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Abstract. We discuss the asymptotic behavior of the stochastic one machine

to infinite bus power systems. Using the exponential martingale inequality
and the Borel-Cantelli Lemma, we obtain asymptotic moment estimation and

asymptotic pathwise estimation of the stochastic one machine to infinite bus

systems. Using the ergodic properties, we give a good explanation of the
fluctuation phenomena. By means of the property of periodicity, Hormander’s

theorem and a detailed balance method, the existence and probability density
function of the stationary distribution on the cylindrical are illustrated.

1. Introduction

In the previous decades, dynamics of deterministic power systems has received a
lot of attention, see, e.g. [5, 6, 17, 26, 28, 29], and references therein. By nature, a
power system is continually experiencing stochastic disturbances, such as, switching
events, load level fluctuations, which may have a significant effect on the operation
of power systems and quality of electricity. In recent years, many researchers have
been carried out to study the dynamics of power systems under random excita-
tions, see, e.g., [8, 9, 10, 13, 21, 24, 27]. The random factors in power systems
were classified into three categories in [30], namely, random initial values, random
parameters, and random excitation. With the increase integration of the renewable
energy generation system and electric vehicles, and the features of randomness into
the power system, the dynamics of power system under random excitations has
received more and more attentions (see [14, 20, 23]).

Since the Gauss white noise is a well-known mathematical interpretation for the
random excitations, the application of Itô stochastic differential equations (SDEs)
has been taken into account in the research on power systems. The detailed un-
derstanding of SDEs can be founded in [7, 15]. In this paper, we start our analysis
by considering the stochastic one machine to infinite bus (OMIB) power system
(see Figure 1(top)) perturbed with random excitations. Then the stochastic OMIB

2010 Mathematics Subject Classification. 34F05, 60H10, 93E03.
Key words and phrases. Power systems; Random excitation; stochastic fluctuation;

stationary distribution; asymptotic pathwise estimation; asymptotic moment estimation.
c©2017 Texas State University.

Submitted October 8, 2016. Published November 30, 2017.

1



2 L. LIU, P. JU, F. WU EJDE-2017/298

system can be described by the Itô equation as follows:
dδ = (ω − 1)dt

dω =
(
− D

M
(ω − 1) +

1
M

(PM − Pe)
)
dt+ σdB(t),

(1.1)

where δ is the rotor angle; ω is the rotor rotating speed; Pe = Pmax sin δ is the
electrical power; PM is the mechanical power and is assumed to be constant, i.e.
PM = Pmax sin δs; M is the inertia constant in per unit and taken M = 2569.8288.

It is necessary to reveal how the noise affects the stochastic OMIB systems (1.1).
The mean stability and mean square stability of the corresponding linear systems of
(1.1) were analyzed theoretically by Zhang et al [30]. Using the stochastic averaging
methods, [3] has studied the first-passage problem of dynamical power system of
(1.1). Recently, Keyou Wang [25] has applied the Fokker-Planck Equation to study
the evolution of the probability density function of the system (1.1).

However, the asymptotic properties of stochastic OMIB systems (1.1) has not
been fully investigated. In addition, if we make a great number of records of ω to
investigate the dynamic behavior of a stochastic OMIB power system (1.1), it can
be found that a single record may fluctuate even if the number of records is large.
Then two questions arise naturally: (1) Can the fluctuation phenomena be given
a explanation? (2)Is there a stationary distribution to the system? As a result,
to solve these two problems is the main motivation of this paper. The primary
contributions of this paper are as follows:

• The p-th moment estimation and asymptotic pathwise of ω were obtained
using the exponential martingale inequality and Gronwall’s inequality;
• Utilizing the ergodic property and the comparative method, a good expla-

nation of the fluctuation phenomena is given;
• With the help of the Hormanders theorem and detailed balance method,

the existence of the stationary distribution on cylindrical is proved.

2. Notation and problem statement

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0,P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0 contains all P-null sets). Let
B(t) be an one-dimensional Brownian motion defined on the probability space.

In the same way as Mao et al. [15] did, we can show the following result on the
existence of a global solution.

Lemma 2.1. For any given initial data x0 ∈ R2, there is a unique global solution(
δ(t, x0), ω(t, x0)

)
of system (1.1) on [0,+∞).

The dynamics of the deterministic classical OMIB system has been extensively
studied; see [2, 12]. These existing literature show clearly that the point (δs, 1) is
a stable equilibrium point (SEP). The trajectory will converge to the SEP if the
initial conditions are selected to lie in the attraction region of the SEP. Applying
a random excitation, the dynamic behavior becomes more complicated than the
deterministic classical OMIB system. The simulations show that a single record of
ω(t) may fluctuate even if the number of records is large(see Figure 1(bottom)).

By means of the stochastic analysis techniques and the ergodic properties, some
estimation and a good explanation of the fluctuation phenomena will be provided
in Section III and Section IV, respectively.
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Figure 1. (top) One machine infinite bus system. (bottom) Sto-
chastic trajectory of ω(t) generated by the Heun scheme for time
step h = 2−8 for (1.1) with σ = 0.6 on [0, 5000].

3. Estimation on the stochastic fluctuation

The aim of this section is to estimate the stochastic fluctuation for the rotor
speed ω.

3.1. Moment estimation.

Theorem 3.1. For any p > 0 and initial data x0 = (δs, 1), there exists a constant
Mp > 0 such that the global solution ω(t) of system (1.1) has the property

sup
0≤t<∞

E|ω(t, x0)− 1|p ≤Mp.

Proof. For any p > 0, let V (ω, t) = eεt|ω − 1|p = eεt
(
(ω − 1)2

) p
2 , where ε is a

sufficient small positive number. Let ω(t) = ω(t;x0) for simplicity. Applying Itô
formula and Young inequality (see Mao [15]) to V (ω, t) yields

L |ω − 1|p

= eεt
p

2
|ω − 1|p−2

[(
− 2D
M

+
2
p
ε
)
(ω − 1)2

+
(2Pmax

M
(sin δs − sin δ) + 2

)
(ω − 1) + (p− 1)σ2

]
≤ eεt p

2
|ω − 1|p−2

[(
− 2D
M

+
2
p
ε
)
(ω − 1)2 +

(4Pmax

M
+ 2
)
|ω − 1|+ (p− 1)σ2

]
= eεt

p

2
[(
− 2D
M

+
2
p
ε
)
|ω − 1|p +

(4Pmax

M
+ 2
)
|ω − 1|p−1 + (p− 1)σ2|ω − 1|p−2

]
.

Note that (− 2D
M + 2

pε) < 0. Then there exists a constant KP such that

sup
0≤u≤∞

p

2
[(−2D

M
+

2
p
ε)up +

4Pmax

M
up−1 + (p− 1)σ2up−2] ≤ Kp.
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This implies

Eeεt|ω(t)− 1|p ≤ E
(
(ω − 1)2(0)

) p
2 +

∫ t

0

Keεsds ≤ E|ω(0)− 1|p +
Kp

ε
(eεt − 1),

which means

E|ω(t)− 1|p ≤ e−εtE|ω(0)− 1|p +
Kp

ε
(1− eε−t) ≤ E|ω(0)− 1|p +

Kp

ε
:= Mp

We can claim that for any p > 0 there exists a Mp > 0 such that

sup
0≤t<∞

E|ω(t)− 1|p ≤Mp.

The proof is complete. �

3.2. Asymptotic pathwise estimation. Theorem 3.1 shows that the p-th mo-
ment of |ω(t) − 1| is boundedness. Now we process to derive some asymptotic
pathwise estimation of |ω(t)− 1| by applying the exponential martingale inequality
and Borel-Cantelli Lemma (see [15]), which shows the solution of (1.1) how to vary
in R2 pathwisely.

Theorem 3.2. For any p > 0 and initial data x0 = (δs, 1), the global solution
ω(t, x0) of system (1.1) has the property

lim
t→∞

sup
1
t

∫ t

0

(
ω(s,X0)− 1

)2
ds <

(√ σ2

D2
+

2Pmax

D
+

2Pmax

D

)2

. (3.1)

Proof. Let ω(t) = ω(t;x0) for simplicity. Applying Itô’s formula to ω2 yields(
ω(t)− 1

)2
=
(
ω(0)− 1

)2 +
∫ t

0

(
− 2D
M

(
ω(s)− 1

)2
+
(2Pmax

M
(sin δs − sin δ(s)) +

2D
M

)
(ω(s)− 1) + σ2

)
ds+M(t).

(3.2)

where M(t) =
∫ t

0
2(ω(s))σdB(s) is a continuous local martingale. The quadratic

variation of M(t) is 〈M(t)〉 =
∫ t

0
4σ2
(
ω(t) − 1

)2
d(s). For any α ∈ (0, D

Mσ2 ) and
every integer k ≥ 1, using the exponential martingale inequality (cf. Mao [15,
Theorem 1.7.4]) we have

P
(

sup
0≤t≤T

(M(t)− α

2
〈M(t)〉) > 1

α
log k

)
≤ 1
k2
, k = 1, 2, . . . ,

An application of the well-known Borel-Cantelli lemma then yields that for almost
all $ ∈ Ω there is a random integer k0 = k0($) ≥ 1 such that

M(t) ≤ 2
α

log k + 0.5α〈M(t)〉, (3.3)

for t ∈ [0, k], k ≥ k0, almost surely. Substituting (3.3) into (3.2), we obtain that(
ω(t)− 1

)2
=
(
ω(0)− 1

)2 +
∫ t

0

(
− 2D
M

(
ω(s)− 1

)2 +
(2Pmax

M
(sin δs − sin δ(s))

+
2D
M

)
(ω(s)− 1) + σ2

)
ds+

2
α

log k + 0.5α
∫ t

0

4σ2
(
ω(s)− 1

)2
ds
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≤ ω(0) +
∫ t

0

(
(−2D

M
+ 2ασ2)

(
ω(s)− 1

)2 +
(4Pmax

M
sin δs +

2D
M

)
|ω(s)− 1|

+ σ2
)
ds+

2
α

log k,

for t ∈ [0, k], k ≥ k0, almost surely. Setting h(α) = 2D
M − 2ασ2. For any η ∈ (0, 1),

we have

ηh(α)
∫ t

0

ω2(s)ds ≤ ω2(0) +
∫ t

0

(
(1− η)h(α)ω2(s)

+
(4Pmax

M
sin δ0 +

2D
M

)
|ω(s)|+ σ2

)
ds+

2
α

log k.

For almost all $ ∈ Ω, if k ≥ k0 and k − 1 ≤ t ≤ k, simple computations show that

1
t

∫ t

0

ω2(s)ds ≤ 1
ηh(α)(k − 1)

(
ω2(0) + (4

P 2
m

(1− η)h(α)M2
+ σ2)k +

2
α

log k
)
.

Letting t→∞ (k →∞) and α→ 0 yields

1
t

∫ t

0

ω2(s)ds ≤ P 2
max

η(1− η)D2
+
Mσ2

2Dη
.

Setting η = 1/(1 + Pmax/
√

2P 2
m + σ2MD) yields

lim
t→∞

sup
1
t

∫ t

0

(
ω(s)− 1

)2
ds <

(√P 2
max

D2
+
σ2M

2D
+
PmaxM

D

)2

.

The proof is complete. �

Theorem 3.3. For initial data x0 = (δs, 1), the global solution ω(t;x0) of system
(1.1) has the property

lim sup
t→∞

|ω(t, x0)− 1|√
log t

≤
√
Me

D
σ.

Proof. Let ω(t) = ω(t;x0) for simplicity. Simple computation shows that

(ω − 1)(
(
− D

M
(ω − 1) +

1
M

(PM − Pe)
)
) ≤ 2Pmax

M
|(ω − 1)| − D

M
(ω − 1)2

≤ −(
D

M
− Pmax

M
ε)(ω − 1)2 +

Pmax

Mε
.

Set

λ(ε) =
D

M
− Pmax

M
ε, b =

Pmax

Mε
.

Applying Itô formula and Young inequality (see Mao [15]) to e−2λ(ε)t(ω−1)2 yields

e−2λ(ε)t(ω(t)− 1)2 = (ω − 1)2(0) +
∫ t

0

e−2λ(ε)s(2b+ σ2)ds

+ 2σ
∫ t

0

e−2λ(ε)s(ω − 1)(s)dB(s),
(3.4)

where M(t) = 2σ
∫ t

0
e−2λ(ε)s(ω − 1)(s)dB(s) is a continuous local martingale with

the quadratic variation

〈M(t)〉 = 4σ2

∫ t

0

e−4λ(ε)s|(ω − 1)(s)|2ds.
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For each integer n > 0, ε > 0, γ > 0, θ > 1, the exponential martingale inequality
(see [23, Theorem 7.4 on page44]) yields

P
(

sup
0≤t≤tn+1

(M(t)− γn
2
〈M(t)〉) > 1

γn
log nθ

)
≤ log nθ

γn
, n = 1, 2, . . . ,

where tn = nε, γn = γe2nλ(ε)ε. Noting that
∑∞
n=1

1
nθ

< ∞, by the well-known
Borel-Cantelli lemma, there exists Ω0 ⊂ Ω with P (Ω0) = 1, such that for any
ω ∈ Ω0, there exists an integer N(ω) such that for all n ≥ N(ω) and 0 ≤ t ≤ tn+1

M(t) ≤ γn
2
〈M(t)〉+

1
γn

log nθ. (3.5)

Setting h(t) = e−2λ(ε)t(ω(t) − 1)2, Substituting (3.5) into (3.4), with probability
one, gives,

h(t)− h(0)

≤ 2b+ σ2

2|λ(ε)|
e−2λ(ε)t + 2σ2γn

∫ t

0

e−2λ(ε)sh(s)ds+
log nθ

γn

≤ 2b+ σ2

2|λ(ε)|
e−2λ(ε)(n+1)ε +

log nθ

γ
e−2λ(ε)nε + 2σ2γe2nλ(ε)ε

∫ t

0

e−2λ(ε)sh(s)ds.

Then Gronwall’s inequality implies

h(t) ≤ (h(0) +
2b+ σ2

2|λ(ε)|
e−2λ(ε)(n+1)ε log nθ

γ
e−2λ(ε)nε) exp(

σ2

|λ(ε)|
γe2nλ(ε)εe−2λ(ε)t).

Consequently, for almost all ω ∈ Ω0, if k ≥ N and nε ≤ t ≤ (n+ 1)ε,

(ω(t)− 1)2

≤
(

(ω(0)− 1)2e−2λ(ε)t +
log nθ

γ
e−2λ(ε)(nε−t) +

2b+ σ2

2|λ(ε)|
e−2λ(ε)((n+1)ε−t)

)
× exp(

σ2

|λ(ε)|
γe2nλ(ε)εe−2λ(ε)t)

≤
(

(ω(0)− 1)2e−2λ(ε)t +
2b+ σ2

2|λ(ε)|
e−2λ(ε)((n+1)ε−t) +

θ(log t− log ε)
γ

e−2λ(ε)(nε−t)
)

× exp(
σ2

|λ(ε)|
γe2nλ(ε)εe−2λ(ε)t).

We therefore have
(ω(t)− 1)2

log t
≤ ((ω(0)− 1)2e−2λ(ε)t +

2b+ σ2

2|λ(ε)|
e−2λ(ε)((n+1)ε−t)

+
θ(log t− log ε)

log tγ
e−2λ(ε)(nε−t)) exp(

σ2

|λ(ε)|
γe−2λ(ε)(t−nε)).

Letting t→∞ (forcing k →∞) and ε→ 0 yields

lim sup
t→∞

(ω(t)− 1)2

log t
≤ θ

γ
exp(

σ2γM

D
e−2 DM ε).

Letting θ → 1, ε→ 0, and then setting γ = D
Mσ2 yields

lim sup
t→∞

|ω(t)|√
log t

≤
√
Me

D
σ.
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The proof is complete. �

3.3. Numerical examples. An stochastic OMIB power system is used in this
paper to study power system dynamics under random excitation. In the OMIB,
the transformer reactance xT1 = 0.138 pu and xT2 = 0.122 pu; the line reactance
x1 = 0.234 pu; the generator transient reactance x′d = 0.295 pu; the inertia constant
M = 2569.8288 pu; and the damping coefficient D = 2.0 pu. The initial system
power P0 = 1.0 pu, Q0 = 0.2 pu, voltages behind the reactance E′ = 1.41 pu and
rotor angle δs = 34.46. Per unit system: SB = 220 MVA, UB(220) = 209 kV.

To conform the analytical results above, we use Heun method (see [11]) to
simulate the solutions of system (1.1) with given initial value and the parame-
ters. For a certain positive integer K, we have h = T/K, δ0 = δ(0), ω0 = ω(0),
∆Bi = B((i + 1)h) − B(ih) ∼

√
hN(0, 1). The corresponding discretization equa-

tions are

δ̂ = δi + h(ωi − 1),

ω̂ = ωi + h
(
− D

M
(ωi − 1) +

Pmax

M
(sin(δs)− sin(δi))

)
+ σ∆Bi,

δi+1 = δi + 0.5h(ωi + ω̂),

ωi+1 = ωi + 0.5h
((
− D

M
(ωi − 1) +

Pmax

M
(sin(δs)− sin(δi))

)
+ (−D

M
(ω̂ − 1) +

Pmax

M

(
sin(δs)− sin(δ̂)

)
)
)

+ σ∆Bi, i = 0, · · ·,K.
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Figure 2. (top) Stochastic trajectory of 1
t

∫ t
0
ω2(s)ds generated

by the Heun scheme for time step h = 2−8 for (1.1) with σ = 0.6
on [0, 5000]. (bottom) Stochastic trajectory of |ω(t)|√

log t
generated by

the Heun scheme for time step h = 2−8 for (1.1) with σ = 0.6 on
[0, 5000].
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4. Stochastic fluctuation

The main aim of this section is to illustrate the fluctuation phenomena. At this
end, we consider two auxiliary stochastic differential equations

dy1 = (−D
M

(y1 − 1) +
2Pmax

M
sin δsdt+ σdB(t),

y1(0) = ω(0).
(4.1)

and
dy2 = (−D

M
(y2 − 1)− 2Pmax

M
sin δsdt+ σdB(t),

y1(0) = ω(0).
(4.2)

Itô’s formula implies

ω(t) = e−
D
M t
{
ω(0) +

∫ t

0

[
e
D
M s
(Pmax

M
(sin δs − sin δ)

)
+
D

M

]
ds+

∫ t

0

e
D
M sσdB(s)

}
,

y1(t) = e−
D
M t
{
ω(0) +

∫ t

0

[
e
D
M s
(2Pmax

M
sin δs +

D

M

]
ds+

∫ t

0

e
D
M sσdB(s)

}
,

y2(t) = e−
D
M t
{
ω(0) +

∫ t

0

e
D
M s
(D
M
− 2Pmax

M
sin δs

)
ds+

∫ t

0

e
D
M sσdB(s)

}
.

We therefore have that
y2(t) ≤ ω(t) ≤ y1(t). (4.3)

Next we have a well known lemma (see Hasminskii [7, pp. 106-125]). Let x(t)
be a homogeneous Markov process in Rn described by the following stochastic
differential equation:

dx(t) = f(x)dt+ g(x)dB(t). (4.4)
the drift coefficients and diffusion coefficients of system (4.4) are a(x) = f(x), σ(x) =
g(x)gT (x) respectively.

Lemma 4.1 ([7]). We assume that there is a bounded open subset G ⊂ R:
(i) in the domain G and some neighborhood therefore, the smallest diffusion

matrix g2(x) is bounded away from zero.
(ii) If x ∈ R\G, the mean time τ at which a path issuing from x reaches the set G

is finite, and supx∈K\GExτ < +∞ for every compact subset K ∈ R.and throughout
this paper we set inf ∅ =∞. Then the Markov process x(t) of system(4.4) is ergodic
and positive recurrent.

Lemma 4.2. The solution process (y1(t)) of system (4.1) and (y2(t)) of system
(4.2) are ergodic and positive recurrent.

Proof. Without loss of generality, we only provide the proof for system (4.1), the
proof for system (4.2) is similar. To validate condition (i) and (ii), it suffices to
prove that there exists some neighborhood U and a nonnegative C2-function V
such that σ2 is uniformly elliptical in U and L V ≤ −1 for any x ∈ R \ U , (details
refer to [16] p. 400). Applying Itô’s formula to V (y1) = y2

1 we have

L V (y1) = −2D
M

y2
1 + (

4Pmax

M
sin δs + 2

D

M
)y1 + σ2.

Note from 2D
M > 0, that there is a sufficiently large N , such that

L V (y1) ≤ −1, ∀|y1| > N ; inf
|y1|>N

λmin(σ2) = σ2 > 0.
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This immediately implies condition (i) and (ii) in Lemma 4.1. �

Now, we use the recurrence of (y1(t)) and (y2(t)) to explain such fluctuation
phenomena. For fixed α1 and α2 such that α1 > α2, Let α1, α2 denote the higher
and lower levels respectively. Set τ i0 = inf{t ≥ 0 : yi(t) ≥ α1}, τ i1 = inf{t ≥ τ i0 :
yi(t) ≤ α2}, i = 1, 2. and τ0 = inf{t ≥ 0 : ω(t) ≥ α1}, τ1 = inf{t ≥ τ0 : ω(t) ≤
α2}. For k ≥ 1, i = 1, 2, . . . , we define the following sequence of stopping times
recursively

τ i2k = inf{t ≥ τ i2k−1 : yi(t) ≤ α2}, τ i2k+1 = inf{t ≥ τ i2k : yi(t) ≥ α1},
τ2k = inf{t ≥ σi2k−1 : ω(t) ≤ α2}, τ i2k+1 = inf{t ≥ σi2k : ω(t) ≥ α1}.

For i = 1, 2, the strong Markov property and Lemma 4.2 imply

τ ik <∞, k ≥ 0 a.s.

For each k > 0, it therefore follows from (4.3) that

ω(τ1
2k) ≤ y1(τ1

2k) = α1, ω(τ1
2k+1) ≤ y1(τ1

2k+1) = α1,

ω(τ2
2k) ≥ y2(τ2

2k) = α2, ω(τ2
2k+1) ≥ y2(τ2

2k+1) = α2.

This implies

τ1
2k ≤ τ2k ≤ τ2

2k <∞, τ2
2k+1 ≤ τ2k+1 ≤ τ1

2k+1 <∞, k ≥ 0.

This means that the higher and lower levels of ω(t) occurs, which coincides with
the recurrent phenomena in practice.

5. Discussion on stationary distribution

The main aim of this section is to discuss the existence of a stationary distribution
of the system (1.1). Letting x = [x1, x2] = [δ, ω − 1], the stochastic OMIB system
(1.1) can be rewritten as the following vector form

dx = f(x)dt+ g(x)dB(t), (5.1)

where

f(x) =
[
f1(x)
f2(x)

]
=
[

x2
−D
M (x2) + Pmax

M (sinx1 − sin δs)

]
, g(x) =

[
0
σ

]
, (5.2)

and the drift coefficients and diffusion coefficients of system (5.1) are

a(x) =
[

x2
−D
M (x2) + Pmax

M (sinx1 − sin δs)

]
, σ(x) = g(x)gT (x) =

[
0 0
0 σ2

]
. (5.3)

Let P (t, x0, A) denote the probability measure induced by x(t, x0); that is,

P (t, x0, A) = P(x(t, x0) ∈ A), A ∈ B(En),

where B(En) is the σ-algebra of all the Borel sets A ⊂ En. Now we will show that
the solution process x(t) has a transition density function p(t, x0, y).

Lemma 5.1. The transition probability measure P (t, x0, A) of system (5.1) has a
density p(t, x0, y) ∈ C∞((0,∞)×R2 ×R2).
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Proof. Let us now introduce the notation of Lie bracket. If a(x) and b(x) are vector
fields on Rd, then the Lie bracket [a, b] is a vector field given by

[a, b]j(x)
d∑
k=1

(ak
∂bj
∂xk

(x)− bk
∂aj
∂xk

(x)), j = 1, 2, · · ·, d.

For SMIB system, simple computation shows that [f, g](x) = [−σ, σDM ]T . Conse-
quently

|[f, g](x), g(x)| =
∣∣∣∣−σ 0
σD
M σ

∣∣∣∣ = −σ2 6= 0, (5.4)

which means that [f, g], g are linearly independent on R2. Thus for every (x1, x2) ∈
R2, vector [f, g], g span the space R2. In view of Hormander’s Theorem in [1], the
transition probability measure P (t, x0, A) has a density p(t, x0, y) ∈ C∞((0,∞) ×
R2 ×R2). The proof is complete. �

For the stochastic OMIB system (5.1), the density function p(t, x0, y) satisfies
the following Fokker-Planck equation (FPE):

∂p(t, x0, y)
∂t

= −∂f1(y)p(t, x0, y)
∂y1

− ∂f2(y)p(t, x0, y)
∂y2

+
σ2

2
∂2p(t, x0, y)

∂y2
2

(5.5)

The FPE (5.5) is a two-dimensional parabolic partial differential equation, some
specified initial conditions and boundary conditions are provided by Wang in [25].
If the process x(t, x0) of (5.1) has a stationary distribution, then its probability
density function ps(y) satisfies the following stationary Fokker-Planck equation

∂f1(y)ps(y)
∂y1

+
∂f2(y)ps(y)

∂y2
=
σ2

2
∂2ps(y)
∂y2

2

. (5.6)

Now we try to solve the solve the stationary FPE by the detailed balance method,
which was first applied by van Kampen in [22]. This method classify the com-
ponents of the response vector as either odd or even variables, according to the
transformation from xj to x̄j upon the time reversal t→ −t. The even variables do
not change their signs when time is reversed, whereas the odd variables do. More
detailed information, we refer the reader to [22] and [4].

Lemma 5.2. The stationary Fokker-Planck equation (4.1) has a solution as fol-
lowing.

ps(y1, y2) = C exp
(
− 2D
Mσ2

(
y2

2

2
− Pmax

M
sin δy1 −

Pmax

M
cos y1)

)
(5.7)

Proof. For the second-order differential equations, Risken[18] showed that the first
variable is always even and the second variable is odd. To obtain conditions of de-
tailed balance we separate each drift coefficient aj(y) into reversible and irreversible
parts. aj(y) = aIj (y) + aRj (y), where

aIj (y) =
1
2

(aj(y) + ∆jaj(ȳ)), aRj (y) =
1
2

(aj(y)−∆jaj(ȳ)), j = 1, 2.

where ȳj = ∆jyj , ∆j = ±1 corresponds to even (+) or odd (−) variables. Since
ps(y1, y2) is nonnegative, it can be expressed in the form

ps(y1, y2) = C exp(−ϕ(y1, y2)).



EJDE-2017/298 DYNAMICAL ANALYSIS OF OMIB 11

Then according to [4] equations to determine ϕ are∑
j

2aIj (y)−
∑
j,k

∂σj,k
∂yk

+
∑
j,k

σj,k
∂ϕ

∂yk
= 0,

∑
j

∂aRj (y)
∂yj

+
∑
j

aRj (y)
∂ϕ

∂yk
= 0,

∑
j,k

[σjk(y)−∆j∆kσjk(ȳ)] = 0.

(5.8)

It is easy to show that the reversible and irreversible parts of each drift coefficient
of system (5.1) are

aI1(y) = 0, aR1 (y) = y2, aI2(y) = −D
M
y2, aR2 (y) =

Pmax

M
(sin δ − sin y1)

And the corresponding equation (5.8) of stochastic OMIB (5.1) is given by
∂ϕ

∂y2
=

2D
Mσ2

y2;
∂ϕ

∂y1
=

2DPmax

M2σ2
(sin y1 − sin δ). (5.9)

Simple computations show that

ps(y1, y2) = C exp
(
− 2D
Mσ2

(
y2

2

2
− Pmax

M
sin δy1 −

Pmax

M
cos y1)

)
. (5.10)

where C is a constant. The proof is complete. �

Obviously, the solution ps(y1, y2) is periodic in y1, which implies that the integral∫
R2 ps(y1, y2)dy1dy2 can not be convergent. As a result, the solution can not be

viewed as a density function on R2. On the other hand, the periodic might provide
another perspective on this topic. Now we state a lemma to indicate the periodic
of the solution process.

Lemma 5.3. Let x(t, x0) = (x1(t, x0), x2(t, x0)) be the global solution of system
(5.1) with initial data x0 = (x01, x02). Setting x′0 = (x01 + 2π, x02), for any t > 0,
we can claim that

x1(t, x′0)− x1(t, x0) = 2π, x2(t, x′0)− x2(t, x0) = 0.

Proof. It follows from the periodicity of f(x) with x1 that the process (x1(t, x0) +
2π, x2(t, x0)) is still the solution of system (5.1).

x1(t, x′0) = x′01 +
∫ t

0

x2(s, x′0)ds,

x2(t, x′0) = x′02 +
∫ t

0

(−D
M

x2(s, x′0) +
Pmax

M
(sinx1(s, x′0)− sin δ)

)
ds

+
∫ t

0

σdB(s),

(5.11)

x1(t, x0) + 2π = x01 + 2π +
∫ t

0

x2(s, x0)ds,

x2(t, x0) = x02 +
∫ t

0

(−D
M

x2(s, x0) +
Pmax

M
(sin(x1(s, x0) + 2π)

− sin δ)
)
ds+

∫ t

0

σdB(s).

(5.12)
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Subtracting (5.11) from (5.12) yields

x1(t, x′0)− x1(t, x0)− 2π =
∫ t

0

(x2(s, x′0)− x2(s, x0))ds,

x2(t, x′0)− x2(t, x0) =
∫ t

0

(−D
M

(x2(s, x′0)− x2(s, x0)) +
Pmax

M
(sin(x1(s, x′0))

− sin
(
x1(s, x0) + 2π)

))
ds.

Simple computations show that

(x1(t, x′0)− x1(t, x0)− 2π)2 + (x2(t, x′0)− x2(t, x0))2

≤
∫ t

0

(P 2
max

M2
+
D

M
+ 1
)(

(x1(s, x′0)− x1(s, x0)− 2π)2 + (x2(s, x′0)

− x2(s, x0))2
)
ds.

The well-known Gronwall inequality yields

x1(t, x′0) ≡ x1(t, x0) + 2π, x2(t, x′0) ≡ x2(t, x0).

Therefore we get the desired assertion.
By Lemma 5.3, the state space can be viewed either in planar R2 or cylindrical

S1×R. The cylindrical space is a more natural space from the physical perspective.
And the process x(t, x0) = (x1(t, x0), x2(t, x0)) on planar R2 can be mapped as a
process x̃(t, x0) = (x̃1(t, x0), x̃2(t, x0)) on cylindrical space S1 ×R, where

x̃1(t, x0) = x1(t, x0) (mod 2π), x̃2(t, x0) = x2(t, x0). (5.13)

The corresponding stationary Fokker-Planck equation has the form

∂f1(y)p̃s(ỹ)
∂ỹ1

+
∂f2(ỹ)p̃s(ỹ)

∂ỹ2
=
σ2

2
∂2p̃s(ỹ)
∂ỹ2

2

. (5.14)

In this case, we can choose a constant C1 such that

C1

∫
S1×R

exp
(
− 2D
Mσ2

(
ỹ2

2

2
− Pmax

M
sin δsỹ1 −

Pmax

M
cos ỹ1)

)
dỹ1dỹ2 = 1. (5.15)

That is to say, p̃s(ỹ) can be seen as a density function on S1×R. Then a interesting
question arise naturally: Is there a stationary distribution to system (5.1) on the
cylinder? To illustrate this topic, let us present a lemma which is essential to the
proof. �

Lemma 5.4 ([19]). We assume that drift vector a(x) ∈ Rn and diffusion matrix
σ(x) of the diffusion process X are continuous on En and independent of time t,
and

(i) The diffusion process X has a transition density function p(t, x, y).
(ii) For all x ∈ En, j, k ∈ 1, 2, · · ·, n, the first order partial derivatives of

p(t, x, y) with respect to t; the first order partial derivatives of bj(y)p(t, x, y)
with respect to yj, the second order partial derivatives of σjk(y(y)p(t, x, y)
with respect to yj and yk, exist and are all continuously differentiable.
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(iii) There exists a function ps(y) from Rn into R satisfying the steady state
Fokker-Planck equation on Rn which can be written for all x in En as

−
n∑
i=1

∂ai(y)ps(y)
∂yi

+
n∑
i,j

1
2
∂2bij(y)ps(y)

∂yi∂yj
= 0. (5.16)

with the positivity and normalization condition
∫
En

ps(y)dy = 1.

Then the stochastic process X(t) has an invariant measure with ps(y) as its proba-
bility density function.

Obviously, the smoothness of p(t, x0, y) can be guaranteed by Lemma 5.1, and
probability density function can be obtained by detailed balance technique in
Lemma 5.2. Making use of the property of periodicity, we can claim that the
corresponding probability density function p̃(t, x0, ỹ) of process x̃(t, x0) is also suf-
ficiently smooth on cylindrical space. and the stationary Fokker-Planck equation
of process x̃(t, x0) has the following solution on cylindrical space

p̃s(ỹ1, ỹ2) = C1 exp
(
− 2D
Mσ2

(
ỹ2

2

2
− Pmax

M
sin δsỹ1 −

Pmax

M
cos ỹ1)

)
. (5.17)

where C1 is the normalizing constant. Hence, a simple application of the Lemma
5.4 implies the main result of this subsection.

Theorem 5.5. For x0 = (δs, 1) ∈ S1 × R, the process x̃(t, x0) on S1 × R has a
stationary distribution.

Remark 5.6. Denote by µ(·) the stationary distribution of the process x̃(t, x0)
and (ỹ1, ỹ2) be the random variable to which x̃(t, x0) converges in distribution.
The proof of Theorem 3.1 implies that the probability density function of ỹ1 is

p1(ỹ1) = C2 exp
(2DPmax

M2σ2
(sin δỹ1 + cos ỹ1)

)
, ỹ1 ∈ [−π, π), (5.18)

where C2 is the normalizing constant. The distribution of ỹ2 is just the normal
distribution with its probability density function

p2(ỹ2) =
1√
MΠ
D σ2

exp
(
− 2D
Mσ2

(
ỹ2

2

2
))
, −∞ < ỹ2 <∞.

Conclusion. In this paper, we have investigated the asymptotic behavior of the
stochastic OMIB systems. Firstly, utilizing stochastic analysis techniques, the as-
ymptotic bound properties of pth moment and asymptotic pathwise estimation of
the stochastic OMIB systems have been researched. Secondly, by ergodic property
and the strong Markov property, higher and lower rotor speed levels appear infin-
itely, which may give a good explanation of the fluctuation phenomena. Finally,
the existence of stationary distribution on cylinder has been derived by periodicity
and some analysis analysis techniques.
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