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NONEXISTENCE OF SOLUTIONS TO SOME INEQUALITIES
AND SYSTEMS WITH SINGULAR COEFFICIENTS ON THE

BOUNDARY

LIUDMILA UVAROVA, OLGA SALIEVA, EVGENY GALAKHOV

Communicated by Jesus Ildefonso Diaz

Abstract. We obtain sufficient conditions for the nonexistence of positive
solutions to some elliptic inequalities and systems containing the p-Laplace

operators and coefficients possessing singularities on the boundary.

1. Introduction

The problem of sufficient conditions for nonexistence of solutions to systems of
nonlinear elliptic differential equations and inequalities with singular coefficients has
been studied by many authors. For the Laplacian and heat operator with a point
singularity inside the domain, pioneering results in this direction were obtained by
Brezis and Cabré [1] by means of comparison principles. For higher order operators
that do not satisfy the comparison principle, Pohozaev [11] suggested the nonlinear
capacity method. Later it was developed in joint works with Mitidieri and other
authors (see, in particular, the monograph [10] and references therein). This method
allowed one to obtain a number of new sharp sufficient conditions of non-solvability
of differential inequalities in various functional classes. The method is based on
deriving asymptotically optimal a priori estimates of the solutions by means of
algebraic analysis of the integral form of the inequality under consideration with a
special choice of test functions. Applications of this method to different types of
elliptic inequalities and systems containing degeneracy, point singularities, gradient
terms etc. can be found, for example, in [4, 5, 9].

In the present paper, a modification of the nonlinear capacity method is used in
order to obtain dimension independent sufficient conditions of non-solvability for
some quasilinear elliptic inequalities in a bounded domain with coefficients having
singularities near the boundary. This distinguishes the problem setting suggested
here from the aforementioned works in this field, where singularities appeared at
single points or at infinity. In [9], some results concerning the case of boundary
singularities are also obtained, but they are dimension dependent.

For the proof of nonexistence results by the nonlinear capacity method, test
functions with different geometrical structure of the support are constructed, which
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takes into account the specific nature of problems under consideration. Our first
results in this direction were published in [6, 7].

The rest of the paper consists of two sections. In §2, we establish nonexistence
results for scalar quasilinear elliptic inequalities, and in §3, for systems of such
inequalities.

From here on, letter c denotes different positive constants, which may depend
on the parameters of the problems under consideration.

2. Scalar inequalities

Consider the problem

−div(|Du|p−2Du) ≥ f(x)uq|Du|s, x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,
(2.1)

where Ω is a bounded domain with a smooth boundary, f(x) ∈ C(Ω) is a positive
function.

Solutions to (2.1) will be understood in the weak (distributional) sense according
to the following definition.

Definition 2.1. A nonnegative function u ∈W 1,p
loc (Ω) will be called a weak (distri-

butional) solution of (2.1) if f(x)uq|Du|s ∈ L1
loc(Ω) and for each nonnegative test

function ψ ∈ C1
0 (Ω) it holds∫

Ω

|Du|p−2(Du,Dψ) dx ≥
∫

Ω

f(x)uq|Du|sψ dx. (2.2)

Remark 2.2. Similarly to [10], it can be shown that if such a solution exists and
is strictly positive in Ω, then (2.2) still holds for test functions of the form ψ = uγϕ
with γ ∈ R and ϕ ∈ C1

0 (Ω). If u vanishes somewhere in Ω and γ < 0, one can use
test functions ψ = (u+ δ)γϕ and take δ → 0+, which yields the same results as in
the previous case. Therefore we will assume in the sequel that u > 0 whenever it
exists.

We use the notation ρ(x) = dist(x, ∂Ω), and

Ωkη = {x ∈ Ω : ρ(x) ≥ kη} (η > 0, k = 1, 2).

Theorem 2.3. Let f(x) ≥ cρ−α(x) (x ∈ Ω) with some constant c > 0, p > 1,
q > p − 1, s > 0, and α > q + 1. Then problem (2.1) has no nontrivial (distinct
from a constant a.e.) weak solutions.

For other definitions of a solution, the nonexistence condition can be different.
In particular, for the so-called very weak solution in the semilinear case p = 2, it
becomes α > 2 (see, e.g., the survey [3]).

Proof of Theorem 2.3. Assume that there exists a nontrivial weak solution u of
inequality (2.1). Introduce a family of functions ϕη ∈ C1

0 (Ω; [0, 1]) of the form
ϕη(x) = ξλη (x) with

ξη(x) =

{
1, x ∈ Ω2η,

0, x 6∈ Ωη,
(2.3)

|Dξη(x)| ≤ cη−1 (x ∈ Ω) (2.4)
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and λ > 0 sufficiently large. Then, using a test function ψ = uγϕη with 1−p < γ < 0
in (2.2), we obtain∫

Ω

f(x)uq+γ |Du|sϕη dx

≤
∫

Ω

(|Du|p−2Du,D(uγϕη)) dx

= γ

∫
Ω

uγ−1|Du|pϕη dx+
∫

Ω

uγ |Du|p−2(Du,Dϕη) dx

≤ γ
∫

Ω

uγ−1|Du|pϕη dx+
∫

Ω

uγ |Du|p−1|Dϕη| dx,

whence∫
Ω

f(x)uq+γ |Du|sϕη dx+ |γ|
∫

Ω

uγ−1|Du|pϕη dx ≤
∫

Ω

uγ |Du|p−1|Dϕη| dx.

Representing the integrand on the right-hand side of this inequality in the form

2−y/su
(q+γ)y
s |Du|yfy/sϕy/sη 2y/su

γs−(q+γ)y
s |Du|p−1−y|Dϕη|f−y/sϕ−y/sη ,

where y will be chosen below, and applying the parametric Young inequality with
the exponent s/y, we obtain

1
2

∫
Ω

f(x)uq+γ |Du|sϕη dx+ |γ|
∫

Ω

uγ−1|Du|pϕη dx

≤ c
∫

Ω

u
γs−(q+γ)y

s−y |Du|
(p−1−y)s
s−y |Dϕη|

s
s−y f−

y
s−yϕ

− y
s−y

η dx.

Apply the Young inequality with the exponent z,

c

∫
Ω

u
γs−(q+γ)y

s−y |Du|
(p−1−y)s
s−y |Dϕη|

s
s−y f−

y
s−yϕ

− y
s−y

η dx

≤ |γ|
2

∫
Ω

u
(γs−(q+γ)y)z

s−y |Du|
(p−1−y)sz

s−y ϕη dx

+ c

∫
Ω

|Dϕη|
sz′
s−y f−

yz′
s−yϕ

1− sz′
s−y

η dx,

(2.5)

where 1
z + 1

z′ = 1.
We choose y and z so that

(p− 1− y)sz = p(s− y),

γs− (q + γ)y
s− y

z = γ − 1,

i.e.,

y = yγ =
s(p+ γ − 1)

p(q + γ)− s(γ − 1)
,

z = zγ =
p[p(q + γ)− s(γ − 1)− (p+ γ − 1)]

(p− 1)(p(q + γ)− s(γ − 1))− s(p+ γ − 1)
.

Note that for γ = 0, by our assumptions q > p− 1 > 0 and s > 0, we have
s

y0
=
pq + s

p− 1
>
pq + s

q
= p+

s

q
> p > 1,



4 L. UVAROVA, O. SALIEVA, E. GALAKHOV EJDE-2017/30

z0 =
p(q − 1) + s+ 1

(p− 1)q
= 1 +

q − (p− 1) + s

p(q − 1)
> 1.

Hence by continuity, for |γ| sufficiently small, one has s
yγ

> 1 and zγ > 1, as
required for applying the Young inequality.

For such y and z, and ϕη with properties (2.3), (2.4) and sufficiently large λ > 0,
(2.5) implies

1
2

∫
Ω

f(x)uq+γ |Du|sϕη dx+
|γ|
2

∫
Ω

uγ−1|Du|pϕη dx

≤ cη
α(p+γ−1)−p(q+γ)+sγ+q−p+1

q+s−p+1 .

(2.6)

Taking η → 0+, for sufficiently small γ < 0 we obtain a contradiction to the assumed
non-triviality of u, which proves the theorem. �

Similar arguments yield an analogous result for the problem with variable expo-
nents

−div(|Du|p(x)−2Du) ≥ f(x)uq(x)|Du|s(x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,
(2.7)

where p(x), q(x), s(x), f(x) ∈ C(Ω) are appropriate positive functions. This prob-
lem will be considered in detail in future article.

3. Systems of inequalities

In this section we consider the system of inequalities

−div(|Du|p−2Du) ≥ f(x)vq1 |Dv|q2 , x ∈ Ω,

−div(|Dv|q−2Dv) ≥ g(x)up1 |Du|p2 , x ∈ Ω,
u, v ≥ 0, x ∈ Ω,

(3.1)

where Ω is a bounded domain with a smooth boundary.
We assume that p, q > 1, and f, g ∈ C(Ω) are positive functions such that

f(x) ≥ a0ρ
−α(x), g(x) ≥ b0ρ−β(x) for x ∈ Ω, where a0, b0 > 0.

The solutions of (3.1) will be understood in the weak (distributional) sense ac-
cording to the following definition.

Definition 3.1. A pair of nonnegative functions (u, v) ∈ W 1,p
loc (Ω) ∩ W 1,q

loc (Ω)
are called a weak (distributional) solution of (3.1) if f(x)vq1 |Dv|q2 ∈ L1

loc(Ω),
g(x)up1 |Dv|p2 ∈ L1

loc(Ω), and for any nonnegative test functions ψ1, ψ2 ∈ C1
0 (Ω) it

holds ∫
Ω

|Du|p−2(Du,Dψ1) dx ≥
∫

Ω

f(x)vq1 |Dv|q2ψ1 dx,∫
Ω

|Dv|q−2(Dv,Dψ2) dx ≥
∫

Ω

g(x)up1 |Du|p2ψ2 dx.

(3.2)

Similarly to Remark 2.2, we can assume that u > 0 and v > 0 whenever they
exist, and use test functions of the form ψ1 = uγϕ and ψ2 = vγϕ with ϕ ∈ C1

0 (Ω).

Theorem 3.2. Let p1 + p2 > p− 1, q1 + q2 > q − 1 and either

(β − 1− p1)(q1 + q2) + (α− 1− q1)(q − 1) > 0 (3.3)

or
(α− 1− q1)(p1 + p2) + (β − 1− p1)(p− 1) > 0. (3.4)

Then problem (3.1) has no nontrivial solutions.
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Proof. Let (u, v) be a nontrivial solution of system (3.1), and ϕη ∈ C∞0 (Ω; [0, 1]) be
functions of the same form as in the proof of Theorem 2.3, which satisfy (2.3) and
(2.4).

Using a test function ψ1 = uγϕη in (3.2), and ψ2 = vγϕη in (3.2), where γ is a
number such that p1 + p2 − p+ 1 < γ < 0, q1 + q2 − q + 1 < γ < 0, we obtain∫

fvq1 |Dv|q2uγϕη dx ≤ γ
∫
uγ−1|Du|pϕη dx+

∫
uγ |Du|p−1|Dϕη| dx, (3.5)∫

gup1 |Du|p2vγϕη dx ≤ γ
∫
vγ−1|Dv|qϕη dx+

∫
vγ |Dv|q−1|Dϕη| dx. (3.6)

We use the representations

uγ |Du|p−1 = ua1 |Du|b1ϕ
1
c1
η uγ−a1 |Du|p−1−b1ϕ

− 1
c1

η , (3.7)

vγ |Dv|q−1 = va2 |Du|b2ϕ
1
c2
η vγ−a2 |Dv|q−1−b2ϕ

− 1
c2

η , (3.8)

to apply to the right-hand sides of (3.5) and (3.6) the parametric Young inequality
with exponents denoted by c1 and c2, respectively. We choose the parameters so
that

a1c1 = γ − 1, b1c1 = p,

γ − a1

p− 1− b1
=
p1

p2
,

(3.9)

and
a2c2 = γ − 1, b2c2 = q,

γ − a2

q − 1− b2
=
q1

q2
.

(3.10)

The purpose of this choice consists in preparation to the consequent application of
the Hölder inequality, in order to obtain, under a suitable choice of the parameters,∫
bup1 |Du|p2ϕη dx and

∫
avq1 |Dv|q2ϕη dx.

Solving the systems of equations (3.9) and (3.10), we obtain

a1 =
(γ − 1)((p− 1)p1 − γp2)

pp1 + p2(1− γ)
,

b1 =
p((p− 1)p1 − γp2)
pp1 + p2(1− γ)

,

c1 =
pp1 + p2(1− γ)
(p− 1)p1 − γp2

,

(3.11)

and

a2 =
(γ − 1)((q − 1)q1 − γq2)

qq1 + q2(1− γ)
,

b2 =
q((q − 1)q1 − γq2)
qq1 + q2(1− γ)

,

c2 =
qq1 + q2(1− γ)
(q − 1)q1 − γq2

.

(3.12)

Substituting (3.11) and (3.12) in (3.7) and (3.8), we have the representations

uγ |Du|p−1 = u
(γ−1)((p−1)p1−γp2)

pp1+p2(1−γ) |Du|
p((p−1)p1−γp2)
pp1+p2(1−γ) ϕ

(p−1)p1−γp2
pp1+p2(1−γ)
η

× u
p1(p+γ−1)
pp1+p2(1−γ) |Du|

p2(p+γ−1)
pp1+p2(1−γ)ϕ

− (p−1)p1−γp2
pp1+p2(1−γ)

η ,
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vγ |Dv|q−1 = v
(γ−1)((q−1)q1−γq2)

qq1+q2(1−γ) |Dv|
q((q−1)q1−γq2)
qq1+q2(1−γ) ϕ

(q−1)q1−γq2
qq1+q2(1−γ)
η

× v
q1(q+γ−1)
qq1+q2(1−γ) |Dv|

q2(q+γ−1)
qq1+q2(1−γ)ϕ

− (q−1)q1−γq2
qq1+q2(1−γ)

η .

Note that for γ = 0 we have

c1 =
qq1 + q2

(q − 1)q1
>

(q − 1)q1 + q2

(q − 1)q1
= 1 +

q2

(q − 1)q1
> 1

and similarly c2 > 1. Hence the same inequalities c1 > 1 and c2 > 1 hold by
continuity for |γ| sufficiently small. Thus, applying to the right-hand sides of (3.5)
and (3.6) the parametric Young inequality with the exponents c1 and c2 from (3.11)
and (3.12) respectively, we arrive at∫

fvq1 |Dv|q2uγϕη dx+
|γ|
2

∫
uγ−1|Du|pϕη dx

≤ cγ
∫
u
p1(p+γ−1)
p1+p2 |Du|

p2(p+γ−1)
p1+p2

|Dϕη|
pp1+p2(1−γ)

p1+p2

ϕ
pp1+p2(1−γ)

p1+p2
−1

η

dx,

∫
gup1 |Du|p2vγϕη dx+

|γ|
2

∫
vγ−1|Dv|qϕη dx

≤ dγ
∫
v
q1(q+γ−1)
q1+q2 |Dv|

q2(q+γ−1)
q1+q2

|Dϕη|
qq1+q2(1−γ)

q1+q2

ϕ
qq1+q2(1−γ)

q1+q2
−1

η

dx,

where the constants cγ and dγ depend only on p, q, p1, q1, p2, q2 and γ. Applying
the Hölder inequality with the exponents

d1 =
p1 + p2

p+ γ − 1
, d′1 =

p1 + p2

p1 + p2 − p− γ + 1
,

d2 =
q1 + q2

q + γ − 1
, d′2 =

q1 + q2

q1 + q2 − q − γ + 1

respectively (note that under our assumptions for γ = 0

d1 =
p1 + p2

p− 1
> 1, d2 =

q1 + q2

q − 1
> 1

and hence by continuity d1 > 1 and d2 > 1 for any |γ| sufficiently small), we obtain∫
fvq1 |Dv|q2uγϕη dx+

|γ|
2

∫
uγ−1|Du|pϕη dx

≤ cγ
(∫

gup1 |Du|p2ϕη dx
) p+γ−1
p1+p2

×
(∫

g−
p+γ−1

p1+p2−p−γ+1
|Dϕη|

pp1+p2(1−γ)
p1+p2−p−γ+1

ϕ
pp1+p2(1−γ)
p1+p2−p−γ+1−1
η

dx
) p1+p2−p−γ+1

p1+p2
,

(3.13)
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gup1 |Du|p2vγϕη dx+

|γ|
2

∫
vγ−1|Dv|qϕη dx

≤ dγ
(∫

fvq1 |Dv|q2ϕη dx
) q+γ−1
q1+q2

×
(∫

f−
q+γ−1

q1+q2−q−γ+1
|Dϕη|

qq1+q2(1−γ)
q1+q2−q−γ+1

ϕ
qq1+q2(1−γ)
q1+q2−q−γ+1−1
η

dx
) q1+q2−q−γ+1

q1+q2
.

(3.14)

Further, using test functions ψ1 = ψ2 = ϕη in (3.2), we obtain∫
avq1 |Dv|q2ϕη dx ≤

∫
|Du|p−1|Dϕη| dx , (3.15)∫

bup1 |Du|p2ϕη dx ≤
∫
|Dv|q−1|Dϕη| dx . (3.16)

We use the representation

|Du|p−1 = ua3 |Du|b3ϕ
1
c3
η u−a3 |Du|p−1−b3(gϕη)

1
d3 g−

1
d3 ϕ
− 1
c3
− 1
d3

η , (3.17)

|Dv|q−1 = va4 |Dv|b4ϕ
1
c4
η v−a4 |Dv|q−1−b4(aϕη)

1
d4 f−

1
d4 ϕ
− 1
c4
− 1
d4

η , (3.18)

for applying to the right-hand sides of (3.15) and (3.16) the triple Young inequality,
with the exponents c3, d3, e3 and c4, d4, e4 respectively. Here we choose the
parameters so that

a3c3 = γ − 1, b3c3 = p, a3d3 = −p1,

(p− 1− b3)d3 = p2,
1
c3

+
1
d3

+
1
e3

= 1,
(3.19)

and

a4c4 = γ − 1, b4c4 = q, a4d4 = −q1,

(q − 1− b4)d4 = q2,
1
c4

+
1
d4

+
1
e4

= 1.
(3.20)

Solving the systems of equations (3.19) and (3.20), we obtain

a3 =
(γ − 1)p1(p− 1)
pp1 + p2(1− γ)

,

b3 =
pp1(p− 1)

pp1 + p2(1− γ)
,

c3 =
pp1 + p2(1− γ)

p1(p− 1)
,

d3 =
pp1 + p2(1− γ)
(p− 1)(1− γ)

,

e3 =
pp1 + p2(1− γ)

p1 + (p2 − p+ 1)(1− γ)
,

(3.21)



8 L. UVAROVA, O. SALIEVA, E. GALAKHOV EJDE-2017/30

and

a4 =
(γ − 1)q1(q − 1)
qq1 + q2(1− γ)

,

b4 =
qq1(q − 1)

qq1 + q2(1− γ)
,

c4 =
qq1 + q2(1− γ)

q1(q − 1)
,

d4 =
qq1 + q2(1− γ)
(q − 1)(1− γ)

,

e4 =
qq1 + q2(1− γ)

q1 + (q2 − q + 1)(1− γ)
.

(3.22)

Note that for γ = 0 one has

c3 =
pp1 + p2

p1(p− 1)
=
p1(p− 1) + p1 + p2

p1(p− 1)
= 1 +

p1 + p2

p1(p− 1)
> 1,

d3 =
pp1 + p2

p− 1
=
p1(p− 1) + p1 + p2

p− 1
= p1 +

p1 + p2

p− 1
> p1 > 1,

e3 =
pp1 + p2

p1 + p2 − p+ 1
>

p1 + p2

p1 + p2 − p+ 1
> 1,

and similar estimates for c4, d4, e4. Then it follows by continuity that for |γ| suffi-
ciently small all these exponents also exceed 1, similarly to the previous arguments.

Substituting (3.21) and (3.22) in (3.17) and (3.18), we have the representations

|Du|p−1 = u
(γ−1)p1(p−1)
pp1+p2(1−γ) |Du|

pp1(p−1)
pp1+p2(1−γ)ϕ

p1(p−1)
pp1+p2(1−γ)
η

× u
p1(p−1)(1−γ)
pp1+p2(1−γ) |Du|

p2(p−1)(1−γ)
pp1+p2(1−γ) (bϕη)

(p−1)(1−γ)
pp1+p2(1−γ)

× g−
(p−1)(1−γ)
pp1+p2(1−γ)ϕ

(γ−p1−1)(p−1)
pp1+p2(1−γ)
η ,

|Dv|q−1 = v
(γ−1)q1(q−1)
qq1+q2(1−γ) |Dv|

qq1(q−1)
qq1+q2(1−γ)ϕ

q1(q−1)
qq1+q2(1−γ)
η

× v
q1(q−1)(1−γ)
qq1+q2(1−γ) |Dv|

q2(q−1)(1−γ)
qq1+q2(1−γ) (bϕη)

(q−1)(1−γ)
qq1+q2(1−γ)

× g−
(q−1)(1−γ)
qq1+q2(1−γ)ϕ

(γ−q1−1)(q−1)
qq1+q2(1−γ)
η .

Applying to the right-hand sides of (3.15) and (3.16) the triple Young inequality
with the exponents c3, d3, e3, c4, d4, e4 from (3.21), (3.22) respectively, we arrive
at ∫

fvq1 |Dv|q2ϕη dx

≤
(∫

uγ−1|Du|pϕη dx
) p1(p−1)
pp1+p2(1−γ)

×
(∫

gup1 |Du|p2ϕη dx
) (p−1)(1−γ)
pp1+p2(1−γ)

(∫
g
− (p−1)(1−γ)
p1+(p2−p+1)(1−γ)

|Dϕη|
pp1+p2(1−γ)

p1+(p2−p+1)(1−γ)

ϕ
pp1+p2(1−γ)

p1+(p2−p+1)(1−γ)−1
η

dx
) p1+(p2−p+1)(1−γ)

pp1+p2(1−γ)
,

(3.23)



EJDE-2017/30 NONEXISTENCE OF SOLUTIONS 9∫
gup1 |Du|p2ϕη dx

≤
(∫

vγ−1|Dv|qϕη dx
) q1(q−1)
qq1+q2(1−γ)

×
(∫

fvq1 |Dv|q2ϕη dx
) (q−1)(1−γ)
qq1+q2(1−γ)

×
(∫

g
− (q−1)(1−γ)
q1+(q2−q+1)(1−γ)

|Dϕη|
qq1+q2(1−γ)

q1+(q2−q+1)(1−γ)

ϕ
qq1+q2(1−γ)

q1+(q2−q+1)(1−γ)−1
η

dx
) q1+(q2−q+1)(1−γ)

qq1+q2(1−γ)
.

(3.24)

Using (3.13) and (3.14), from the previous estimates we derive∫
fvq1 |Dv|q2ϕη dx

≤ Dγ

(∫
gup1 |Du|p2ϕη dx

) p1(p−1)(p+γ−1)+(p1+p2)(p−1)(1−γ)
(pp1+p2(1−γ))(p1+p2)

×
(∫ g−

p+γ−1
p1+p2−p−γ+1 |Dϕη|

pp1+p2(1−γ)
p1+p2−p−γ+1

ϕ
pp1+p2(1−γ)
p1+p2−p−γ+1−1
η

dx
) p1(p−1)(p1+p2−p−γ+1)

(pp1+p2(1−γ))(p1+p2)

×
(∫

g
− (p−1)(1−γ)
p1+(p2−p+1)(1−γ)

|Dϕη|
pp1+p2(1−γ)

p1+(p2−p+1)(1−γ)

ϕ
pp1+p2(1−γ)

p1+(p2−p+1)(1−γ)−1
η

dx
) p1+(p2−p+1)(1−γ)

pp1+p2(1−γ)
,

(3.25)

∫
gup1 |Du|p2ϕη dx

≤ Eγ
(∫

fvq1 |Dv|q2ϕη dx
) q1(q−1)(q+γ−1)+(q1+q2)(q−1)(1−γ)

(qq1+q2(1−γ))(q1+q2)

×
(∫ g−

q+γ−1
q1+q2−q−γ+1 |Dϕη|

qq1+q2(1−γ)
q1+q2−q−γ+1

ϕ
qq1+q2(1−γ)
q1+q2−q−γ+1−1
η

dx
) q1(q−1)(q1+q2−q−γ+1)

(qq1+q2(1−γ))(q1+q2)

×
(∫

g
− (q−1)(1−γ)
q1+(q2−q+1)(1−γ)

|Dϕη|
qq1+q2(1−γ)

q1+(q2−q+1)(1−γ)

ϕ
qq1+q2(1−γ)

q1+(q2−q+1)(1−γ)−1
η

dx
) q1+(q2−q+1)(1−γ)

qq1+q2(1−γ)
,

(3.26)

where Dγ and Eγ > 0 depend only on p, q, p1, q1, p2, q2 and γ.
Then by (2.3) and (2.4) we have∫

fvq1 |Dv|q2ϕη dx ≤ c
(∫

gup1 |Du|p2ϕη dx
)µ1

ην1 , (3.27)

∫
gup1 |Du|p2ϕη dx ≤ c

(∫
fvq1 |Dv|q2ϕη dx

)µ2

ην2 , (3.28)

where after simplifying the obtained expressions one gets

µ1 =
p− 1
p1 + p2

, ν1 =
(β − 1− p1)(p− 1)

p1 + p2
,

µ2 =
q − 1
q1 + q2

, ν2 =
(α− 1− q1)(q − 1)

q1 + q2
.
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Substituting (3.27) in (3.28) and vice versa, we obtain∫
fvq1 |Dv|q2ϕη dx ≤ cη

[(β−1−p1)(q1+q2)+(α−1−q1)(q−1)](p−1)
(p1+p2)(q1+q2)−(p−1)(q−1) ,∫

gup1 |Du|p2ϕη dx ≤ cη
[(α−1−q1)(p1+p2)+(β−1−p1)(p−1)](q−1)

(p1+p2)(q1+q2)−(p−1)(q−1) .

Passing to the limit as η → 0+, due to (3.3) and (3.4) we obtain a contradiction,
which completes the proof. �

Similar necessary conditions for existence of solutions can be formulated for
higher order equations and systems [2], [8], as well as for systems of quasilinear
elliptic inequalities with variable exponents. We leave the latter subject for a future
article.
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[1] Brezis, H.; Cabré, X.; Some simple nonlinear PDE’s without solutions. Boll. Un. Mat. Ital.

B: Artic. Ric. Mat. 1998. V. 1, Ser. 8. P. 223–262.

[2] Dı̀az, J. I.; On the very weak solvability of the beam equation. Rev. R. Acad. Cien. Serie A.
Mat. 2011. V. 105. P. 167172.

[3] Dı̀az, J. I.; Hernández, J.; Positive and free boundary solutions to some singular nonlinear

elliptic problems with absorption: an overview and open problems. Electron. J. Diff. Eq.,
Conference 21 (2014). P. 31-44.

[4] Farina, A.; Serrin, J.; Entire solutions of completely coercive quasilinear elliptic equations

I-II. J. Diff. Eq. 2011. V. 250. P. 4367-4436.
[5] Filippucci, R.; Pucci, P.; Rigoli, M.; Nonlinear weighted p-Laplacian elliptic inequalities with

gradient terms. Commun. Contemp. Math. 2010. V. 12. P. 501-535.

[6] Galakhov, E.; Salieva, O.; On blow-up of solutions to differential inequalities with singulari-
ties on unbounded sets. JMAA. 2013. V. 408. P. 102–113.

[7] Galakhov, E.; Salieva, O.; Blow-up of solutions of some nonlinear inequalities with singular-
ities on unbounded sets. Math. Notes. 2015. V. 98. P. 222–229.

[8] Hernández, J.; Mancebo, F.; Vega, J. M.; Positive solutions for singular nonlinear elliptic

equations. Proc. Roy. Soc. Edinburgh Sect. A. 2007. V. 137. P. 41-62.
[9] Li, X.; Li, F.; Nonexistence of solutions for singular quasilinear differential inequalities with

a gradient nonlinearity. Nonl. Anal. TMA. 2012. V. 75. P. 2812–2822.

[10] Mitidieri, E.; Pohozaev, S. I.; A priori estimates and nonexistence of solutions of nonlinear
partial differential equations and inequalities. M.: Nauka, 2001 (Proceedings of the Steklov

Institute; V. 234).
[11] Pohozaev, S. I.; Essentially nonlinear capacities induced by differential operators. Dokl. RAN.

1997. V. 357. P. 592–594.

Liudmila Uvarova

Moscow State Technological University “Stankin”, Russia
E-mail address: uvar11@yandex.ru

Olga Salieva

Moscow State Technological University “Stankin”, Russia
E-mail address: olga.a.salieva@gmail.com

Evgeny Galakhov
Peoples’ Friendship University of Russia, Moscow, Russia

E-mail address: galakhov@rambler.ru


	1. Introduction
	2. Scalar inequalities
	3. Systems of inequalities
	Acknowledgements

	References

