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Abstract. In this work, we study the Prigozhin model for growing sandpile

with mixed boundary conditions and an arbitrary time dependent angle of
repose. On one part of the boundary the homogeneous Dirichlet boundary

condition is provided, on the other one the Robin condition is used. Using the

implicit Euler discretization in time, we prove the existence and uniqueness
of variational solution of the model and for the numerical analysis we use a

duality approach.

1. Introduction

In this work, we study the Prighozin type growing sandpile problem, with mixed
boundary conditions. On one part of the boundary the homogeneous Dirichlet
boundary condition is applied. This condition means that, on this boundary, the
sand can fall down. On the other part of the boundary we use the Robin boundary
condition. It is well known that the sand has a limit angle, the so-called angle of
repose. It corresponds to the steepest angle which the surface of a mass of particles
in bulk make with the ground. In the paper [9, 11, 14], the authors have worked
with an angle of stability equal to π/4. Furthermore, if we assume that the moisture
of the material is changing in time, we can assume that the angle of repose is a
given time dependent function c : t ∈ [0, T )→ c(t) ∈ R∗+. Hence, the model can be
described by the following PDE.

ut −∇(m∇u) = f in [0, T ]× Ω

|∇u| ≤ c(t), m ≥ 0, m(|∇u| − c(t)) = 0 in [0, T ]× Ω

u = 0 on [0, T ]× ΓD

m
∂u

∂ν
+ λu = g on [0, T ]× ΓN

u(0) = u0,

(1.1)

where Ω ⊂ Rs, is a bounded open domain. The solution u is the height of the
surface and f is the source.

Let us give a brief description of the model (1.1) under the following assumptions.
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• The flow of material is confined in a fine layer on the surface of the sand
pile,
• the density of the material is constant,
• the dynamic effects are assumed to be negligible.

The conservation law allows us to write
∂u

∂t
+∇.q = f in Ω;

f being the source and q the orthogonal projection of the material flow. Moreover,
since the flow of the material flows along the largest slope, then

q = −m∇u,
with m an unknown scalar function verifying with u, the following properties.

• The angle formed by the sandpile surface and the horizontal is never greater
than the angle of stability; i.e.

|∇u(t, x)| ≤ c(t);
• since there is not a flow of material when the slope is not very inclined, we

have
|∇u(t, x)| < c(t) ⇒ m(x, t) = 0.

The initial free surface is given by

u(x, 0) = u0(x).

Concerning the boundaries conditions, we have split the boundary of the domain
denoted Γ into two part ΓN et ΓD such that ΓN ∩ ΓD = ∅;

• in ΓD, we apply homogeneous Dirichlet boundary condition. In other
words, we assume that at this boundary, the sand falls down, that is

u = 0 on [0, T ]× ΓD;

• in ΓN , we consider Fourier boundary condition. In other words, we assume
that there exists a wall that prevents the flowing of sand, that is

m
∂u

∂ν
+ λu = g on [0, T ]× ΓN ,

with λ being a positive real number.
The PDEs with a mixed boundary appear in the modeling of many phenomena like
fluid flows in domains with a boundary, which includes several parts, these parts
differ by their physical properties [1, 5].

Let us recall that in the literature, many models of sandpile, with critical slope
model (cf. [9, 10, 11, 13, 14]), two layers models (cf. [7]) were studied. In particular,
in [11], the authors used nonlinear semi-group theory (see [4]) to prove the existence
and uniqueness of solution to a sandpile problem like (1.1). And for numerical
study of the problem they show that the Euler implicit time discretization problem
associated with the model is equivalent to some kind of minimization problem. So,
using the dual problem associated with this minimization problem the authors have
showed how to compute the solution of the model knowing the solution to the dual
problem. Our aim in this work is to generalize the ideas introduced in [11].

This article is organized as follows. In the next Section, we use the nonlinear
semi-group theory (see [4]) to get the existence and uniqueness of a variational
solution of (1.1) and the convergence of the approximate Euler discretization in
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time solutions to problem (1.1). In Section 3, we show how to compute the solution
of Euler implicit time discretization of (1.1) using duality argument and in Section
4, some results of numerical simulations of (1.1) are given.

2. Theoretical study of problem (1.1)

Let us start by introducing the Euler discretization in time of problem (1.1).
Given ε > 0, we say that (ti, fi, gi)i=1,...,n is an ε-discretization for problem (1.1)
if 0 = t0 < t1 < · · · < tn−1 < T = tn with ti − ti−1 ≤ ε, f1, . . . , fn ∈ L2(Ω),
g1, . . . , gn ∈ L2(ΓN ) such that

n∑
i=1

∫ ti

ti−1

‖f(t)− fi‖L2(Ω) ≤ ε,
n∑
i=1

∫ ti

ti−1

‖g(t)− gi‖L2(ΓN ) ≤ ε.

In the rest of the work, it is assumed that

c ∈W 1,∞(0, T ) and mint∈(0,T )c(t) := σ > 0. (2.1)

Definition 2.1. For any ε > 0, uε is an ε-approximate solution of (1.1), if there
exists (ti, fi, gi)i=1,...,n an ε− discretization of problem (1.1) such that

uε =

{
u0 for t ∈ (0, t1]
ui for t ∈ (ti−1, ti], i = 1, . . . , n

(2.2)

and ui solves the following Euler implicit time discretization of (1.1):

ui − ε∇(mi∇ui) = εfi + ui−1 in Ω

|∇ui| ≤ c(ti), mi ≥ 0, mi(|∇ui| − c(ti)) = 0 in Ω
ui = 0 on ΓD

m
∂ui
∂ν

+ λui = gi on ΓN .

(2.3)

To simplify the analysis, we introduce the following generic problem associated
with (2.3)

v −∇(m∇v) = f̃ in Ω

|∇v| ≤ d, m ≥ 0, m(|∇v| − d) = 0 in Ω
v = 0 on ΓD

m
∂v

∂ν
+ λv = g̃ on ΓN ,

(2.4)

with f̃ ∈ L2(Ω), g̃ ∈ L2(ΓN ), d = c(ti) and λ a strictly positive real number.
For convenience, we note the L2(Ω) scalar product by (·, ·) and the euclidean

norm on Rs by ‖ · ‖. We introduce the convex set K(d) given by

K(d) = {z ∈W 1,∞(Ω) ∩H1
D(Ω) : |∇z(x)| ≤ d a.e x ∈ Ω}

with
H1
D(Ω) = {z ∈ H1(Ω); z = 0 on ΓD}.

We also introduce the following function defined on H1
D by

Feg(z) =

{
−
∫

ΓN
(g̃ − λZ)zds if z ∈ K(d),

+∞ otherwise,
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with Z a variational solution of the following Laplace problem.
−∆Z = 0 in Ω
Z = 0 on ΓD

∂Z

∂ν
+ λZ = g̃ on ΓN .

(2.5)

The sub-differential of Feg is defined in L2(Ω) by

∂Feg(v) = {w ∈ K(d) : ∀z ∈ K(d), Feg(z) ≥ Feg(v) + (w, z − v)}.
We are now in a position to define our notion of solution to problems (2.4) and
(1.1).

Definition 2.2. For given f̃ ∈ L2(Ω), g̃ ∈ L2(ΓN ), we say that v is a variational
solution of (2.4) if v ∈ K(d) and∫

Ω

(f̃ − v)(z − v)dx+
∫

ΓN

(g̃ − λZ)(z − v)ds ≤ 0, for all z ∈ K(d). (2.6)

Definition 2.3. Given f ∈ L∞(0, T ;L2(Ω)), g ∈ L2
loc(ΓN ) and u0 ∈ K(c(0)),

a variational solution (resp. ε-approximate solution) of (1.1) is a function u ∈
W 1,1(0, T ;L2(Ω)) satisfying for any t ∈ (0, T ), u(t) ∈ K(c(t)) and∫

Ω

(f − ut(t))(z − u(t))dx+
∫

ΓN

(g − λZ)(z − v)ds ≤ 0, for any z ∈ K(c(t)).

(resp. uε given by (2.2) with ui a variational solution of (2.3)).

Using the same method given in [11], the following result can be proved.

Lemma 2.4. (i) ∂Feg is a maximal monotone graph in L2(Ω).
(ii) v is a solution of (2.4) if and only if v is a solution of v + ∂Feg(v) 3 f̃ .

Since ∂Feg is a maximal monotone graph in L2(Ω), then, thanks to [4] for any
f̃ ∈ L2(Ω) there exists a unique solution v of

v + ∂Feg(v) 3 f̃ , (2.7)

which is equivalent to saying that (2.4) admits a unique variational solution. More-
over, if vi is the solution corresponding to f̃i for i = 1, 2, then

‖v1 − v2‖2 ≤ ‖f̃1 − f̃2‖2. (2.8)

To prove the existence and uniqueness of the solution to problem (1.1), we need
the following lemma.

Lemma 2.5. Let f ∈ L∞(0, T ;L2(Ω)), g ∈ L2
loc(ΓN ), c : t ∈ [0, T ) → c(t) ∈ R∗+

and u0 ∈ K(c(0)). Then, u is a solution of (1.1) if and only if v(t, .) = u(t,.)
c(t) is a

solution of
vt + ∂Gg/c(v) 3 h

v(0) =
u(0)
c(0)

,
(2.9)

with h = f
c(t) −

c
′
(t)
c(t) v(t), for any t ∈ [0, T ) and

Gg/c(z) :=

{
−
∫

ΓN

(g−λZ)
c(t) z if z ∈ K(1)

0 otherwise.
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Proof. If u is a solution of (1.1), then∫
Ω

(f − ut)(z − u)dx+
∫

ΓN

(g − λZ)(z − u)ds ≤ 0. (2.10)

For any t ∈ [0, T ), we denote

A :=
∫

Ω

(f − ut)(z − u)dx+
∫

ΓN

(g − λZ)(z − u)ds.

We take t ∈ [0, T ), v(t, ·) = u(t,·)
c(t) to obtain

A =
∫

Ω

[f − (vtc(t) + v(t)c
′
(t))](z − v(t)c(t))dx+

∫
ΓN

(g − λZ)(z − v(t)c(t))ds

=
∫

Ω

[f − vtc(t)− v(t)c
′
(t)](z − v(t)c(t))dx+

∫
ΓN

(g − λZ)(z − v(t)c(t))ds

=
∫

Ω

(c(t))2(
f

c(t)
− vt −

v(t)c
′
(t)

c(t)
)(

z

c(t)
− v(t))dx

+
∫

ΓN

(c(t))2 g − λZ
c(t)

(
z

c(t)
− v(t))ds.

Since A ≤ 0 for any t ∈ [0, T ), we have∫
Ω

(
f

c(t)
− vt −

v(t)c
′
(t)

c(t)
)(

z

c(t)
− v(t))dx+

∫
ΓN

g − λZ
c(t)

(
z

c(t)
− v(t))ds ≤ 0,

for any t ∈ [0, T ). Since z ∈ K(c(t)), then w = z
c(t) ∈ K(1) for any t ∈ [0, T ) and,

it follows that∫
Ω

(h− vt)(w − v(t))dx+
∫

ΓN

g − λZ
c(t)

(w − v(t))ds ≤ 0;

which is equivalent to saying that v is a solution of (2.9).
Now, we suppose that v is a solution of (2.9), then∫

Ω

(h− vt)(w − v(t))dx+
∫

ΓN

g − λZ
c(t)

(w − v(t))ds ≤ 0, for any z ∈ K(1).

Using v(·, t) = u(·,t)
c(t) and denoting

B =
∫

Ω

(h− vt)(w − v(t))dx+
∫

ΓN

g − λZ
c(t)

(w − v(t))ds,

we get

B =
∫

Ω

(h− vt)(w − v(t))dx+
∫

ΓN

g − λZ
c(t)

(w − v(t))ds

=
∫

Ω

(
f

c(t)
− c

′
(t)

c(t)2
u(t)− utc(t)− u(t)c

′
(t)

c(t)2
)(w − u(t)

c(t)
)dx

+
∫

ΓN

g − λZ
c(t)

(w − u(t)
c(t)

)ds

=
∫

Ω

(
f

c(t)
− ut
c(t)

)(w − u(t)
c(t)

)dx+
∫

ΓN

g − λZ
c(t)

(w − u(t)
c(t)

)ds.

(2.11)
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Since B ≤ 0 and (c(t))2B ≤ 0, we get∫
Ω

(f −ut)(c(t)w−u(t))dx+
∫

ΓN

(g−λZ)(c(t)w−u(t))ds ≤ 0, for any w ∈ K(1).

Since w ∈ K(1), then c(t)w ∈ K(c(t)); therefore∫
Ω

(f − ut)(z − u(t))dx+
∫

ΓN

(g − λZ)(z − u(t))ds ≤ 0, for any z ∈ K(c(t)).

So, u is a solution of (2.4) �

Theorem 2.6. Let f ∈ L∞(0, T ;L2(Ω)) and g ∈ L2
loc(ΓN ), then (1.1) has a unique

variational solution u ∈W 1,1(0, T ;L2(Ω)); and for any subsequence ε→ 0, if uε is
a ε-approximate solution of (1.1), then

uε → u ∈ C([0, T );L2(Ω)).

Moreover, if for i = 1, 2, ui is a solution corresponding to fi, then
d

dt

∫
Ω

(u1 − u2)+ ≤
∫

Ω

(f1 − f2)+ in D′(0, T ).

In particular, if f ≥ 0 and g ≥ 0, then u ≥ 0 a.e. in Ω.

Proof. Using [4, Proposition 3.13], we deduce that for any v0 ∈ K(1), (2.9) has a
unique solution v ∈W 1,1(0, T ;L2(Ω)), then from Lemma 2.5, we deduce that (1.1)
has a unique variational solution. To prove the convergence of the ε-approximate
solution, let us consider, for i = 1, . . . , n,

ui + ∂Fg,c(ti)(ui) 3 εfi + ui−1, (2.12)

where

Fg,c(ti)(z) =

{
−
∫

ΓN
(g − λZ)zds if z ∈ K(c(ti))

+∞ otherwise.
For i = 0, 1, . . . , n, setting

zi =
ui
c(ti)

with c(ti) > 0.

We have∫
Ω

(
εfi
c(ti)

+
c(ti−1)
c(ti)

zi−1 − zi)(w − zi)dx+
∫

ΓN

gi − λZi
c(ti)

(w − zi)dx ≤ 0,

for w ∈ K(1), which is equivalent to saying

zi + ∂G g
c(ti)

(zi) 3
εfi
c(ti)

+
c(ti−1)
c(ti)

zi−1. (2.13)

Now, we introduce the Euler implicit discretization in time associated with (2.9),

vi + ∂G g
c(ti)

(vi) 3 εhi + vi−1, (2.14)

for i = 0, 1, . . . , n with

G g
c(ti)

(z) :=

{
−
∫

ΓN

g−λZ
c(ti)

zds if z ∈ K(1)

+∞ otherwise.

Let vε, defining by

vε :=

{
v0 for t ∈ (0, t1]
vi for t ∈ (ti−1, ti], i = 1, . . . , n.
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Thanks to the nonlinear semigroup theory (see for instance [4, Theorem 4.6]), it
follows that

vε → v ∈ C([0, T );L2(Ω)) as ε→ 0,

where v is a solution of (2.9). Problem (2.14) is equivalent to saying

vi + ∂G g
c(ti)

(vi) 3
εfi
c(ti)

− c(ti)− c(ti−1)
c(ti)

(v(ti−1)− vi−1) +
c(ti−1)
c(ti)

vi−1, (2.15)

for i = 1, . . . , n. We take zi as a test function in (2.15) to obtain∫
Ω

( εfi
c(ti)

− c(ti)− c(ti−1)
c(ti)

(v(ti−1)− vi−1) +
c(ti−1)
c(ti)

vi−1 − vi
)

(zi − vi)dx

+
∫

ΓN

gi − λZi
c(ti)

(zi − vi)dx ≤ 0.
(2.16)

Now, we take vi as a test function in (2.13) to get∫
Ω

(
εfi
c(ti)

+
c(ti−1)
c(ti)

zi−1 − zi)(vi − zi)dx+
∫

ΓN

gi − λZi
c(ti)

(vi − zi)dx ≤ 0. (2.17)

Combining (2.16) and (2.17), we obtain∫
Ω

(
− c(ti)− c(ti−1)

c(ti)
(v(ti−1)− vi−1) +

c(ti−1)
c(ti)

(vi−1 − zi−1)

+ (zi − vi)
)

(zi − vi)dx ≤ 0,

which implies∫
Ω

(
− c(ti)− c(ti−1)

c(ti)
(v(ti−1)− vi−1) +

c(ti−1)
c(ti)

(vi−1 − zi−1)
)

(zi − vi)dx

+
∫

Ω

(zi − vi)2dx ≤ 0.
(2.18)

So, using the Hölder inequality in (2.18), we deduce that

‖zi − vi‖2L2(Ω)

≤
∫

Ω

(
c(ti)− c(ti−1)

c(ti)
(v(ti−1)− vi−1)− c(ti−1)

c(ti)
(vi−1 − zi−1))(zi − vi)dx

≤
∥∥c(ti)− c(ti−1)

c(ti)
(v(ti−1)− vi−1)− c(ti−1)

c(ti)
(vi−1 − zi−1)

∥∥
L2(Ω)

‖zi − vi‖L2(Ω).

It follows that

‖zi − vi‖L2(Ω) ≤
∣∣c(ti−1)
c(ti)

∣∣ ‖vi−1 − zi−1‖L2(Ω) +
∣∣c(ti)− c(ti−1)

c(ti)

∣∣
× ‖v(ti−1)− vi−1‖L2(Ω),

(2.19)

for i = 1, . . . , n. Since v0 = z0, then iterating (2.19) for i = k, . . . , 1, we obtain

‖vk − zk‖L2(Ω) ≤
k∑
i=1

∣∣c(tk−i+1)− c(tk−i)
c(tk)

∣∣ ‖v(tk−i)− vk−i‖L2(Ω)

≤ 1
δ

k∑
i=1

|c(tk−i+1)− c(tk−i)| ‖v(tk−i)− vk−i‖L2(Ω)



8 E. NASSOURI, S. OUARO, U. TRAORÉ EJDE-2017/300

≤ ‖c
′‖∞
δ

k−1∑
i=1

(tk−i+1 − tk−i)‖v(tk−i)− vk−i‖L2(Ω).

Setting ṽε(t) = v(ti) if t ∈ [ti, ti+1) for i = 0, 1, . . . , n− 1, we get

‖vk − zk‖L2(Ω) ≤
‖c′‖∞
δ

k−1∑
i=0

∫ ti+1

ti

‖ṽε(t)− vε(t)‖L2(Ω)dt

≤ ‖c
′‖∞
δ

∫ T

0

‖ṽε(t)− vε(t)‖L2(Ω)dt

and

‖vε(t)− zε(t)‖L2(Ω) ≤
‖c′‖∞
δ

∫ T

0

‖ṽε(t)− vε(t)‖L2(Ω)dt, for any t ∈ [0, T ).

Since ε→ 0 and ṽε → v in C([0, T );L2(Ω)), we have

lim
ε→0

sup
t∈[0,T )

‖vε(t)− zε(t)‖L2(Ω) = 0. (2.20)

We define cε by cε(t) = c(ti) for t ∈ [ti, ti+1) and i = 0, 1, . . . , n,. We have

‖u(t)− uε(t)‖L2(Ω)

≤ cε(t)
∥∥ u(t)
cε(t)

− zε(t)
∥∥
L2(Ω)

≤ ‖c‖∞(
∥∥ u(t)
cε(t)

− v(t)‖L2(Ω) + ‖v(t)− vε(t)‖L2(Ω) + ‖vε(t)− zε(t)
∥∥
L2(Ω)

).

Combining (2.20), the fact that vε → v in C([0, T );L2(Ω)) and cε → c in C([0, T )),
and as ε→ 0, we deduce that

lim
ε→0

sup
t∈[0,T )

‖u(t)− uε(t)‖L2(Ω) = 0. (2.21)

So, uε → u in C([0, T );L2(Ω)) as ε→ 0. At last, for the contraction property, if for
i = 1, 2, ui is the solution corresponding to fi, then we have

d

dt

∫
Ω

(u1(t)− u2(t))+dx

=
d

dt

∫
[u1(t)>u2(t)]

(u1(t)− u2(t))dx

=
∫

[u1(t)>u2(t)]

(f1(t)− f2(t))dx

−
∫

[u1(t)>u2(t)]

div(m1(t)∇u1(t))− div(m2(t)∇u2(t)))dx

≤
∫

Ω

(f1 − f2)+dx

−
∫

Ω

sign0(u1 − u2) div(m1(t)∇u1(t))− div(m2(t)∇u2(t)))dx

≤
∫

Ω

(f1 − f2)+dx

−
∫

ΓN

sign0(u1 − u2)(m1(t)∇u1(t)−m2(t)∇u2(t)).νdσ
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≤
∫

Ω

(f1 − f2)+dx

�

3. Dual formulation and numerical approximation

Following the ideas developed in [10, 11, 13], we show in this section how to ap-
proximate the solution of problem (1.1). In [13], the authors introduced a numerical
method based on Fenchel duality theory (see, [2]) for numerical approximation of
problem (2.4), in the special case where the homogeneous Dirichlet boundary con-
dition is applied. In fact, in the homogeneous Dirichlet boundary condition case,
it is not difficult to see that

v = PK(d)(f̃), (3.1)

where PK(d) denotes the projection with respect to the L2 norm onto the convex
K(d) and, thanks to [2], the associated dual problem is given by

sup{−G(q) : q ∈ (C(Ω))N}, (3.2)

where

G(q) =
1
2

∫
Ω

(div(q))2dx+
∫

Ω

f̃ div(q)dx+ d

∫
Ω

|q|dx. (3.3)

In [13], the authors have given the connection between (3.1) and (3.2) by studying
G in the space Hdiv(Ω), defined by

Hdiv(Ω) := {w ∈ (L2(Ω))N ; div(w) ∈ L2(Ω)},

which has allowed them to compute the projection v on K(d) of f̃ by computing
the solution of the dual problem (3.2). Since in the present work, we consider a
mixed boundary condition, we cannot see problem (2.4) as a projection problem on
a convex set. Furthermore, we have the following result.

Lemma 3.1. Let v ∈ K(d). v is a solution of (2.4) if and only if v is also a
solution of the following minimization problem

min
z∈K(d)

{1
2

∫
Ω

|z − f̃ |2dx−
∫

ΓN

(g̃ − λZ)zds
}
. (3.4)

Proof. Let v ∈ K(d) be a solution of (2.4). Then, we have∫
Ω

(f̃ − v)(z − v)dx+
∫

ΓN

(g̃ − λZ)(z − v)ds ≤ 0, ∀z ∈ K(d). (3.5)

Since
‖v − f̃‖2L2(Ω) − ‖z − f̃‖

2
L2(Ω) = 2(f̃ − v, z − v)− ‖v − z‖2L2(Ω),

we have
1
2

∫
Ω

|v − f̃ |2dx− 1
2

∫
Ω

|z − f̃ |2dx =
∫

Ω

(f̃ − v, z − v)dx− 1
2

∫
Ω

|v − z|2dx.

Thus,
1
2

∫
Ω

|v − f̃ |2dx− 1
2

∫
Ω

|z − f̃ |2dx+
∫

ΓN

(g̃ − λZ)(z − v)ds

=
∫

Ω

(f̃ − v, z − v)dx+
∫

ΓN

(g̃ − λZ)(z − v)ds− 1
2

∫
Ω

|v − z|2dx.
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Therefore, by using (3.5), we deduce that

1
2

∫
Ω

|v − f̃ |2dx− 1
2

∫
Ω

|z − f̃ |2dx−
∫

ΓN

(g̃ − λZ)(z − v)ds ≤ 0; (3.6)

which is equivalent to saying
1
2

∫
Ω

|v − f̃ |2dx−
∫

ΓN

(g̃ − λZ)vds ≤ 1
2

∫
Ω

|z − f̃ |2dx−
∫

ΓN

(g̃ − λZ)zds,

for any z ∈ K(d). So, v ∈ K(d) is a solution of (3.4). Now, we suppose that
v ∈ K(d) is a solution to the minimization problem (3.1). Let z0 ∈ K(d). Since
K(d) is convex, then for any t ∈ [0, 1), z = (1− t)v + tz0 ∈ K(d). We have

1
2

∫
Ω

|v − f̃ |2dx−
∫

ΓN

(g̃ − λZ)vds

≤ 1
2

∫
Ω

|f̃ − ((1− t)v + tz0)|2dx−
∫

ΓN

(g̃ − λZ)((1− t)v + tz0)ds

≤ 1
2

∫
Ω

|(f̃ − v)− t(z0 − v)|2dx−
∫

ΓN

(g̃ − λZ)vds− t
∫

ΓN

(g̃ − λZ)(z0 − v)ds

≤ 1
2
‖(f̃ − v)− t(z0 − v)‖2L2(Ω) −

∫
ΓN

(g̃ − λZ)vds− t
∫

ΓN

(g̃ − λZ)(z0 − v)ds.

It follows that
1
2

∫
Ω

|v − f̃ |2dx−
∫

ΓN

(g̃ − λZ)vds

≤ 1
2

∫
Ω

|v − f̃ |2dx− t(f̃ − v, z0 − v) +
t2

2

∫
Ω

|z0 − v|2dx

−
∫

ΓN

(g̃ − λZ)vds− t
∫

ΓN

(g̃ − λZ)(z0 − v)ds.

So,

(f̃ − v, z0 − v) +
∫

ΓN

(g̃ − λZ)(z0 − v)ds ≤ t

2

∫
Ω

|z0 − v|2dx. (3.7)

Hence, by letting t→ 0 in (3.7), we obtain∫
Ω

(f̃ − v)(z0 − v)dx+
∫

ΓN

(g̃ − λZ)(z0 − v)ds ≤ 0,

for any z0 ∈ K(d), which implies that∫
Ω

(f̃ − v)z0dx+
∫

ΓN

(g̃ − λZ)z0 ds ≤
∫

Ω

(f̃ − v)vdx+
∫

ΓN

(g̃ − λZ)v ds, (3.8)

for any z0 ∈ K(d).
From (3.8), we deduce that v is a solution of (2.4). �

Inspired by the works of Igbida et al. (see [11]), we consider as a dual problem
associated with problem (3.4), the following optimization problem

sup{−G(w) : w ∈ Hdiv,g̃(Ω)}, (3.9)

where

G(w) =
1
2

∫
Ω

(div(w))2dx+
∫

Ω

f̃ div(w)dx+ d

∫
Ω

|w|dx (3.10)
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and

Hdiv,eg(Ω) =
{
w ∈ Hdiv(Ω) :

∫
Ω

[− div(w)]ξdx =
∫

Ω

w∇ξdx−
∫

ΓN

(g̃ − λZ)ξds,

∀ξ ∈ H1
D(Ω)

}
.

It is not clear that the dual problem associated with problem (3.4) is problem
(3.9). In the following, we prove the connection between problems (3.9) and (3.4).
We also present a method for numerical approximation of the solution of problem
(2.4) by computing sup{−G(w) : w ∈ Hdiv,eg(Ω)}. We first show the following
result.

Lemma 3.2. For any f̃ ∈ L2(Ω), g̃ ∈ L2(ΓN ), ω ∈ Hdiv,eg(Ω) and z ∈ K(d), we
have

−G(w) ≤ J(z),

where J(z) = 1
2

∫
Ω
|z − f̃ |2dx−

∫
ΓN

(g̃ − λZ)zds.

Proof. Let w ∈ Hdiv,eg(Ω) and z ∈ K(d) be fixed. Since
1
2

(div(w)− (z − f̃))2 ≥ 0, (3.11)

we deduce that

−1
2

∫
Ω

(div(w))2dx−
∫

Ω

div(w)f̃dx+
∫

Ω

div(w)zdx ≤ 1
2

∫
Ω

(z − f̃)2dx,

which implies

−1
2

∫
Ω

(div(w))2dx−
∫

Ω

div(w)f̃dx ≤ 1
2

∫
Ω

(z − f̃)2dx−
∫

Ω

div(w)zdx.

Using the fact that w ∈ Hdiv,eg(Ω), we get

−1
2

∫
Ω

(div(w))2dx−
∫

Ω

div(w)f̃dx ≤ 1
2

∫
Ω

(z−f̃)2dx+
∫

Ω

w·∇zdx−
∫

ΓN

(g̃−λZ)z ds.

Therefore,

−G(w) ≤ 1
2

∫
Ω

(z − f̃)2dx−
∫

ΓN

(g̃ − λZ)zds+
∫

Ω

w · ∇zdx− d
∫

Ω

|w|dx. (3.12)

Since z ∈ K(d), we have ∫
Ω

w · ∇zdx− d
∫

Ω

|w|dx ≤ 0. (3.13)

Thus,

−G(w) ≤ 1
2

∫
Ω

(z − f̃)2dx−
∫

ΓN

(g̃ − λZ)zds

�

Our main result of this section reads as follows.

Theorem 3.3. Let f̃ ∈ L2(Ω), g̃ ∈ L2(ΓN ) and v the variational solution of (3.4).
Then, there exists a sequence (wε)ε>0 in Hdiv,eg(Ω) such that, as ε→ 0,

d

∫
Ω

|ωε|dx→
∫

Ω

v(f̃ − v)dx+
∫

ΓN

(g̃ − λZ)v ds, (3.14)

div(ωε)→ v − f̃ ∈ L2(Ω) (3.15)



12 E. NASSOURI, S. OUARO, U. TRAORÉ EJDE-2017/300

and
lim
ε→0

G(ωε) = inf
ω∈Hdiv,g(Ω)

G(ω)

= − min
z∈K(d)

J(z)

= −
[1

2

∫
Ω

|f̃ − v|2dx−
∫

ΓN

(g̃ − λZ)v ds
]
.

(3.16)

To prove the above result, we consider the following elliptic problem.

vε −∇wε = f̃ in Ω

wε = φε(∇vε) in Ω
vε = 0 on ΓD

wε · η = g̃ − λZ on ΓN ,

(3.17)

where for any ε > 0, φε : Rs → Rs is given by

φε(r) =
1
ε

(|r| − d)+ r

|r|
for all r ∈ Rs

and satisfies the following properties.
(i) for any r1, r2 ∈ Rs, (φε(r1)− φε(r2)).(r1 − r2) ≥ 0;

(ii) there exists ε0 > 0 and A > d such that φε(r).r ≥ |r|2 for any |r| > A and
ε < ε0;

(iii) for any ε > 0 and r ∈ Rs, d|φε(r)| ≤ φε(r) · r.
Then, from the same method as in the proof of [11, Lemma 3.6], we can easily prove
the following result.

Lemma 3.4. There exists a unique weak solution vε to problem (3.17) with 0 < ε <
ε0 in the sense that vε ∈ H1

D(Ω), wε = φε(∇vε) ∈ (L2
D(Ω))s and for all z ∈ H1

D(Ω),∫
Ω

vεzdx+
∫

Ω

φε(∇vε)∇z dx =
∫

Ω

f̃ zdx+
∫

ΓN

(g̃ − λZ)z ds. (3.18)

Moreover, (vε)0<ε<ε0 is bounded in H1
D(Ω) and for any Borel set B ⊂ Ω, we have

lim inf
ε→0

∫
B

|∇vε|dx ≤ d|B|. (3.19)

Proof of the Theorem 3.3. Thanks to Lemma 3.4, one has that the sequence (vε)ε>0

is bounded in H1
D(Ω). Therefore, we can extract a subsequence (still denoted by

(vε)ε>0) such that

vε → ṽ in H1
D(Ω)-weak and in L2(Ω).

Hence, by problem (3.17), we deduce that

div(wε)→ ṽ − f̃ in L2(Ω).

We define the set Aδ by Aδ = [|∇ṽ| ≥ d + δ], with δ > 0. Using the fact that
∇vε → ∇ṽ in (L1(Ω))s-weak as ε→ 0, it follows that

(d+ δ)|Aδ| ≤
∫
Aδ

|∇ṽ|dx ≤ lim inf
ε→0

∫
Aδ

|∇vε|dx. (3.20)

From Lemma 3.2, one has B = Aδ and then

(d+ δ)|Aδ| ≤ |Aδ|. (3.21)
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Therefore |Aδ| = 0 since δ > 0. So, |∇ṽ| ≤ d a.e. in Ω and ṽ ∈ K(d). Now we must
show that the solution ṽ is also a solution to problem (3.4). For any z ∈ K(d), one
has ∫

Ω

(f̃ − ṽ)(z − ṽ)dx+
∫

ΓN

(g̃ − λZ)(z − ṽ)ds

= lim
ε→0

∫
Ω

−∇φε(∇vε)(z − ṽ)dx+
∫

ΓN

(g̃ − λZ)(z − ṽ)ds

= lim
ε→0

∫
Ω

φε(∇vε)∇(z − ṽ)dx−
∫

ΓN

(g̃ − λZ)(z − ṽ)ds

+
∫

ΓN

(g̃ − λZ)(z − ṽ)ds

= lim
ε→0

∫
Ω

φε(∇vε)∇(z − ṽ)dx

= lim
ε→0

∫
Ω

(φε(∇vε)− φε(∇z))∇(z − ṽ)dx ≤ 0,

(3.22)

which proves that ṽ is a also an variational solution of (2.4). Then, it follows that
v = ṽ and ṽ also satisfies (3.4). Now, we must show that ωε satisfies (3.14). From
the property (iii) of φε, it follows that

lim sup
ε→0

d

∫
Ω

|ωε|dx = lim sup
ε→0

∫
Ω

d|φε(∇vε)|dx

≤ lim sup
ε→0

∫
Ω

φε(∇vε)∇vε dx

≤ lim sup
ε→0

(∫
ΓN

φε(∇vε).ηvεdx−
∫

Ω

∇φε(∇vε)vεdx
)

≤ lim sup
ε→0

(∫
Ω

(f̃ − vε)vεdx+
∫

ΓN

(g̃ − λZ)vε ds
)

≤
∫

Ω

(f̃ − ṽ)ṽdx+
∫

ΓN

(g̃ − λZ)ṽds.

(3.23)

and since v is a variational solution to problem (2.4), (3.23) becomes

d lim sup
ε→0

∫
Ω

|wε|dx ≤
∫

Ω

(f̃ − v)vdx+
∫

ΓN

(g̃ − λZ)vds. (3.24)

Using the fact that ṽ is a variational solution to problem (2.4), it follows that∫
Ω

(f̃ − v)vdx+
∫

ΓN

(g̃ − λZ)vds ≤
∫

Ω

(f̃ − ṽ)ṽdx+
∫

ΓN

(g̃ − λZ)ṽds

= lim
ε→0

∫
Ω

(f̃ − vε)ṽdx+
∫

ΓN

(g̃ − λZ)ṽds

= lim
ε→0

∫
Ω

−∇wε.ṽdx+
∫

ΓN

(g̃ − λZ)ṽds

= lim
ε→0

∫
Ω

wε · ∇ṽdx

≤ d lim
ε→0

∫
Ω

|wε|dx.

(3.25)
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From (3.23) and (3.25), it follows that

d lim
ε→0

∫
Ω

|wε|dx =
∫

Ω

(f̃ − v)vdx+
∫

ΓN

(g̃ − λZ)vds. (3.26)

To complete the proof, it remains to prove (3.16). For that, we use (3.14), (3.16)
and (3.26) to get

lim
ε→0

(−G(ωε)) = lim
ε→0

(
− 1

2

∫
Ω

[div(wε)]2dx−
∫

Ω

div(ωε)f̃dx− d
∫

Ω

|wε|dx
)

= −1
2

∫
Ω

(ṽ − f̃)2dx−
∫

Ω

(ṽ − f̃)f̃dx−
∫

Ω

(f̃ − ṽ)ṽdx

−
∫

ΓN

(g̃ − λZ)ṽds

= −1
2

∫
Ω

(ṽ − f̃)2dx+
∫

Ω

(ṽ − f̃)2dx−
∫

ΓN

(g̃ − λZ)ṽds

=
1
2

∫
Ω

(ṽ − f̃)2dx−
∫

ΓN

(g̃ − λZ)ṽds.

Therefore,
lim
ε→0

(−G(wε)) = J(ṽ) = J(v). (3.27)

Lemma 3.2 allows us to write

sup
ω∈Hdiv,eg(Ω)

(−G(w)) ≤ J(v) = lim
ε→0

(−G(wε)). (3.28)

Since
J(v) = lim

ε→0
(−G(wε)) ≤ sup

ω∈Hdiv,eg(Ω)

(−G(w)), (3.29)

one concludes that

lim
ε→0

(−G(wε)) = sup
ω∈Hdiv,eg(Ω)

(−G(w)) = J(v) (3.30)

�

Remark 3.5. As consequences of Theorem 3.3, we have the following characteri-
zation of the solution v to problem (2.4):

v − div(ω) = f̃ in (H1
D(Ω))∗

d|ω|(Ω) =
∫

Ω

v(f̃ − v)dx+
∫

ΓN

(g̃ − λZ)v ds,
(3.31)

where w ∈ (Mb(Ω))s is the weak limit of (wε)ε>0, in (Mb(Ω))s.

For numerical tests, we need to construct a subset of Hdiv,eg(Ω). For that, we
introduce the following result.

Lemma 3.6. sup{−G(y) : y ∈ Hdiv,eg} = sup{G(ϕ) : ϕ ∈ H}, where G(ϕ) =
G(ϕ+∇Z) with Z the variational solution to the Laplace problem (2.5) and

H =
{
ϕ ∈ Hdiv(Ω) : −

∫
Ω

div(ϕ)ξ =
∫

Ω

ϕ · ∇ξ, ∀ξ ∈ H1
D(Ω)

}
.
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This lemma can be proved, by the same method given in [11].
Consequently, the dual problem (3.9) is equivalent to

inf{G(φ+∇Z) : φ ∈ H}. (3.32)

To approximate the numerical minimization problem (3.32), we use the finite ele-
ment method and we make the following assumptions.

• Ω is an open and bounded subset of R2.
• Th is a regular partition (quadrangulation) of Ω by N disjoint open simplex
τ of diameter no greater than a given real h, with Ω = ∪τ∈Thτ .

Let Vh be a finite dimensional subspace of RT0(Th)∩H with dimensional equal to
N = N(h), with RT0(Th) the space of lowest-order Raviart-Thomas finite elements
(see [6]) defined by

RT0(Th) =
{
qh ∈ (L2(Ω))2 : qhτ = aτ + bτx, a ∈ R2, b ∈ R, ∀τ ∈ Th,

and (qhτ − qhτ ′).ν∂τ = 0 on ∂τ ∩ ∂τ ′
}
,

where ν∂τ represents the outward unit normal to ∂τ , the boundary of τ .
By rh we denote the interpolation operator onto Vh given in [6, Theorem 6.1].

Then, thanks to [6], for all w ∈ Hdiv(Ω), we have

rh(w)→ w in (L2(Ω))2 and div(rh(w))→ div(ω) in L2(Ω), as h→ 0. (3.33)

We have the following convergence properties as h tends to 0.

Theorem 3.7. Let f̃ ∈ L2(Ω), g̃ ∈ L2(ΓN ), v a solution to the minimization
problem (3.4) and wh a solution of the optimization problem

sup{−G(qh) : qh ∈ Vh}. (3.34)

Then, as h→ 0,
div(ωh)→ v − f̃ in L2(Ω) (3.35)

and
− G(ωh)→ min

z∈K
J(z) =

1
2

∫
Ω

|v − f̃ |2dx−
∫

ΓN

(g̃ − λZ)v ds. (3.36)

The proof of this result is similar to the proof of [11, Theorem 3.8]; therefore,
we omit it.

4. Numerical simulations

We start by approximating the term
∫
τ
|qh + ∇Z|dx on each element τ of the

partitioning Th. We take∫
τ

|qh +∇Z |dx ∼ |τ ||qh +∇Z|(Pτ ),

where |τ | represents the area of simplex τ and (Pτ ) is one of the vertices of τ . Using
this approximation, at each time n × dt, n ∈ N and dt the time step, the solution
of (3.34) is a minimizer of the non-differentiable functional G : Rs → R,

G(wh) :=
1
2

(Awh, wh) + (dtfnh + un−1,div(wh)) + c(ndt)
∑
τ∈Th

|τ | |wh +∇Z|(Pτ ).

The minimization of the functional G is done according to the Gauss-Seidel type
algorithm which is described in the following way.
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• We start the algorithm by the initial vector q0 ∈ Rs, for any k ≥ 0 until
convergence;
• we choose a canonical direction ej ∈ Rs and we find ρjk minimizing the

functional φjk : R→ R,

Gh(qk + ρej),

• we take qk+1 = qk + ωρjkej , with ω over relaxation parameter,
• algorithm is performed until ‖qk+1 − qk‖L2(Ω) ≤ ε, ε is the convergence

criterion. Afterwards, take wh = qk.
Knowing a minimizer wh, the solution un of the Euler implicit time discretization

of (1.1) is computed by using extremality relation (3.31) in a weak sense with
piecewise finite elements P0. Here, we study the growing sandpile problem with
time evolution that is c(t) which is connected with time. So, we take

c(tk) =
tk
T
.

For numerical tests, we consider Ω = [−1, 1]× [−1, 1], ω = 0.5, N = 60, dt = 10−3

and ε = 10−3 the convergence criterion. We consider firstly ΓN = {y ∈ [−1, 1], x =
−1} that is we suppose that there exists a wall at the boundary x = −1.

f = 0, g = 1, λ = 10−60 f = 0, g = 1, λ = 1055

Figure 1.

In Figure 1(left), g has the same role as the source. In Figure 1(right), we take
λ = 1055 and we see that for this value the boundary value g − λZ is near zero,
that is the reason why the height of the sandpile is very small.

We remark that the two graphs in Figure 2 have the same configuration. This
is so because when g = 0, the solution Z of problem (2.5) is zero regardless of the
choice of λ.

It can be seen that two graphs in Figure 2, and the one in Figure 3(right) have the
same configuration because for λ is very large; the boundary value is similar to the
case when g = 0. For the rest, we consider ΓN = {y ∈ [−1, 1], x = −1, and x = 1},
that is we suppose that there exist two opposites sides on x = −1 and x = 1.

From Figure 4(left) one sees that g has the same role as the source. One also
sees that for λ = 1070, the height of sandpile is very small because for this value,
the solution Z of (2.5) goes to zero.

The two graphs in Figure 5 have the same profile because when g = 0, the
solution Z to problem (2.5) is near to zero. Hence, the formation of sandpile
depends only on the source f .
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f = 5, g = 0, λ = 10−70. f = 5, g = 0, λ = 1055

Figure 2.

f = 3, g = 2, λ = 10−70 f = 3, g = 2, λ = 1030

Figure 3.

f = 0, g = 40, λ = 10−20 f = 0, g = 40, λ = 1070

Figure 4.

The two graphs in Figure 5, and the one in Figure 6(right) are similar because
for f 6= 0, g = 0 and f 6= 0, g 6= 0 and λ = 1060 (λ very large), boundary value
g − λZ is near to zero.



18 E. NASSOURI, S. OUARO, U. TRAORÉ EJDE-2017/300

f = 5, g = 0, λ = 10−60 hfil f = 5, g = 0, λ = 1050

Figure 5.

f = 5, g = 3, λ = 10−45 f = 5, g = 3, λ = 1060

Figure 6.

Remark 4.1. (1) In the simulations, when the source f is equal to zero and λ is
very large, it sees that the evolution of the sandpile is very low; i.e., the height of
sandpile is near to zero.

(2) When the source f 6= 0, g 6= 0 and λ is very large (λ → ∞) we get same
sandpile configuration as when g = 0, regardless of the choice of λ.
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