ(eiθ)
1− |w|2

|eiθ − w|2
dθ

2π
, w = ψ−1(z),

is harmonic on Ω, and by Lemma 2.9,

lim
3z→ζ

u(z) = f(ζ), ∀ζ ∈ Γ.

In general, the solution of the Dirichlet problem on a Jordan domain Ω can be
written as

u(z) =
∫
∂Ω

f(ζ)dµζ(z, ∂Ω,Ω),

where µ(z, E,Ω) is the harmonic measure of E ⊂ Γ = ∂Ω defined by

µ(z, E,Ω) = µ(w,ψ−1(E),D) =
∫
ψ−1(E)

1− |w|2

|eiθ − w|2
dθ

2π
. (2.7)
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Note that again by Lemma 2.8 this harmonic measure does not depend on the
choice of ψ. It also means that if u is a harmonic on Ω, for any Jordan domain
Ω′ ⊂ Ω satisfying Ω′ ⊂ Ω, such that for any z ∈ Ω′

u(z) =
∫
∂Ω′

u(ζ)dµζ(z, ∂Ω′,Ω′).

Obviously, it is an extension of mean-value property of harmonic function.
Moreover, this harmonic measure theory can also solve the following inequality

of boundary-value problem

−∆u(z) ≤ 0, ∀z ∈ Ω,

u(ζ) = f(ζ), ∀ζ ∈ ∂Ω.
(2.8)

Before giving the solution, we would better introduce some equivalent characteri-
zations of the subharmonic function.

Lemma 2.10. Let u : Ω→ [−∞,+∞) be an upper semicontinuous function. Then
the following statements are equivalent:

(a) The function u is subharmonic on Ω.
(b) Whenever D̄(z0, r0) = {z : |z − z0| ≤ r0} ⊂ Ω, then for any r ≤ r0

u(z0 + reit) ≤ 1
2π

∫ 2π

0

r2
0 − r2

r2
0 − 2r0r cos(θ − t) + r2

u(z0 + r0e
iθ)dθ.

(c) If Ω′ is a relatively compact subdomain of Ω, and h is a harmonic function
on Ω′ satisfying

lim sup
z→ζ

(u− h)(z) ≤ 0

for all ζ ∈ ∂Ω′, then u ≤ h on Ω′.

Proof. (a)⇒(c): Given Ω′ and h as in (c), the function u−h is subharmonic on Ω′,
so the result follows by the maximum principle of subharmonic functions.

(c)⇒(b): Suppose that D̄ := D̄(z0, r0) ⊂ Ω′. For n ≥ 1, define ψn : ∂D → R by

ψn(z0 + r0e
iθ) = sup

0≤θ′<2π

(
u(z0 + r0e

iθ′)− n‖θ − θ′‖
)
, θ ∈ [0, 2π),

where
‖θ − θ′‖ = min

k∈Z
|θ − θ′ + 2kπ|.

Then for each n, we have

|ψn(z0 + r0e
iθ)− ψn(z0 + r0e

iθ′)| ≤ n‖θ − θ′‖,

thus ψn is continuous on ∂D. Clearly, ψ1 ≥ ψ2 ≥ · · · ≥ u, and so in particular
limn→+∞ ψn ≥ u. On the other hand,

ψn(z0 + r0e
iθ) ≤ max

(
sup

‖θ′−θ‖<ρ
u(z0 + r0e

iθ′), sup
∂D

u− nρ
)
, ∀ρ > 0.

Thus
lim

n→+∞
ψn(z0 + r0e

iθ) ≤ sup
‖θ′−θ‖<ρ

u(z0 + r0e
iθ′), ∀ρ > 0.
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As u is upper semicontinuous, letting ρ → 0, we have limn→+∞ ψn(z) ≤ u(z) for
any z ∈ ∂D. Thus, these continuous functions ψn : ∂D → R converges to u on ∂D
with ψn ≥ u for any n. Define the Poisson integrals PDψn : D → R by

PDψn(z0 + reiθ) =
1

2π

∫ 2π

0

r2
0 − r

r2 − 2rr0 cos(θ − t) + r2
ψn(z0 + r0e

it)dt, ∀r < r0,

which is harmonic on D obviously. Also limz→ζ PDψn(z) = ψn(ζ) for all ζ ∈ ∂D,
and hence

lim sup
z→ζ

(u− PDψn)(z) ≤ u(ζ)− ψn(ζ) ≤ 0.

It follows from (c) that u ≤ PDψn on D. Letting n→ +∞ and using the monotone
convergence theorem, the desired inequality is obtained.

(b)⇒(a) is obvious. �

By Corollary 2.4, u(z) is a solution of (2.8), if and only if u(z) is a subharmonic
function on Ω and for any ζ ∈ ∂Ω, u(ζ) = f(ζ). Let ψ be a conformal mapping
from D onto this Jordan domain Ω, then the necessary and sufficient condition
that u(z) is a solution becomes u ◦ ψ is a subharmonic function on D and satisfies
u ◦ ψ(eiθ) = f ◦ ψ(eiθ). By Lemma 2.10, we have the fact that

u◦ψ(reit) ≤ 1
2π

∫ 2π

0

f ◦ψ(eiθ)
1− r2

1− 2r cos(θ − t) + r2
dθ =

∫
∂D
f ◦ψ(ζ)dµζ(z, ∂D,D).

By (2.7), we have

u(z) ≤
∫
∂Ω

f(ζ)dµζ(z, ∂Ω,Ω), ∀z ∈ Ω.

Therefore, the following result holds.

Corollary 2.11. Let u : Ω → [−∞,+∞) be an upper semicontinuous function.
Then u(z) is a subharmonic function on Ω, if and only if for any Jordan subdomain
Ω′ satisfying Ω′ ⊂ and any z ∈ Ω′, it has

u(z) ≤
∫
∂Ω′

u(ζ)dµζ(z, ∂Ω′,Ω′),

where µ(z, ∂Ω′,Ω′) is the harmonic measure of ∂Ω′ at z ∈ Ω′.

3. Proof of Lemma 1.2

Let v be a 1-periodic nonconstant real analytic function on R. Then there exists
ρv > 0 such that

v(x) =
∑
k∈Z

v̂(k)e2πikx with |v̂(k)| ∼ e−ρv|k|.

Moreover, there exists a holomorphic extension

v(z) =
∑
k∈Z

v̂(k)e2πikz

to the strip |=z| < ρv
5 , satisfying

|v(z)| ≤
∑
k∈Z
|v̂(k)|e2π|k||=z| <

∑
k∈Z

e−ρv|k|eρv|k|
π
5 < Cv.

Before giving the proof of Lemma 1.2 with the general matrix (1.4), we introduce
the following lemma from [5], which will be applied soon.
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Lemma 3.1. For all 0 < δ < ρ, there is an ε such that

inf
E1

sup
δ
2<y<δ

inf
x∈[0,1]

|v(x+ iy)− E1| > ε.

Proof of Lemma 1.2. Without loss of generality, let λ > 0. Assume that

vij(x) =
∑
k∈Z

v̂ij(k)e2πikx with |v̂ij(k)| ∼ e−ρij |k|, 1 ≤ i, j ≤ m,

Cij = sup
|=z|≤

ρij
5

|vij(z)|, 1 ≤ i, j ≤ m.

Let
C = max

i,j
Cij and ρ = min

i,j
ρij .

Thus, we can assume that |E| < mCλ and then Ma
n(z, E) is analytic on |=z| < ρ

5
with fixed f(n), E and ‖Ma

n(z, E)‖ ≤ (2mCλ)n. Define

un(z) :=
1
n

log ‖Ma
n(z, E)‖,

which is a subharmonic function on |=z| < ρ
5 , upper bounded by log[2mCλ].

Fix 0 < δ � ρ and ε satisfying Lemma 3.1. Define

λ0 = 100mCε−100

and let λ > λ0. Then, for fixed E, there is δ
2 < y0 < δ such that

inf
x∈[0,1]

∣∣∣∣v11(x+ iy0)− E

λ

∣∣∣∣ > ε,

which implies

inf
x∈R
|λv11(x+ iy0)− E| > λε > 100mCε−99 > 100mC,

since v(x) is periodic.
Let

Ma
n−1(iy0, E)


1
0
...
0

 =


wn−1

1

wn−1
2
...

wn−1
m

 .

Then
wn1
wn2
...
wnm

 =


λv11(iy0 + f(n))− E . . . v1m(iy0 + f(n))
v21(iy0 + f(n)) . . . v2m(iy0 + f(n))

...
. . .

...
vm1(iy0 + f(n)) . . . vmm(iy0 + f(n))



wn−1

1

wn−1
2
...

wn−1
m



=


(
λv11[iy0 + f(n)]− E

)
wn−1

1 +
∑m
j=2 v1j [iy0 + f(n)]wn−1

j∑m
j=1 v2j [iy0 + f(n)]wn−1

j
...∑m

j=1 vmj [iy0 + f(n)]wn−1
j

 .

Here we use induction to show that

|wn1 | ≥ |wnj |, j = 2, . . . ,m, and |wn1 | ≥ (λε−mC)n, n ≥ 1. (3.1)
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As w0
1 = 1, w0

j = 0, j = 2, . . . ,m, it yields

|w1
1| = λε > 100mC, |w1

j | < C, j = 2, . . . ,m.

Let

|wt1| ≥ |wtj |, j = 1, . . . ,m, |wt1| > (λε−mC)|wt−1
1 | > (λε−mC)t. (3.2)

By (3.2), we have

|wt+1
1 | ≥ (λε−mC)wt1 > (λε−mC)t+1

,

|wt+1
j | ≤ mC|wt1| < 99mC|wt1| ≤ (λε−mC)|wt1| ≤ |wt+1

1 |, j = 2, . . . ,m,

which also satisfy (3.1). By the induction, the expression (3.1) holds for any n ≥ 1.
Thus

‖Ma
n(iy0, E)‖ > (λε−mC)n and un(iy0) > log(λε−mC).

Let H = {z : =z > 0} be the upper half-plane and Hs be the strip {z = x+ iy :
0 < y < ρ

5}. Denote µ(z, E,H) by the harmonic measure of E at z ∈ H and
µs(iy0, Es,Hs) by the harmonic measure of Es at iy0 ∈ Hs, where E ⊂ ∂H = R
and Es ⊂ ∂Hs = R

⋃
[y = ρ

5 ]. Note that ψ(z) = exp
(

5π
ρ z
)

is a conformal map
from Hs onto H. Due to (2.7), we obtain

µs(iy0, Es,Hs) ≡ µ(ψ(iy0), ψ(Es),H),

µ(z = x+ iy, E,H) =
∫
E

y

(t− x)2 + y2

dt

π
.

Thus

µs[y =
ρ

5
] =

5πy0

πρ
<

5δ
ρ
,

dµs(x)
dx

∣∣
y=0

<
dµ(x)
dx

=
y0

x2 + y2
0

.

By Corollary 2.11, we have

log(λε−mC) < un(iy0) ≤
∫

[y=0]
S

[y= ρ
5 ]

un(z)µs(dz)

=
∫
y=0

un(x)µs(dx) +
∫
y= ρ

5

un(x+ iy)µs(dx)

≤
∫

R
un(x)

y0

x2 + y2
0

dx+
5δ
ρ

[
sup
y= ρ

5

un(x+ iy)
]

≤
∫

R
un(x)

y0

x2 + y2
0

dx+
C̄δ

ρ
log λ.

Thus

Ln(E) =
∫ 1

0

un(θ)dθ ≥ y0

2

∫ 1

0

un(θ)
(∑
k∈Z

y0

y2
0 + (θ + k)2

)
dθ

≥ y0

2

(
log(λε−mC)− Ĉδ

ρ
log λ

)
≥ δ

4

((
1− Ĉδ

ρ

)
log λ+ log ε

)
.

By the setting of λ0 and δ � ρ, for any n it holds that

Ln(E) >
δ

4

(1
2

log λ− 1
100

log λ0

)
> c log λ
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with some small constant c depending on all vij . The proof is complete. �
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