
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 297, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXPONENTIAL STABILITY AND BLOW-UP FOR ABSTRACT
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Abstract. In this article we consider an abstract nonlinear system with non-

linear source terms. We prove the exponential stability by the energy method.
Also under suitable conditions on the initial values, we show that the nonlin-

ear source terms are able to guarantee the blow-up of the solutions by convex
method.

1. Introduction

Let A : D(A)→ L2(Ω) be a self-adjoint positive definite operator, D(A) ⊂ L2(Ω)
is a dense and compact embedding where Ω is a open bounded subset of Rn (n ≥ 1).
We consider the system

utt +A2u+M(‖Aα/2u‖22 + ‖Aα/2v‖22)Aαu+N(‖Aβ/2u‖22)Aβut = f(u, v),

in Ω× (0,∞),

vtt +A2v +M(‖Aα/2u‖22 + ‖Aα/2v‖22)Aαv +N(‖Aβ/2v‖22)Aβvt = g(u, v),

in Ω× (0,∞),

(1.1)

with the initial value conditions
u(x, 0) = u0, v(x, 0) = v0, in Ω,

ut(x, 0) = u1, vt(x, 0) = v1, in Ω,
(1.2)

where 0 < β ≤ α ≤ 1, M and N are continuous functions. The functions f and g
model the interior dissipations in the equations.

Many authors have studied the nonlinear wave equation

utt −M
(
‖∇u‖22

)
∆u = 0. (1.3)

This model was proposed by Kirchhoff [6] in one dimensional in which M(s) is
a linear function, and describe the transversal vibration of a string. Then many
authors devote themselves to local existence and global existence result of system
(1.3), see [1, 2, 3, 8]. Mizumachi [9] added linear damping on (1.3) and obtained
the decay estimates for the solutions.

2010 Mathematics Subject Classification. 35L05, 35L20, 35L70, 93D15.
Key words and phrases. Abstract nonlinear system; exponential decay; convex method;

blow-up.
c©2017 Texas State University.

Submitted June 8, 2017. Published November 28, 2017.

1



2 P. WANG, J. HAO EJDE-2017/297

Ikehata [5] considered the local solvability for abstract equation

utt −M
(
‖A1/2u‖2

)
Au+ δut = f(u),

where A is a positive definite and self-adjoint operator in Hilbert space (X, ‖ · ‖),
f : D(A1/2)→ X is a nonlinear operator, and M(s) is a C1 function satisfying

M(s) ≥ m0 > 0.

He obtained the existence of strong solution without compactness hypothesis.
Rivera [11] studied the equation with damping

utt +M
(
‖A1/2u‖2

)
Au+Aut = 0,

and proved that if the initial value (u0, u1) ∈ D(A) × X, then the corresponding
solution of the system satisfies

u ∈ C2
(
[0, T ];D(Ak)

)
, ∀k ∈ N.

Lazo [7] studied the nonlinear wave equation

utt +M
(
‖A1/2u‖2

)
Au+N

(
‖Aαu‖2

)
Aαut = f.

He proved the existence of global solutions in a Hilbert space by using Galerkin’s
method.

Wu [12] considered the following nonlinear viscoelastic wave equations of Kirch-
hoff type with the nonlinear damping and source terms,

utt −M
(
‖∇u‖22 + ‖∇v‖22

)
∆u+

∫ t

0

g1(t− s)∆u(s)ds+ |ut|p−1ut = f1(u, v),

vtt −M
(
‖∇u‖22 + ‖∇v‖22

)
∆v +

∫ t

0

g2(t− s)∆v(s)ds+ |vt|q−1vt = f2(u, v).

He proved that, with the initial date in the stable set and for a wider class of
relaxation functions, the decay rate of the system depends on the exponents of the
damping terms by using Nakao’s method. Conversely, for certain initial date in the
unstable set, he obtained the blow-up result when the initial energy is nonnegative.

Mu and Ma [10] considered the following nonlinear viscoelastic wave equations
of Kirchhoff type with Balakrishnan-Taylor damping,

utt −
(
a+ b‖∇u‖22 + σ

∫
Ω

∇u · ∇ut dx
)

∆u+
∫ t

0

g1(t− s)∆u(s)ds = f1(u, v),

vtt −
(
a+ b‖∇v‖22 + σ

∫
Ω

∇v · ∇vt dx
)

∆v +
∫ t

0

g2(t− s)∆v(s)ds = f2(u, v).

By the modified perturbed energy technique, the authors showed that the decay
rate of the system is similar to that of relaxation functions. They also proved that
nonlinear source of polynomial type is able to force solutions to blow up in finite
time even if stronger damping exists.

Zhang et al [14] obtained the existence of global weak solutions for the coupled
system

utt +M(‖A1/2u‖2 + ‖A1/2v‖2)Au+N(‖Aαu‖2)Aαut = f(x, t),

vtt +M(‖A1/2u‖2 + ‖A1/2v‖2)Av +N(‖Aαv‖2)Aαvt = g(x, t).

Hao et al [4] proved the well posedness of the solution for system

utt +A2u+M(‖Aα/2u‖2 + ‖Aα/2v‖2)Aαu+N(‖Aβ/2u‖2)Aβut = f(x, t),
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vtt +A2v +M(‖Aα/2u‖2 + ‖Aα/2v‖2)Aαv +N(‖Aβ/2v‖2)Aβvt = g(x, t),

by Galerkin’s method. However, they did not obtain the blow up or decay property.
In this paper, under suitable conditions, we prove that the system is exponential

stable when the initial value lies in the stable set and blow up when the initial
energy is negative or non-negative but small. Our plan in this paper is as follows.
In section 2, we present some materials and assumptions needed later. In section 3,
we prove the decay result by the energy method. In section 4, by using the convex
method, we prove the blow-up phenomena of solutions.

2. Preliminaries

In this section, we present some materials and assumptions needed in the rest of
this paper.

We denote ‖ · ‖q = ‖ · ‖Lq(Ω), 1 ≤ q < ∞, and denote (·, ·) the usual inner
product of L2(Ω). We denote H = L2(Ω) and c to be a generic positive constant
which might change from line to line.

Next we give some assumptions for system (1.1)–(1.2).

(A1) There exist constants c0 > 0, γ > 2, p > 1 and a positive C1 function
F : R2 → R such that

∂F (u, v)
∂u

= f(u, v),
∂F (u, v)
∂v

= g(u, v), uf(u, v) + vg(u, v) = γF,∫
Ω

F (u, v)dx ≤ c0
(
‖u‖p+1

p+1 + ‖v‖p+1
p+1

)
,

(2.1)

where p satisfies the inequality

‖u‖p+1 ≤ c1‖Au‖2, ∀u ∈ D(A), (2.2)

(A2) There exist positive constants m0, n0, such that

M(z) ≥ m0, N(z) ≥ n0, ∀z ≥ 0. (2.3)

(A3) There exists positive constants c1, c2, such that

‖Au‖2 ≥ c2‖A
r
2 u‖2 ≥ c3‖u‖2, ∀u ∈ D(A), r ∈ (0, 1]. (2.4)

We denote the eigenvalues of the self-adjoint positive definite operator A by
{λj}j∈N+ . Thus we have 0 < λ1 < λ2 < · · · < λn < . . . , and λn → +∞ (n→ +∞).
The corresponding eigenvector series is {ωj}j∈N+ . Let D(As) = {u ∈ D(A1/2) :
Asu ∈ H}, and

(u, v)D(As) = (Asu,Asu) =
+∞∑
j=1

λ2s
j (u, ωj)(v, ωj), ∀u, v ∈ D(As),

‖u‖2D(As) = (u, u)D(As) =
+∞∑
j=1

λ2s
j (u, ωj)2, ∀u ∈ D(As).

Especially, H = D(A0), and we denote V = D(A
α
2 ).

Now, we state the following well posedness of the solution of system (1.1)-(1.2)
which can be derived by Galerkin’s method just as in [4].
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Lemma 2.1. Assume that (A1)–(A3) hold. If (u0, u1), (v0, v1) ∈ V ∩ D(Aβ) ×
H, then system (1.1)-(1.2) exists only one weak solution (u, v) = (u(x, t), v(x, t))
satisfying

(u, v) ∈ L∞(0, T ;D(Aβ)) ∩ L2(0, T ;D(A
α+β

2 )),

(ut, vt) ∈ L∞(0, T ;H) ∩ L2(0, T ;D(Aβ/2)).

We let

M̂(z) =
∫ z

0

M(s)ds, N̂(z) =
∫ z

0

N(s)ds,

and define the energy functional

E(t) =
1
2
(
‖ut‖22 + ‖vt‖22

)
+ J(t), (2.5)

where

J(t) =
1
2
w2(t)−

∫
Ω

F (u, v)dx,

w(t) =
(
‖Au‖22 + ‖Av‖22 + M̂(‖Aα/2u‖22 + ‖Aα/2v‖22)

)1/2

. (2.6)

By a simple calculation, we obtain

E′(t) = −N(‖Aβ/2u‖22)‖Aβ/2ut‖22 −N(‖Aβ/2v‖22)‖Aβ/2vt‖22. (2.7)

From (2.7) it follows that the energy E(t) is non-increasing. Employing (2.1), (2.2)
and (2.6), we conclude that∫

Ω

F (u, v)dx ≤ c0
(
‖u‖p+1

p+1 + ‖v‖p+1
p+1

)
≤ c0cp+1

3

(
‖Au‖p+1

2 + ‖Av‖p+1
2

)
≤ 2c0c

p+1
3 wp+1(t) :=

η

p+ 1
wp+1(t),

(2.8)

where η = 2(p+ 1)c0c
p+1
3 is a positive constant.

3. Exponential decay result

In this section, we prove a decay result for system (1.1)-(1.2). For this purpose,
we define the potential well

W =
{

(u, v) ∈ D(A)×D(A) : I(t) = w2(t)− γ
∫

Ω

F (u, v)dx > 0
}
∪ (0, 0).

Lemma 3.1. Let (u, v) be the solution of system (1.1)-(1.2) and assume that (A1)–
(A3) hold. If (u0, v0) ∈W , and

ζ =
η

p+ 1

( 2γ
γ − 2

E(0)
) p−1

2
<

1
γ
,

then
(u(t), v(t)) ∈W, ∀t ≥ 0.
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Proof. If (u0, v0) ∈ W , from the definition of W , we obtain I(0) > 0. By the
continuity of I(t), there exists T ∗ ∈ (0,∞), such that for t ∈ [0, T ∗], I(t) ≥ 0. Then
we have

J(t) =
γ − 2

2γ
w2(t) +

1
γ
I(t) ≥ γ − 2

2γ
w2(t), t ∈ [0, T ∗],

thus we obtain

w2(t) ≤ 2γ
γ − 2

J(t) ≤ 2γ
γ − 2

E(t) ≤ 2γ
γ − 2

E(0), t ∈ [0, T ∗].

Combining this and (2.8), we obtain∫
Ω

F (u, v)dx ≤ ζw2(t), t ∈ [0, T ∗].

Then by the assumption on ζ, we have

(u(t), v(t)) ∈W, t ∈ [0, T ∗].

Repeating the process, T ∗ extends increasingly. �

Lemma 3.2. Let (u, v) be the solution of system (1.1)-(1.2), We assume that (A1)–
(A3) hold and the function M(z) satisfies

M̂(z) ≤M(z)z, z ≥ 0. (3.1)

Then the functional

F (t) = (u, ut) + (v, vt) +
1
2
N̂(‖Aβ/2u‖22) +

1
2
N̂(‖Aβ/2v‖22)

satisfies

F ′(t) ≤ −I(t) + ‖ut‖22 + ‖vt‖22. (3.2)

Proof. Differentiating F (t) and by (1.1), we have

F ′(t) = ‖ut‖22 + ‖vt‖22 −M(‖Aα/2u‖22 + ‖Aα/2v‖22)(‖Aα/2u‖22 + ‖Aα/2v‖22)

− ‖Au‖22 − ‖Av‖22 + γ

∫
Ω

F (u, v)dx.

By (3.1) and the definition of I(t), we obtain (3.2). �

We define the Lyapunov functional

L(t) = mE(t) + F (t), (3.3)

in which m is a big positive constant to be determined later.

Theorem 3.3. If the assumptions of Lemma 3.1 and (3.1) hold, and N(z) ∈
L∞(0,∞), then there exist two positive constants ω and κ, such that

E(t) ≤ κe−ωt, t ≥ 0. (3.4)
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Proof. From (2.4), (2.5), (3.3), Young’s inequality, Lemma 3.1, and combining with
the condition N(z) ∈ L∞(0,∞), we have

L(t)− m

2
E(t) = F (t) +

m

2
E(t)

≥ −1
2
(
‖u‖22 + ‖v‖22 + ‖ut‖22 + ‖vt‖22

)
− c‖Aβ/2u‖22 − c‖Aβ/2v‖22 +

m

2
E(t)

≥ −c
(
‖Au‖22 + ‖Av‖22 + ‖ut‖22 + ‖vt‖22

)
+
m

2
E(t)

=
(m

4
− c
) (
‖ut‖22 + ‖vt‖22

)
+
(m(γ − 2)

4γ
− c
) (
‖Au‖22 + ‖Av‖22

)
+
m

2γ
I(t)

+
m(γ − 2)

4γ
M̂(‖Aα/2u‖22 + ‖Aα/2v‖22)

≥
(m

4
− c
) (
‖ut‖22 + ‖vt‖22

)
+
(m(γ − 2)

4γ
− c
) (
‖Au‖22 + ‖Av‖22

)
.

(3.5)

On the other hand, by similar calculation, we obtain

2mE(t)− L(t) = mE(t)− F (t)

≥
(m

2
− c
) (
‖ut‖22 + ‖vt‖22

)
+
(m(γ − 2)

2γ
− c
) (
‖Au‖22 + ‖Av‖22

)
.

(3.6)

We choose N large enough, such that

L(t)− N

2
E(t) ≥ 0, 2NE(t)− L(t) ≥ 0,

thus we obtain
L(t) ∼ E(t). (3.7)

From Lemma 3.1, we have a constant η1 ∈ (0, 1), such that

γ

∫
Ω

F (u, v)dx ≤ (1− η1)w2(t).

Hence we have
I(t) ≥ η1w

2(t).

Then we arrive at

E(t) =
1
2
(
||ut||22 + ||vt||22

)
+
γ − 2

2γ
w2(t) +

1
γ
I(t)

≤ 1
2
(
||ut||22 + ||vt||22

)
+ η2I(t),

(3.8)

where η2 = γ−2
2γη1

+ 1
γ .

Differentiating L(t) and by (2.3), (2.4), (2.7), (3.2), we obtain

L′(t) ≤ −(cN − 1)(‖ut‖22 + ‖vt‖22)− I(t).

Let N large enough, such that cN−1 > 0 and (3.7) holds, exploiting (3.8), we have

L′(t) ≤ −cE(t).

Because of (3.7), we have some constant ω > 0 such that

L′(t) ≤ −ωL(t). (3.9)

Integrating (3.9), we have L(t) ≤ ce−ωt. This completes the proof. �
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4. Blow-up result

Let
G(λ) =

1
2
λ2 − η

p+ 1
λp+1, λ > 0.

By calculation, we can get that E1 := G(λ1) = p−1
2(p+1)λ

2
1 is the maximum value of

the function G(λ), here λ1 = η−
1
p−1 .

Lemma 4.1. Let (u, v) be the solution of system (1.1)-(1.2). We assume that
(A1),(A2) hold, w(0) > λ1 and 0 < E(0) < E1, then there exists λ2, such that

w(t) ≥ λ2 > λ1, t ≥ 0,

and ∫
Ω

F (u, v)dx ≥ η

p+ 1
λp+1

2 .

Lemma 4.2 ([15]). Suppose that there is a positive, twice-differential function Y (t)
satisfies the inequality

Y ′′(t)Y (t)− ς (Y ′(t))2 ≥ 0, t ≥ 0,

where the constant ς > 1, then there is a t∗ < Y (0)
(ς−1)Y ′(0) such that Y (t) → ∞ as

t→ t∗.

Theorem 4.3. Let (u, v) be the solution of system (1.1)-(1.2). We assume that
(A1), (A2) hold and

M̂(z) ≥M(z)z, N̂(z) ≥ N(z)z. (4.1)

If anyone of the following conditions is satisfied:
(i) E(0) < 0;
(ii) E(0) = 0, 2(u0, u1) + 2(v0, v1) > 0;

(iii) 0 < E(0) < %E1 ,where % = min{1, p+1
(γ−1)(p−1) (γ − 2− p−1

p+1 )} and γ ≥ 3,

then system (1.1)-(1.2) blows up in finite time.

Proof. We prove this theorem by contradiction. Assume that the solution (u, v) is
global. Then we can define, for sufficiently large T > 0,

Φ(t) = ‖u‖22 + ‖v‖22 +
∫ t

0

N̂(‖Aβ/2u(t− s)‖22)ds+
∫ t

0

N̂(‖Aβ/2v(t− s)‖22)ds

+ (T − t)
[
N̂(‖Aβ/2u0‖22)|+ N̂(‖Aβ/2v0‖22)

]
+ k0(t+ t0)2, t ∈ [0, T ],

where k0, t0 ≥ 0 are constants to be determined later.
Differentiating Φ(t), we have

Φ′(t) = 2(u, ut) + 2(v, vt) + 2
∫ t

0

N(‖Aβ/2u(s)‖22)
(
Aβ/2ut(s), Aβ/2u(s)

)
ds

+ 2
∫ t

0

N(‖Aβ/2v(s)‖22)
(
Aβ/2vt(s), Aβ/2v(s)

)
ds+ 2k0(t+ t0).

Taking the derivation of Φ′(t), we obtain

Φ′′(t) = 2‖ut‖22 + 2‖vt‖22 + 2γ
∫

Ω

F (u, v)dx− 2‖Au‖22 − 2‖Av‖22

− 2M(‖Aα/2u‖22 + ‖Aα/2v‖22)(‖Aα/2u‖22 + ‖Aα/2v‖22) + 2k0.
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In the following, we deal with Φ′′(t) in different situations.
Cases (i) and (ii): By (2.5), (2.7), (4.1) and γ > 2 we have

Φ′′(t)

= 2γ
∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2ut(s)‖22 +N(‖Aβ/2v(s)‖22)‖Aβ/2vt(s)‖22ds

+ 2γ [E(t)− E(0)] + Φ′′(t)

≥ (γ − 2)
[
‖Au‖22 + ‖Av‖22 +M(‖Aα/2u‖22 + ‖Aα/2v‖22)(‖Aα/2u‖22 + ‖Aα/2v‖22)

]
+ 2γ

∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2ut(s)‖22 +N(‖Aβ/2v(s)‖22)‖Aβ/2vt(s)‖22ds

+ (γ + 2)
[
‖ut‖22 + ‖vt‖22

]
− 2γE(0) + 2k0

≥ (γ + 2)
[ ∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2ut(s)‖22 +N(‖Aβ/2v(s)‖22)‖Aβ/2vt(s)‖22ds

+ ‖ut‖22 + ‖vt‖22 + k0

]
− γ [k0 + 2E(0)] .

Let

P = ‖u‖22, Q = ‖v‖22, P̃ = ‖ut‖22, Q̃ = ‖vt‖22,

R =
∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2u(s)‖22ds,

S =
∫ t

0

N(‖Aβ/2v(s)‖22)‖Aβ/2v(s)‖22ds,

R̃ =
∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2ut(s)‖22ds,

S̃ =
∫ t

0

N(‖Aβ/2v(s)‖22)‖Aβ/2vt(s)‖22ds.

We select 0 < k0 < −2E(0) in Case (i) and k0 = 0 in Case (ii), then by the
inequality∫ t

0

N(‖u(s)‖22)(ut(s), u(s))ds

≤
∫ t

0

N(‖u(s)‖22)‖ut(s)‖2‖u(s)‖2ds

≤
(∫ t

0

N(‖u(s)‖22)‖ut(s)‖22ds
)1/2(∫ t

0

N(‖u(s)‖22)‖u(s)‖22ds
)1/2

,

By using Hölder inequality and (4.1), we obtain

Φ′′Φ− γ + 2
4

(Φ′)2

≥ (γ + 2)
[
P +Q+R+ S + k0(t+ t0)2

] [
P̃ + Q̃+ R̃+ S̃ + k0

]
− (γ + 2)[P 1/2P̃ 1/2 +Q1/2Q̃1/2 +R1/2R̃1/2 + S1/2S̃1/2 + k0(t+ t0)]2 ≥ 0.

In Case (i), we take t0 sufficiently large such that

Φ′(0) = 2(u0, u1) + 2(v0, v1) + 2k0t0 > 0.
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Noticing that Φ(0) > 0, by Lemma 4.2, we conclude that there exist t∗ > 0, such
that

lim
t→t∗

Φ(t) =∞.

Since t∗ is independent of T , we assume that t∗ < T , which is contradicted the
hypothesis that the solution (u, v) is global.

In Case (ii), we have Φ(0) > 0 and Φ′(0) > 0, then we use the same argument
as Case (i).
Case (iii): By (2.5)-(2.7), (4.1), γ > 3 and Lemma 4.1, we obtain

Φ′′(t)

≥ (γ + 1)
(
‖ut‖22 + ‖vt‖22

)
+ (γ − 3)w2(t) + 2k0 + 2

∫
Ω

F (u, v)dx− 2(γ − 1)E(t)

= (γ + 1)
(
‖ut‖22 + ‖vt‖22

)
+ (γ − 3)w2(t) + 2k0 + 2

∫
Ω

F (u, v)dx− 2(γ − 1)E(0)

+ 2(γ − 1)
∫ t

0

N(‖Aβ/2u(s)‖22)‖Aβ/2ut(s)‖22 +N(‖Aβ/2v(s)‖22)‖Aβ/2vt(s)‖22ds

≥ γ
[
P̃ + Q̃+ R̃+ S̃ + k0

]
+ (γ − 3)w(t)2 + 2

∫
Ω

F (u, v)dx

− 2(γ − 1)E(0)− (γ − 2)k0

≥ γ
[
P̃ + Q̃+ R̃+ S̃ + k0

]
+ (γ − 3)λ2

2 +
2η
p+ 1

λp+1
2

− 2(γ − 1)E(0)− (γ − 2)k0

≥ γ
[
P̃ + Q̃+ R̃+ S̃ + k0

]
+
(
γ − 2− p− 1

p+ 1

)
λ2

1

− 2(γ − 1)E(0)− (γ − 2)k0.

By denoting C :=
(
γ − 2− p−1

p+1

)
λ2

1 − 2(γ − 1)E(0), we have

Φ′′(t) ≥ γ
[
P̃ + Q̃+ R̃+ S̃ + k0

]
+ C − (γ − 2)k0.

Furthermore we know that C > 0 because of E(0) < %E1. By selecting

0 < k0 ≤
C

γ − 2
,

we obtain
Φ′′(t) ≥ γ[P̃ + Q̃+ R̃+ S̃ + k0].

Finally we have

Φ′′Φ− γ

4
(Φ′)2

≥ γ
[
P +Q+R+ S + k0(t+ t0)2

]
[P̃ + Q̃+ R̃+ S̃ + k0]

− γ[P 1/2P̃ 1/2 +Q1/2Q̃1/2 +R1/2R̃1/2 + S1/2S̃1/2 + k0(t+ t0)]2

≥ 0.

Similarity to the Case (i), we select t0 sufficiently large such that

Φ′(0) = 2(u0, u1) + 2(v0, v1) + 2k0t0 > 0.

Noticing that Φ(0) > 0, we repeat the process and conclude the desired result. �
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