
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 306, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
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SUSCEPTIBLE-INFECTIVE-REMOVED EPIDEMIC MODELS
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Abstract. We study stability and phase portraits of susceptible-infective-

removed (SIR) epidemic models with horizontal and vertical transmission rates
and linear treatment rates by studying the reduced dynamical planar systems

under the assumption that the total population keeps unchanged. We find out
all the ranges of the parameters involved in the models for the infection-free

equilibrium and the epidemic equilibrium to be positive. The novelty of this

paper lies in the demonstration and justification of the parameter conditions
under which the positive equilibria are stable focuses or nodes. These phase

portraits provide more detailed descriptions of behaviors and extra biological

understandings of the epidemic diseases than local or global stability of the
models. Previous results only discussed the stability of the SIR models with

horizontal or vertical transmission rates and without treatment rates. Our re-

sults involving vertical transmission and treatment rates will exhibit the effect
of the vertical transmissions and the linear treatment rates on the epidemic

models.

1. Introduction

The classic susceptible infectious recovered (SIR) models with vital dynamics
(birth and death) (see Hethcote [7]) only deal with the horizontal transmission
of epidemic diseases, that is, diseases are transmitted through contact between
the infectives and the susceptibles. There are infectious diseases such as rubella,
herpes simplex, hepatitis B, chagas disease, and AIDS which can be transmitted by
horizontal transmission or by vertical transmission, i.e., the diseases are transmitted
from infective parents to unborn or newly born offsprings[2, 3, 14]. Treatments,
including isolation, quarantine and hospitalization, are important control measures
to prevent epidemic diseases. A variety of treatment rates including linear, constant
or saturated treatment rates have been incorporated into some epidemic disease
models [9, 11, 20, 23, 24].

2010 Mathematics Subject Classification. 34C23, 92D25, 34D20, 34D23.
Key words and phrases. SIR model; vertical transmission; treatment rate; stability;

node; focus; saddle-node.
c©2017 Texas State University.

Submitted October 19, 2016. Published December 14, 2017.

1



2 M. HOTI, X. HUO, K. LAN EJDE-2017/306

Recently, Luo, Zhu and Lan [17] generalized the SIR models with horizontal and
vertical transmissions in [18] by incorporating constant treatment rates on the in-
fectives. They provided the conditions on the parameters involved and justified that
under these conditions, the equilibria are stable focuses, stable nodes, saddle-nodes
or cusps with dimension 2, and studied Bogdanov-Takens bifurcations containing
saddle-node bifurcations, Hopf bifurcations and homoclinic bifurcations.

In this article, we consider the SIR models with horizontal and vertical trans-
missions by incorporating linear treatment rates on the infectives, and study the
stability and phase portraits of the models. Some of models like the classic ratio-
dependent predator-prey models [8, 10] have been incorporated with linear harvest-
ing rates on predator, see for example, the second equation of [6, (1.1) p. 349], the
second equation of (3) in [13, p.1866] and the second equation of [4, (2.2) p. 4046]
and [15]. Similar to such predator-prey models, we shall exhibit the impact of the
linear treatment rates on the SIR models by seeking the ranges of the treatment
rates which show the changes of the dynamics of the models.

As in [17, 18], we assume that the birth rate equals the death rate and the
recovered population never becomes susceptible. Under these assumptions, the
SIR model we study in this paper is governed by the following system of three
first-order ordinary differential equations

Ṡ = b− βSI − bS − qbI,

İ = βSI − bI − rI + qbI − hI,

Ṙ = rI − bR+ hI,

(1.1)

where S(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0 denote the densities of the populations of the
susceptible, infective and removed, respectively at time t ≥ 0; the constant b > 0
in the first and last term of the right-side of the first equation denotes the birth
rate of susceptible population and the coefficient b > 0 in the terms bS, bI and bR
denotes the death rate of the corresponding population, respectively (note that the
birth rate equals the death rate). The parameter β > 0 denotes the effective per
capita transmission rate of infective individuals, and the term βSI is the incidence
rate, which is bilinear, and r > 0 is the recovery rate of the infective individuals.
The parameter q ∈ [0, 1] is the fraction of unborn or newly born offsprings of the
infective parents, and h ≥ 0 is the proportionality of infective receiving treatments.

We emphasize that the three coefficients b, r and h in the terms bI, rI and hI
in the second equation of (1.1) can not be simply reduced to one term (b+ r+ h)I
with b+ r+h > 0 as one parameter. We must consider the ranges of (b, r, h) in the
first quadrant of R3 instead of the ranges of one parameter b+r+h in R1. We refer
to [4, 6, 15, 13] for the study of ratio-dependent predator-prey models with linear
harvesting rates, where the death rate and harvesting rate of predator cannot be
combined into one parameter. We refer to [5, 26] and the references therein for the
study of epidemic diseases with nonlinear incidence rates.

The stability of the model (1.1) with q ∈ (0, 1) and h = 0 was studied in [18]. It
was shown that when the basic reproductive rate R0 > 1 the model has a unique
positive infection-free unstable equilibrium, and one positive interior (epidemic)
locally stable equilibrium; and when R0 < 1, the infection-free equilibrium is locally
stable and the interior equilibrium is unstable. But neither the case R0 = 1 nor
the phase portraits near the positive equilibria of (1.1) with h = 0 was studied
in [18]. Our results will fill in the gap. It is well known that the phase portraits
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near the positive equilibria provide detailed descriptions of behaviors and extra
biological understandings of the epidemic diseases We prove that when the basic
reproduction number R0 ≤ 1, the model (1.1) with q ∈ (0, 1) and h > 0 has a
unique disease-free equilibrium (1, 0), and when R0 > 1, the model has both a
disease-free equilibrium (1, 0) and an interior (epidemic) equilibrium (x̄, ȳ). (The
symbols used in the Introduction will be given later). We show that when R0 > 1,
(1, 0) is a saddle, when R0 < 1, (1, 0) is a stable node and when R0 = 1, it is a
saddle-node and is stable in the triangle region {(u, v) ∈ R+ : u + v ≤ 1}. For
the equilibrium (x̄, ȳ), we provide sufficient conditions on the parameters involved
and prove that under these conditions, the equilibria are stable focuses or stable
nodes. The latter results are new and their proofs follow from several lemmas.
Some simulations on our results will be provided to understand the phase portraits
of the infection-free equilibrium and the positive equilibrium.

2. Positive equilibria

Since the birth rate equals the death rate, the total population keeps unchanged
and can be normalized to 1. Hence, we have S(t) + I(t) + R(t) = 1 for t ≥ 0 and
(1.1) is equivalent to the following system

Ṡ = b− βSI − bS − qbI,

İ = βSI − bI − rI + qbI − hI.
(2.1)

As mentioned in the Introduction, the three parameters b, r, h in the second equation
of (2.1) can not be combined into one parameter since they have their own biological
meanings. For simplification of symbols, we let x(t) = S(t) and y(t) = I(t) for t ≥ 0.
Using x(t) and y(t), we rewrite (2.1) as follows

ẋ = b− βxy − bx− qby := f(x, y),

ẏ = βxy − by − ry + qby − hy := g(x, y),
(2.2)

where x(t) and y(t) denote the densities of the populations of the susceptible and
infective, respectively at time t ≥ 0.

Recall that (x, y) ∈ R2 is an equilibrium of (2.2) if f(x, y) = 0 and g(x, y) = 0.
An equilibrium (x, y) of (2.2) is said to be positive if x ≥ 0 and y ≥ 0, and a
positive interior (endemic) equilibrium if x > 0 and y > 0.

Notation. Let

η := η(r, b, q) = r + (1− q)b and q1 = (b+ r − β)/b.

We denote by R0 the basic reproduction number, representing the average number
of cases that are induced by one infective individual, of the model (2.2) as

R0 = β/(η + h), (2.3)

where 1/(η+h) is the average time for an infected individual staying in the infectious
class.

We shall use the conditions: R0 > 1,= 1 or < 1, so the following two lemmas
provide the ranges of the parameters b, r, β, q under which the above conditions
hold and give better understanding on R0. The proofs are straightforward and we
omit them.

Lemma 2.1. (1) β < η if and only if either r ≤ β < b+ r and 0 ≤ q < q1 or
β < r and 0 ≤ q ≤ 1.
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(2) η < β if and only if b + r < β and 0 ≤ q ≤ 1 or r < β ≤ b + r and
q1 < q ≤ 1.

(3) β ≤ η if and only if either b + r < β and 0 ≤ q ≤ 1 or r ≤ β ≤ b + r and
q1 ≤ q ≤ 1.

(4) β ≤ η < η + b if and only if either b + r < β < 2b + r − qb and 0 ≤ q ≤ 1
or r ≤ β ≤ b+ r and q1 ≤ q ≤ 1.

(5) β = η if and only if r ≤ β ≤ b+ r and q = q1.

Lemma 2.2. (1) R0 > 1 if and only if η < β and 0 ≤ h < β − η.
(2) R0 < 1 if and only if either 0 < β < η and h ≥ 0 or η ≤ β and h > β − η.
(3) R0 = 1 if and only if η ≤ β and h = β − η.

We prove the following main result on the number of equilibria of (2.2).

Theorem 2.3. (1) If R0 ≤ 1, then (1, 0) is the unique positive equilibrium of
(2.2).

(2) If R0 > 1, then (2.2) has only two positive equilibria: (1, 0) and (x̄, ȳ),
where

x̄ =
η + h

β
and ȳ =

b(β − η − h)
β(b+ r + h)

. (2.4)

Proof. It is clear that (x, y) is an equilibrium of (2.2) if and only if (x, y) satisfies
the system

b− βxy − bx− qby = 0,
βxy − by − ry + qby − hy = 0.

(2.5)

For b, r, β > 0, q ∈ [0, 1] and h ≥ 0, it is clear that (1, 0) is a solution of (2.5) and is
a positive equilibrium of (2.2). It is easy to see that (2.5) with y 6= 0 is equivalent
to the system

b− βxy − bx− qby = 0,
βx− r − b− h+ qb = 0.

(2.6)

Solving the second equation of (2.6) we obtain

x =
r + (1− q)b+ h

β
=
η + h

β
. (2.7)

This, together with the first equation of (2.6), implies

y =
b[β + qb− (r + b+ h)]

β(r + b+ h)
=
b(β − η − h)
β(r + b+ h)

. (2.8)

If R0 > 1, then by Lemma 2.2 (1) we have η < β and 0 ≤ h < β − η. This,
together with (2.8), implies y > 0. Hence, (x̄, ȳ) given in (2.4) is a positive interior
equilibrium of (2.2). If R0 < 1, then by Lemma 2.2 (2) we have either 0 < β < η
and h ≥ 0 or η ≤ β and h > β − η. This implies that β − η − h < 0 and y < 0.
Hence, (2.2) has no positive interior equilibria. If R0 = 1, then by Lemma 2.2 (3)
we have η ≤ β and h = β − η. This, together with (2.7) and (2.8), implies y = 0
and x = 1. The results follow. �

Theorem 2.3 improves [7, Theorem 6.1] and the result on the number of positive
equilibria obtained in [18, section 2].
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3. Stability and phase portraits of the model

In this section, we study the stability and phase portraits of each positive equi-
librium of (2.2). We recall some results on stability and phase portraits of planar
systems near equilibria in the qualitative theory [1, 19, 21]. We consider the fol-
lowing planar system

ẋ(t) = f(x(t), y(t)),

ẏ(t) = g(x(t), y(t))
(3.1)

subject to the initial value condition:

(x(0), y(0)) = (x0, y0) (3.2)

where f, g ∈ C1(R2).
Recall that (x, y) is said to be a solution of (3.1)-(3.2) if x, y ∈ C1(R+) and

satisfy (3.1)-(3.2). A solution (x, y) is said to be positive if x, y ∈ P , where

P = {x ∈ C1(R+) : x(t) ≥ 0 for t ∈ R+}.

Since f, g ∈ C1(R2), it is well known that for each initial value (x0, y0) ∈ R2,
(3.1)-(3.2) has a unique solution. Moreover, if f and g satisfy

f(0, y) ≥ 0 and g(x, 0) ≥ 0 for x, y ∈ R+,

then for each initial value (x0, y0) ∈ R2
+, the unique solution of (3.1)-(3.2) is positive

(see [21, Proposition B.7]).
We denote by A(x, y) the Jacobian matrix of f and g at (x, y), that is,

A(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(3.3)

and by |A(x, y)| and tr(A(x, y)) the determinant and trace of A(x, y), respectively.
The following results can be found in [19] and have been used in [6, 12, 16, 17, 25].

Lemma 3.1. If (x∗, y∗) is an equilibrium of (3.1), then the following assertions
hold.

(i) If |A(x∗, y∗)| < 0, then (x∗, y∗) is a saddle of (3.1).
(ii) If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) < 0 and (tr(A(x∗, y∗)))2 − 4|A(x∗, y∗)| ≥ 0

then (x∗, y∗) is a stable node of (3.1).
(iii) If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) < 0 and (tr(A(x∗, y∗)))2 − 4|A(x∗, y∗)| < 0

then (x∗, y∗) is a stable focus of (3.1).
(iv) If |A(x∗, y∗)| > 0 and tr(A(x∗, y∗)) < 0, then (x∗, y∗) is locally asymptoti-

cally stable.

Recall that an equilibrium (x∗, y∗) is said to be globally asymptotically stable
if it is locally asymptotically stable and each solution (x, y) of (3.1)-(3.2) with
(x0, y0) ∈ R2

+ converges to (x∗, y∗) in R2; that is, limt→∞(x(t), y(t)) = (x∗, y∗).
The following result is a special case of the well-known Poincaré-Bendixson Tri-

chotomy theorem, see [22, Theorem 8.8 and Lemma 8.9].

Lemma 3.2. Assume that each positive solution of (3.1)-(3.2) with (x0, y0) ∈ R2
+

is contained in a bounded closed subset B of R2. Assume that B contains only one
equilibrium (x∗, y∗) of (3.1) and (x∗, y∗) belongs to the boundary of B. Then each
positive solution of (3.1)-(3.2) converges to (x∗, y∗).
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Recall that a map T : R2 → R2 defined by T (x, y) = (f(x, y), g(x, y)) is said to
be regular if T is one to one and onto, T and T−1 are continuous and |A(x, y)| 6= 0
on R2. If T is regular, then the following transformation

u = f(x, y),

v = g(x, y)
(3.4)

is said to be a regular transformation. If (3.1) is changed into another system under
suitable regular transformations, then the two systems are said to be equivalent. It
is known that under regular transformations, the topological structures of solutions
of a planar system near equilibria including a variety of dynamics like saddles,
topological saddles, nodes, saddle-nodes, foci, centers, or cusps remain unchanged.

Lemma 3.3. [12] Let (x∗, y∗) be an equilibrium of (3.1). Assume that |A(x∗, y∗)| =
0, tr(A(x∗, y∗)) 6= 0 and (3.1) is equivalent to the following system

u̇ = p(u, v),

v̇ = %v + q(u, v)
(3.5)

with an isolated equilibrium point (0, 0), where % 6= 0, p(u, v) =
∑∞
i+j=2,i,j≥0 aiju

ivj

and q(u, v) =
∑∞
i+j=2,i,j≥0 biju

ivj are convergent power series. If a20 6= 0, then
(x∗, y∗) is a saddle-node of (3.1).

Now, we begin to study the stability and phase portraits near each of the positive
equilibrium of (2.2).

Let A(x, y) be the Jacobian matrix of f and g defined in (2.2). By (2.2) and
(3.3), we have

A(x, y) =
(
−βy − b −βx− qb
βy βx− η − h

)
.

Note that η = r + (1− q)b, we have

|A(x, y)| = βy(b+ r + h)− bβx+ b(η + h) (3.6)

and
tr(A(x, y)) = −β(y − x)− (b+ η + h). (3.7)

We first prove the following result on the global stability and phase portraits near
the infection-free equilibrium (1, 0) of (2.2).

Theorem 3.4. (1) If R0 > 1, then (1, 0) is a saddle of (2.2).
(2) If R0 < 1, then (1, 0) is a stable node of (2.2). Moreover, the infection-free

equilibrium (1, 0) of (2.2) is globally asymptotically stable.
(3) If R0 = 1, then (1, 0) is a saddle-node of (2.2).

Proof. By (3.6) and (3.7) with (x, y) = (1, 0), we have

|A(1, 0)| = b(h− β + η), (3.8)

tr(A(1, 0)) = β − η − h− b. (3.9)

(1) Since R0 > 1, by (3.8) and Lemma 2.2 (1), we have |A(1, 0)| < 0. The result
follows from Lemma 3.1 (i).

(2) Since R0 < 1, by Lemma 2.2 (2), (3.6) and (3.7) we obtain |A(1, 0)| > 0 and
tr(A(1, 0)) < 0. Moreover, we have

tr(A(1, 0))2 − 4|A(1, 0)| = (β − η − h− b)2 − 4b(h− β + η)

= (β − η − h)2 − 2b(β − η − h) + b2 + 4b(β − h− η)
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= (β − η − h)2 + 2b(β − η − h) + b2

= (β − η − h+ b)2 ≥ 0.

The first result follows from Lemma 3.1 (ii).
Let B = {(u, v) ∈ R2

+ : u + v ≤ 1}, which is a positive invariant set of (2.2).
B is a bounded closed subset of R2 and contains only the equilibrium (1, 0) of
(2.2). Since (1, 0) is on the boundary of B, it follows from Lemma 3.2 that every
positive solution of (2.2) converges to (1, 0) as t → ∞. Hence, (1, 0) is globally
asymptotically stable.

(3) Since R0 = 1, by Lemma 2.2 (3), (3.6) and (3.7), we have |A(1, 0)| = 0 and
tr(A(1, 0)) < 0. We change the equilibrium (1, 0) to the origin (0, 0) by the change
of variables u1 = x − 1 and v1 = y. Note that h = β − η. Then system (2.2)
becomes

u̇1 = ẋ = b− β(u1 + 1)v1 − b(u1 + 1)− qbv1 = −βu1v1 − (β + qb)v1 − bu1,

v̇1 = ẏ = β(u1 + 1)v1 − (η + h)v1 = βu1v1 − (η + h− β)v1 = βu1v1.

Let ξ = (β + qb)b−1, u2 = u1 + ξv and v2 = v1. Then the last system becomes

u̇2 = u̇1 + ξv̇1 = −βu1v1 − (β + qb)v1 − bu1 + ξβu1v1

= (ξ − 1)βu1v1 − (β + qb)v1 − bu1

= (ξ − 1)β
[
u2v2 − ξv2

2

]
− (β + qb)v2 − b(u2 − ξv2)

= (ξ − 1)βu2v2 − ξ(ξ − 1)βv2
2 − bu2

and v̇2 = βv2[u2 − ξv2] = −ξbv2
2 + βu2v2.

Let u = v2 and v = u2. Then the above last two equations become

u̇ = −ξbu2 + βuv,

v̇ = −bv + (ξ − 1)βuv − ξ(ξ − 1)βu2.

Since % := −b 6= 0 and a20 := −ξb 6= 0, it follows from Lemma 3.3 that (1, 0) is a
saddle-node of (2.2). �

Remark 3.5. When R0 < 1, Theorem 3.4 (2) shows that the infection- free equi-
librium (1, 0) is a stable node and is globally asymptotically stable. By Lemma 2.2
(2), we see that the biological interpretation of Theorem 3.4 (2) is that if 0 < β < η
with any treatment rate h ≥ 0 or η ≤ β and the treatment rate h > β− η, then the
epidemic disease will be eradicated and the epidemic can not maintain itself (see
Figure 1 (a) as an example).

Theorem 3.4 (3) is new and from its proof, we see that (1, 0) is a saddle-node
in its neighborhood, so it is unstable. But since we only consider the biologically
meaningful solutions in the triangle B = {(u, v) ∈ R2

+ : u+ v ≤ 1}, from the Figure
1 (b) below, we see that all the positive solutions in B converge to (1, 0) and (1, 0)
is stable in B. This conclusion is consistent with the result in [7, Theorem 6.1]
which falls into the special case of q = h = 0. Results in Theorem 3.4 (1) and (2)
were obtained in [18, section 2] which corresponds to the special condition of h = 0
in our model.

Now, we turn our attention to the positive endemic equilibrium (x̄, ȳ) given in
(2.4) of (2.2). We first prove that (x̄, ȳ) is locally asymptotically stable under
suitable conditions.
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Figure 1. (a) shows that (1, 0) is globally asymptotically stable,
where b = 0.5, r = 2, β = 2, q = 0.5, h = 1 and R0 = β/(b + r −
qr+h) = 2/3.25 < 1. (b) shows that all the positive solutions in B
converge to (1, 0), where b, r, q, h are same as in (a) and β = 3.25,
so R0 = 1.

Theorem 3.6. If R0 > 1, then (x̄, ȳ) is locally asymptotically stable.

Proof. Since R0 > 1, it follows from Theorem 2.3 (2) that (x̄, ȳ) given in (2.4) is
well defined. By (3.6) and (3.7) with (x, y) = (x̄, ȳ), we have

|A(x̄, ȳ)| = βȳ(b+ r + h) + b(η + h)− βbx̄ = βȳ(b+ r + h), (3.10)

tr(A(x̄, ȳ)) = −β(ȳ − x̄)− (b+ h+ η) = −(βȳ + b) . (3.11)

Since ȳ > 0 and b, r, β > 0, by (3.10) and 3.11, we have |A(x̄, ȳ)| > 0 and
tr(A(x̄, ȳ)) < 0. The result follows from Lemma 3.1 (iv). �

Remark 3.7. By Lemma 2.2 (1), we see that R0 > 1 if and only if η < β and
0 ≤ h < β − η. Hence, Theorem 3.6 generalizes the result in [18, section 2] from
h = 0 to h ∈ [0, β − η). The biological interpretation of Theorem 3.6 is that if
η < β, then the epidemic can not be eradicated if the treatment rate h is smaller
than β − η.

It is not easy to determine if (x̄, ȳ) is a stable node or stable focus. Our main goal
in the rest of this paper is to find sufficient conditions on the parameters b, r, β, q, h
under which (x̄, ȳ) is a stable node or stable focus. All the results obtained below
are new even when q = 0 or h = 0.

Our first result shows that (x̄, ȳ) could be a stable node or stable focus for
sufficiently small h. To do that, we first prove the following lemmas.

Let

β1 :=
2(b+ r)3/2√
b+ r +

√
r

and β2 :=
2(b+ r)3/2√
b+ r −

√
r
.

The following simple result will be useful in the proof of Lemma 3.9. Its proof is
straightforward and we omit it.

Lemma 3.8. Let h(x) = 16x(1+x)3−1 for x ∈ R+. Then the following assertions
hold.

(i) The equation h(x) = 0 has a unique solution γ1 ∈ (0.05, 0.055).
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(ii) h(x) < 0 for x ∈ [0, γ1) and h(x) > 0 for x ∈ (γ1,∞).

Lemma 3.9. (1) If b > 0, r > 0, then

r < β1 − b < b+ r < β2 − b (3.12)

and
(i) If r < β < β1 − b, then 0 < q1 < 1 < β1−β

b < β2−β
b ;

(ii) If β1 − b < β ≤ b+ r, then 0 < q1 <
β1−β
b < 1 and β2−β

b > 1.
(2) If b > 0 and r > γ1b, then

r < β1 − b < b+ r < β1 < β2 − b < β2 (3.13)

and the following assertions hold:
(i) If b+ r < β ≤ β1, then 0 ≤ β1−β

b < 1 and β2−β
b > 1;

(ii) If β1 < β < β2 − b, then β1−β
b < 0 and β2−β

b > 1;
(iii) If β2 − b < β < β2, then β1−β

b < 0 and 0 < β2−β
b < 1.

(3) If 0 < r < γ1b, then

r < β1 − b < b+ r < β2 − b < β1 < β2 (3.14)

and the following assertions hold:
(i) If b+ r < β < β2 − b, then 0 < β1−β

b < 1 and β2−β
b > 1;

(ii) If β2 − b < β ≤ β1, then 0 ≤ β1−β
b < 1 and 0 < β2−β

b < 1;
(iii) If β1 < β < β2, then β1−β

b < 0 and 0 < β2−β
b < 1.

(4) If r = γ1b, then

r < β1 − b < b+ r < β2 − b = β1 < β2 (3.15)

and the following assertions hold:
(i) If b+ r < β < β2 − b, then 0 < β1−β

b < 1 and β2−β
b > 1;

(ii) If β1 < β < β2, then β1−β
b < 0 and 0 < β2−β

b < 1.

Proof. (1) Let b > 0 and r > 0. Since

β1 =
2(b+ r)3/2√
b+ r +

√
r

=
2(b+ r)

1 +
√

r
b+r

>
2(b+ r)

1 + 1
= b+ r,

it follows that r < β1 − b. Since

β1 − (2b+ r) =
2(b+ r)

1 +
√

r
b+r

− (2b+ r) =
2(b+ r)− (2b+ r)

[
1 +

√
r
b+r

]
1 +

√
r
b+r

=
r − (2b+ r)

√
r
b+r

1 +
√

r
b+r

=
r2 − (2b+ r)2 r

b+r[
1 +

√
r
b+r

][
r + (2b+ r)

√
r
b+r

]
=

r2(b+ r)− r(2b+ r)2

(b+ r)
[
1 +

√
r
b+r

][
r + (2b+ r)

√
r
b+r

]
= − rb(4b+ 3r)

(b+ r)
[
1 +

√
r
b+r

][
r + (2b+ r)

√
r
b+r

] < 0,
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we have β1 − b < b+ r. Since

β2 − (2b+ r) =
2(b+ r)

1−
√

r
b+r

− (2b+ r) =
2(b+ r)− (2b+ r)

[
1−

√
r
b+r

]
1−

√
r
b+r

=
r + (2b+ r)

√
r
b+r

1−
√

r
b+r

> 0,

we have b + r < β2 − b. Hence, (3.12) holds. Note that q1 = (b + r − β)b−1. By
(3.12), it is steadily verified that the results (i)-(ii) hold.

Let b > 0 and r > 0. By definition of β1 and β2 we have

β2 − b− β1 =
2(b+ r)3/2√
b+ r −

√
r
− 2(b+ r)3/2√

b+ r +
√
r
− b =

4
√
r(b+ r)3/2

b
− b

=
4
√
r(b+ r)3/2 − b2

b
=

16r(b+ r)3 − b4

b[4
√
r(b+ r)3/2 + b2]

=
b3
[
16 rb (1 + r

b )3 − 1
]

4
√
r(b+ r)3/2 + b2

=
b3h( rb )

4
√
r(b+ r)3/2 + b2

(3.16)
(2) If b > 0 and r > γ1b, then r

b > γ1 and by Lemma 3.8, h( rb ) > 0. It follows
from (3.16) that β1 < β2 − b. Since β1 > b+ r, we have r < β1 − b. Hence, (3.13)
holds. By (3.13), it is steadily verified that the results (i)-(iii) hold.

(3) If 0 < r < γ1b, then r
b < γ1 and by Lemma 3.8, h( rb ) < 0. It follows from

(3.16) that β2 − b < β1. It is obvious that β1 < β2. Since

β2 =
2(b+ r)3/2√
b+ r −

√
r

=
2(b+ r)

1−
√

r
b+r

>
2(b+ r)

1− 0
> 2b+ r,

we obtain b + r < β2 − b. It has been proved in (1) that β1 − b < b + r. Hence,
(3.14) holds. By (3.14), it is steadily verified that the results (i)-(iii) hold.

(4) If r = γ1b, then β1 = β2 − b. Hence, (3.15) holds and (i) and (ii) hold. �

Let

(x̄, ȳ) =
(η + h

β
,
b(β − η − h)
β(b+ r + h)

)
be same as in (2.4) and let

∆(q, h) = tr(A(x̄, ȳ))2 − 4|A(x̄, ȳ)|. (3.17)

Lemma 3.10. If R0 > 1, then

∆(q, h) =
b

(b+ r + h)2
[
b(β + qb)2 − 4(b+ r+ h)2(β + qb) + 4(b+ r+ h)3

]
. (3.18)

Proof. Noting that η = b+ r − qb, we have

βȳ + b =
b(β + qb)
b+ r + h

and 4βȳ(b+ r + h) = 4b[(β + qb)− (b+ r + h)].

This, (3.10) and (3.11) imply

∆(q, h) := tr(A(x̄, ȳ))2 − 4|A(x̄, ȳ)| = (βȳ + b)2 − 4βȳ(b+ r + h)



EJDE-2017/306 STABILITY AND PHASE PORTRAITS 11

=
b2(β + qb)2

(b+ r + h)2
− 4b[(β + qb)− (b+ r + h)]

=
b

(b+ r + h)2
[
b(β + qb)2 − 4(b+ r + h)2(β + qb) + 4(b+ r + h)3

]
.

The result follows. �

For the next theorem we use the following conditions

(H1) b > 0, r > 0, β1 − b < β ≤ b+ r and β1−β
b < q ≤ 1.

(H2) b > 0, r > γ1b and one of the following conditions holds:
(i) b+ r < β ≤ β1 and β1−β

b < q ≤ 1;
(ii) β1 < β < β2 − b and 0 ≤ q ≤ 1;

(iii) β = β2 − b and 0 ≤ q < 1;
(iv) β2 − b < β < β2 and 0 ≤ q < β2−β

b .
(H3) b > 0, 0 < r < γ1b and one of the following conditions holds:

(i) b+ r < β < β2 − b and β1−β
b < q ≤ 1;

(ii) β = β2 − b and β1−β
b < q < 1;

(iii) β2 − b < β ≤ β1 and β1−β
b < q < β2−β

b ;
(iv) β1 < β < β2 and 0 ≤ q < β2−β

b .
(H4) b > 0, r = γ1b and one of the following conditions holds:

(i) b+ r < β < β2 − b and β1−β
b < q ≤ 1;

(ii) β = β2 − b and β1−β
b < q < 1.

(iii) β2 − b < β < β2 and 0 ≤ q < β2−β
b .

Theorem 3.11. (1) Assume that one of the conditions (H1)–(H4) holds. Then
there exists h0 ∈ (0, β − η) such that (x̄, ȳ) is a stable focus of (2.2) for h ∈ [0, h0).

(2) Assume that b > 0, r > 0 and one of the following conditions holds:
(i) r < β < β1 − b and q1 < q ≤ 1.
(ii) β = β1 − b and q1 < q < 1.

(iii) β2 < β <∞ and 0 ≤ q ≤ 1.
(iv) β2 = β and 0 < q ≤ 1.

Then there exists h1 ∈ (0, β − η) such that (x̄, ȳ) is a stable node of (2.2) for
h ∈ [0, h1).

Proof. Under condition (H1), by (ii) of Lemma 3.9 (1), r < β ≤ b+r and q1 < q ≤ 1.
This, together with Lemma 2.1 (2), implies η < β. Similarly, by Lemma 3.9 (2),
(3), (4), each of the hypotheses in (H2)–(H4) implies b+ r < β and 0 ≤ q ≤ 1. By
Lemma 2.1 (2), we obtain η < β.

Let 0 ≤ h < β − η. By (3.18), we have

∆(q, h) =
b2Γ(h)

(b+ r + h)2
, (3.19)

where

Γ(q, h) = (β + qb)2 − 4(b+ r + h)2(β + qb)
b

+
4(b+ r + h)3

b
. (3.20)

We prove that

Γ(q, 0) = b2
(
q − β1 − β

b

)(
q − β2 − β

b

)
. (3.21)
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Indeed, by (3.20) we have

Γ(q, 0)

= (β + qb)2 − 4(b+ r)2(β + qb)
b

+
4(b+ r)3

b

=
[
β + qb− 2(b+ r)2

b

]2
− 4r(b+ r)3

b2

=
[
β + qb− 2(b+ r)2

b
+

2
√
r(b+ r)3/2

b

][
β + qb− 2(b+ r)2

b
− 2
√
r(b+ r)3/2

b

]
=
[
β + qb− 2(

√
b+ r −

√
r)(b+ r)3/2

b

][
β + qb− 2(

√
b+ r +

√
r)(b+ r)3/2

b

]
=
[
β + qb− 2b(b+ r)3/2

b(
√
b+ r +

√
r)

][
β + qb− 2b(b+ r)3/2

b(
√
b+ r −

√
r)

]
= (β + qb− β1)(β + qb− β2)

and (3.21) holds.
We prove that under each of the conditions in (H1)–(H4),

β1 − β
b

< q <
β2 − β
b

. (3.22)

(H1) If b > 0, r > 0, β1 − b < β < b + r and β1−β
b < q ≤ 1. then by (ii) of

Lemma 3.9 (1), we have

β1 − β
b

< q ≤ 1 <
β2 − β
b

.

(H2) (i) If b+ r < β < β1 and β1−β
b ≤ q ≤ 1, then by (i) of Lemma 3.9 (2),

β1 − β
b

< q ≤ 1 <
β2 − β
b

.

(ii) If β1 < β < β2 − b and 0 ≤ q ≤ 1, then by (ii) of Lemma 3.9 (2),

β1 − β
b

< 0 ≤ q ≤ 1 <
β2 − β
b

.

(iii) If β2 − b < β < β2 and 0 ≤ q < β2−β
b , then by (iii) of Lemma 3.9 (2),

β1 − β
b

< 0 ≤ q < β2 − β
b

.

Hence, under each of the conditions (i), (ii) and (iii) in (H2), (3.22) holds. Similarly,
(3.22) holds under each of the conditions in (H3) or (H4). By (3.21) and (3.22),
we see that Γ(q, 0) < 0. It follows from the continuity of Γ that there exists
h0 ∈ (0, β − η) such that Γ(h) < 0 for h ∈ [0, h0), and by (3.19), ∆(q, h) < 0 for
h ∈ [0, h0). By Theorem 3.6 (1), (3.10) and (3.11) we see that for h ∈ [0, h0),
|A(x̄, ȳ)| > 0 and tr(x̄, ȳ) < 0. The result follows from Lemma 3.1 (iii).

(2) (i) If r < β < β1 − b and q1 < q ≤ 1, then by (i) of Lemma 3.9 (1), we have

1 <
β1 − β
b

<
β2 − β
b

. (3.23)

(ii) If β = β1 − b and q1 < q < 1, then

q1 < q < 1 =
β1 − β
b

<
β2 − β
b

. (3.24)
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(iii) If β2 < β <∞ and 0 ≤ q ≤ 1, then

β1 − β
b

<
β2 − β
b

< 0. (3.25)

By (3.21) and each of (3.23), (3.24) and (3.25), we have Γ(0) > 0. It follows from
the continuity of Γ that there exists h1 ∈ (0, β−η) such that Γ(h) > 0 for h ∈ [0, h1).
It follows from (3.19) that ∆(h) > 0 for h ∈ [0, h1). The result follows from Lemma
3.1 (ii). �

Simulation results for Theorem 3.11 (H2)(ii) and (2)(iii) are given in figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

HaL
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

HbL

Figure 2. In (a) and (b), we use b = 20, r = 20
3 > γ1b (> 1

2020 =
1), q = 0.25 and h = 0. Since β1 = 320

9 , β2− b = 260
3 and β2 = 320

3 ,
conditions (H2)(ii) with β = 60 and (2)(iii) with β = 110 hold.

By Theorem 3.11 with h = q = 0, we see that if β1 < β < β2, then (x̄, ȳ) is a
stable focus of (2.2) with h = q = 0 and if β > β2, then (x̄, ȳ) is a stable node of
(2.2) with h = q = 0. Theorem 3.11 with h = q = 0 is inconclusive if b+r < β ≤ β1

or β = β2.
Using formulas (3.19) and (3.21), we can provide a direct proof to the following

new result on the classic model (2.2) with h = q = 0.

Theorem 3.12. (1) If β1 < β < β2, then (x̄, ȳ) is a stable focus of (2.2) with
h = q = 0.

(2) If either b+ r < β ≤ β1 or β ≥ β2, then (x̄, ȳ) is a stable node of (2.2) with
h = q = 0.

Proof. By (3.19) and (3.21), we have

∆(0, 0) =
b2

(b+ r)2
(β − β1)(β − β2).

(1) If β1 < β < β2, then ∆(0, 0) < 0. By Lemma 3.1 (iii), the result (1) holds.
(2) If either b+r < β ≤ β1 or β ≥ β2, then ∆(0, 0) ≥ 0 and the result (2) follows

from Lemma 3.1 (ii). �

Theorem 3.11 shows that the interior equilibrium (x̄, ȳ) of (2.2) can be a stable
focus or a stable node for sufficiently small h. However, Theorem 3.11 does not
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provide any upper bounds for h. Hence, the question is that under which range of
h, can the interior equilibrium (x̄, ȳ) be a stable focus or a stable node?

In the following, we enhance the result (iii) of Theorem 3.11 (2) and partially
answer the above question. We provide a range of h under which (x̄, ȳ) is a stable
node of (2.2). To do this, we first prove the following lemma. Let

β0 =
4(b+ r)2

b
and h1 =

√
b(β + qb)

2
− b− r.

Lemma 3.13. (1) β2 < β0 − b.
(2) If β0 − b ≤ β ≤ ∞ and max{0, β0−β

b } ≤ q ≤ 1, then 0 ≤ h1 < β − η.

Proof. (1) Since
2(b+ r)

b
=

1

1 +
√

r
b+r

+
1

1−
√

r
b+r

,

we have

β0 − β2 − b =
4(b+ r)2

b
− 2(b+ r)

1−
√

r
b+r

− b =
2(b+ r)

1 +
√

r
b+r

− b

=
2(b+ r)− b

(
1 +

√
r
b+r

)
1 +

√
r
b+r

=
b
(
1−

√
r
b+r

)
+ 2r

1 +
√

r
b+r

> 0.

(2) We first prove that under the given hypotheses,

b− 4β − 4qb < 0. (3.26)

In fact, if β0−β
b ≥ 0, then q ≥ β0−β

b and

b− 4β − 4qb ≤ b− 4β − 4(β0 − β) = b− 4β0 =
b2 − 4(b+ r)2

b
< 0.

If β0−β
b < 0, then q ≥ 0 and

b− 4β − 4qb ≤ b− 4β ≤ b− 4(β0 − b) =
5b2 − 16(b+ r)2

b
< −11b < 0.

Next, we prove that h1 < β − η. Indeed, since

h1 − (β − η) =

√
b(β + qb)− 2(b+ r)

2
− (β − b− r + qb)

=

√
b(β + qb)

2
− (β + qb)

=
(β + qb)[b− 4β − 4qb)]

2
[√

b(β + qb) + 4(β + qb)
] .

This, together with (3.26), implies h1 < β − η. Finally, we prove that h1 ≥ 0. In
fact, since

h1 =

√
b(β + qb)− 2(b+ r)

2
=

b(β + qb)− 4(b+ r)2

2[
√
b(β + qb) + 2(b+ r)]

=
b(β + qb)− 4(b+ r)2

2[
√
b(β + qb) + 2(b+ r)]

=
b[(β + qb)− β0]

2[
√
b(β + qb) + 2(b+ r)]
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Figure 3. b = r = 1, β = 24.5, q = 0.5 and h = 0.25. Since
β0 = 16, β0 − b = 15 and h1 = 1

2 , the conditions of Theorem 3.14
are satisfied.

=
b2
(
q − β0−β

b

)
2[
√
b(β + qb) + 2(b+ r)]

,

it follows from q ≥ max{0, β0−β
b } that q − β0−β

b ≥ 0 and h1 ≥ 0. �

Theorem 3.14. If β0 − b ≤ β ≤ ∞, max{0, β0−β
b } ≤ q ≤ 1 and 0 ≤ h ≤ h1, then

(x̄, ȳ) is a stable node of (2.2).

Proof. By Lemma 3.9, we see that b + r < β2 and by Lemma 3.13, b + r < β2 <
β0− b ≤ β. Hence, by Lemma 2.1 (ii), Lemma 2.2 and Theorem 2.3 (2) we see that
for max{0, β0−β

b } ≤ q ≤ 1, (x̄, ȳ) given in (2.4) is well defined. It is easy to verify
that if h ≤ h1, then 2(b+ r + h) ≤

√
b(β + qb) and

b(β + qb)− 4(b+ r + h)2 ≥ 0.

This, together with (3.18), implies

∆(q, h) =
b

(b+ r + h)2
{

(β + qb)
[
b(β + qb)− 4(b+ r + h)2

]
+ 4(b+ r + h)3

}
> 0.

The result follows from Lemma 3.1 (ii). �

Theorem 3.14 provides a range for h under which (x̄, ȳ) is a stable node of (2.2),
see Figure 3 below for a simulation result. By Lemma 3.13 (1), we see that under
the hypothesis of Theorem 3.14: β0 − b ≤ β ≤ ∞, we have β2 < β0 − b ≤ β.
Hence, Theorem 3.14 strengthens the result (iii) of Theorem 3.11 (2) which holds
for sufficiently small h.
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