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Abstract. By using a solvability method along with the contraction mapping

principle quite recently has been presented an interesting method for showing
the existence of a unique bounded solution to a nonhomogenous linear second-

order difference equation on the set of nonnegative integers. It is a natural

question if the combination of the method and principle can be applied in
showing the existence of bounded solutions to some higher-order generaliza-

tions of the equation. Here, among others, we give a positive answer to the

question for the case of a nonhomogenous linear difference equation of third
order. Moreover, the equation is studied on the whole integer domain Z.

1. Introduction

Let Nk be the set all nonnegative integers n such that n ≥ k, where k ≥ 0,
and Z be the set of all integers. There are many methods for studying difference
equations and systems of difference equations (see, for example, [1]-[11], [13]-[32]
and the references therein). Studying the solvability of the equations and systems
is one of the oldest topics. The aim of the solvability methods is finding closed form
formulas for solutions to the equations and systems, which can be afterwards used
in studying of the long-term behaviour of their solutions. Recall also that a great
majority of the equations and systems are practically not solvable in closed form,
so that any new solvable equation or system is of some interest, if nothing because
of its solvability. Many classical methods for solving the equations and systems can
be found, for example, in books [1, 8, 14, 15, 16, 19, 20]. For a renewed interest
in the topic, see, for example, recent papers [7, 21, 25, 26], [29]-[32], as well as the
numerous related references therein. For some related results or applications of
some solvable equations and systems see also [2, 5, 6, 13, 27, 28].

It is interesting to mention that one of the methods by Stević from 2004 for
solving a class of nonlinear difference equations has attracted considerable attention
(see, for example, [25, 31], the references therein, including the original sources).
Namely, the difference equations investigated therein are some extensions of one of
those equations which, by using a suitable change of variables, can be transformed
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to a special case of the linear first-order difference equation, that is, of the following
equation

xn+1 = qnxn + fn, n ∈ N0, (1.1)
which is solvable and one of the most important difference equations.

Since that time has been shown that there are many related equations and sys-
tems which can be solved by using closely related changes of variables (see, for
example, [21, 32] and the references therein). Moreover, there are many related
classes of systems of difference equations, which can be solved in closed form in a
similar way (see, for example, [7, 30]). However, there are some other equations
and systems which cannot be solved by closely related methods, although a detailed
analysis can show that they also essentially use the solvability of equation (1.1),
which also shows the importance of the equation (see, for example, [26] where an
interesting class of difference equations with several parameters was studied, [29]
where is investigated a two-dimensional product-type system of difference equations
on the complex domain, as well as the references therein).

Since a majority of difference equations and systems is not solvable, some other
methods for their study are needed. The methods from fixed point theory are
suitable in showing the existence of specific types of solutions (see, for example,
[1, 9, 10, 11, 17, 18, 24] and the references therein). One of the basic results in the
theory is the contraction mapping principle, or the Banach fixed-point theorem [4].
A natural idea is to use the solvability methods in getting some formulas which can
serve as natural motivations for introducing some operators on spaces of sequences,
by which along with some of the theorems from the fixed point theory can be proved
the existence of specific types of solutions to the equations and systems (bounded,
positive, periodic etc.).

Recently, in [28], Stević has used a classical solvability method along with the
contraction mapping principle, to show in an elegant and unified way the existence
of a unique bounded solution to the following linear second-order difference equation

xn+2 − qnxn = fn, n ∈ N0, (1.2)

where (qn)n∈N0 and (fn)n∈N0 are bounded sequences, and the sequence (qn)n∈N0

satisfies some other conditions. Another, more elementary and solvability oriented,
but not unified, method for dealing with the problem was also mentioned there.
The successful application of the combination of the solvability method and the
contraction principle naturally imposes the following problem.

Problem 1.1. Try to apply a version/modification of the combination of the solv-
ability method and the contraction mapping principle for getting some other results
on the existence of bounded solutions to some higher-order generalizations of dif-
ference equation (1.2).

This problem is concrete and, of course, one can naturally think of solving a
more general problem where the solvability method can be any of such ones, and
the contraction mapping principle can be any of the fixed point theorems on Banach
spaces of sequences. In fact, this is something which, in this or that way, is used in
showing the existence of specific types of solutions to the equations and systems,
although frequently it is not explicitly said [1, 9, 10, 11, 17, 18, 24].

Here we tackle the problem in a natural way by considering the following differ-
ence equation

xn+3 − qnxn = fn, n ∈ N0, (1.3)
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where (qn)n∈N0 and (fn)n∈N0 are sequences of real or complex numbers, which is
one of the simplest nonhomogenous linear third-order difference equations related
to equations (1.1) and (1.2).

First note that if the sequence qn is constant, that is,

qn = q 6= 0, n ∈ N0, (1.4)

and fn = 0, n ∈ N0, then equation (1.3) becomes

xn+3 − qxn = 0, n ∈ N0. (1.5)

It is well-known that equation (1.5) has the general solution in the form

xn = c1( 3
√
q)n + c2( 3

√
qε)n + c3( 3

√
qε̄)n = ( 3

√
q)n(c1 + c2ε

n + c3ε̄
n), n ∈ N0, (1.6)

where

ε =
−1 + i

√
3

2
= e

2πi
3 ,

and cj , j = 1, 3, are arbitrary constants.
Since ε3 = ε̄3 = 1 and εε̄ = 1, note that the following useful equalities hold:

ε2 = ε̄, ε̄2 = ε, ε− 1 = ε(1− ε̄),
ε̄− 1 = ε̄(1− ε), ε− ε̄ = ε(1− ε) = ε̄(ε̄− 1).

(1.7)

Now note that from (1.6), it follows that

|xn| ≤ ( 3
√
|q|)n(|c1|+ |c2|+ |c3|),

from which we have that for |q| < 1 all the solutions to equation (1.5) converge ge-
ometrically (exponentially) to zero, while if |q| = 1 all the solutions to the equation
are bounded. On the other hand, if |q| > 1, then all the solutions to the equation
are unbounded, except the trivial one, that is, xn = 0, n ∈ N0.

Let S ⊂ Z be an unbounded set. By l∞(S) we denote the Banach space con-
taining all bounded sequences u = (un)n∈S with the supremum norm

‖u‖∞,S = sup
n∈S
|un|.

Since the choice of set S will be clear from the context and will not influence on the
proofs of our results, we will simply use the notations l∞ and ‖·‖∞, not emphasizing
the set.

We show that the methods in [28] can be applied for the case of equation (1.3),
but not only on domain N0. Namely, motivated by recent paper [27], we will also
consider the equation on the set Z \ N3 and consequently on the whole Z. Since
the method and principle are classical we regard that some of the results presented
here are essentially folklore, but nevertheless, in several cases we present the proofs
of the results for the completeness and benefit of the reader. At the end of the
paper we give some suggestions for further investigation in the direction.

Before formulating and proving the main results in the paper, we quote a well-
known formula which we use. Let W3(a1, a2, a3) be the following determinant:

W3(a1, a2, a3) :=

∣∣∣∣∣∣
1 1 1
a1 a2 a3

a2
1 a2

2 a2
3

∣∣∣∣∣∣ ,
where aj ∈ C, j = 1, 3. Then

W3(a1, a2, a3) = (a2 − a1)(a3 − a1)(a3 − a2). (1.8)
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2. Main results

The main results in the paper are formulated and proved in this section. We
follow the idea in [28] on using a combination of the method of solvability and
application of the contraction mapping principle to suitable chosen operators nat-
urally arising during consideration of some nonhomogeneous difference equations
with constant coefficients. First, we consider (1.3) on the domain N0, and after
that on domain Z \ N3.

2.1. Equation (1.3) with nonnegative indices. The first result is standard and
is proved by a known method. It is devoted to the case when the sequence (qn)n∈N0

is constant, and gives a closed form formula for the general solution to equation
(1.3) in the case.

Proposition 2.1. Consider the equation

xn+3 − qxn = fn, n ∈ N0, (2.1)

where q ∈ C \ {0}, and (fn)n∈N0 ⊂ C. Then the general solution to the equation is

xn = ( 3
√
q)n
(
a0 +

n−1∑
k=0

fk
3( 3
√
q)k+3

)
+ ( 3
√
qε)n

(
b0 +

n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

)
+ ( 3
√
qε̄)n

(
c0 +

n−1∑
k=0

εkfk
3( 3
√
q)k+3

)
, n ∈ N0,

(2.2)

where a0, b0 and c0 are arbitrary complex numbers, and 3
√
q is one of the three

possible third roots of q.

Proof. To show formula (2.2) we employ the version of the method of undetermined
coefficients for the liner difference equations. Namely, based on (1.6), we assume
that the general solution to equation (2.1) has the form

xn = an( 3
√
q)n + bn( 3

√
qε)n + cn( 3

√
qε̄)n, n ∈ N0, (2.3)

for some (undetermined) sequences (an)n∈N0 , (bn)n∈N0 and (cn)n∈N0 , and pose the
following two conditions:

xn+1 =an+1( 3
√
q)n+1 + bn+1( 3

√
qε)n+1 + cn+1( 3

√
qε̄)n+1

=an( 3
√
q)n+1 + bn( 3

√
qε)n+1 + cn( 3

√
qε̄)n+1,

(2.4)

and
xn+2 =an+1( 3

√
q)n+2 + bn+1( 3

√
qε)n+2 + cn+1( 3

√
qε̄)n+2

=an( 3
√
q)n+2 + bn( 3

√
qε)n+2 + cn( 3

√
qε̄)n+2,

(2.5)

for n ∈ N0.
Conditions (2.4) and (2.5) can be obviously written as

(an+1 − an)( 3
√
q)n+1 + (bn+1 − bn)( 3

√
qε)n+1 + (cn+1 − cn)( 3

√
qε̄)n+1 = 0, (2.6)

(an+1 − an)( 3
√
q)n+2 + (bn+1 − bn)( 3

√
qε)n+2 + (cn+1 − cn)( 3

√
qε̄)n+2 = 0, (2.7)

for n ∈ N0.
From (2.1), (2.3), and (2.5) where n is replaced by n+ 1, it follows that

(an+1 − an)( 3
√
q)n+3 + (bn+1 − bn)( 3

√
qε)n+3 + (cn+1 − cn)( 3

√
qε̄)n+3 = fn, (2.8)

for n ∈ N0.
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Since q 6= 0, equations (2.6)-(2.8) together, can be written as the following linear
system of equations:

an+1 − an + (bn+1 − bn)εn+1 + (cn+1 − cn)ε̄n+1 = 0

an+1 − an + (bn+1 − bn)εn+2 + (cn+1 − cn)ε̄n+2 = 0

an+1 − an + (bn+1 − bn)εn+3 + (cn+1 − cn)ε̄n+3 =
fn

( 3
√
q)n+3

,

(2.9)

for each fixed n ∈ N0, that is, as a three-dimensional linear system in variables
an+1 − an, bn+1 − bn and cn+1 − cn.

In what follows we will use the following determinant, which appears, among
others, in solving the linear system,

W3(1, ε, ε̄) :=

∣∣∣∣∣∣
1 1 1
1 ε ε̄
1 ε2 ε̄2

∣∣∣∣∣∣ .
From (1.8), we have

W3(1, ε, ε̄) = (ε− 1)(ε̄− 1)(ε̄− ε) = −3
√

3i. (2.10)

Using (2.10), we see that the determinant of system (2.9) is

∆n =

∣∣∣∣∣∣
1 εn+1 ε̄n+1

1 εn+2 ε̄n+2

1 εn+3 ε̄n+3

∣∣∣∣∣∣ = (εε̄)n+1W3(1, ε, ε̄) = −3
√

3i, (2.11)

for every n ∈ N0.
By using Cramer’s rule, (1.7), (2.11), and some calculation, we have that the

solution to linear system (2.9) is given by

an+1 − an =− 1
3
√

3i

∣∣∣∣∣∣
0 εn+1 ε̄n+1

0 εn+2 ε̄n+2

fn
( 3√q)n+3 εn+3 ε̄n+3

∣∣∣∣∣∣
=− (εε̄)n+1(ε̄− ε)fn

3
√

3i( 3
√
q)n+3

=
fn

3( 3
√
q)n+3

,

(2.12)

bn+1 − bn =− 1
3
√

3i

∣∣∣∣∣∣
1 0 ε̄n+1

1 0 ε̄n+2

1 fn
( 3√q)n+3 ε̄n+3

∣∣∣∣∣∣
=
ε̄n+1(ε̄− 1)fn
3
√

3i( 3
√
q)n+3

=
ε̄nfn

3( 3
√
q)n+3

,

(2.13)

cn+1 − cn =− 1
3
√

3i

∣∣∣∣∣∣
1 εn+1 0
1 εn+2 0
1 εn+3 fn

( 3√q)n+3

∣∣∣∣∣∣
=− εn+1(ε− 1)fn

3
√

3i( 3
√
q)n+3

=
εnfn

3( 3
√
q)n+3

,

(2.14)

for n ∈ N0.
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From (2.12)–(2.14) it easily follows that

an = a0 +
n−1∑
k=0

fk
3( 3
√
q)k+3

, (2.15)

bn = b0 +
n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

, (2.16)

cn = c0 +
n−1∑
k=0

εkfk
3( 3
√
q)k+3

, (2.17)

for n ∈ N0.
Using the equalities (2.15)–(2.17) in (2.3), it is obtained that formula (2.2) holds

for every n ∈ N0.
Now note that xn in (2.2) can be written in the form

xn = xhn + xpn,

where

xhn = a0( 3
√
q)n + b0( 3

√
qε)n + c0( 3

√
qε̄)n

and

xpn =( 3
√
q)n

n−1∑
k=0

fk
3( 3
√
q)k+3

+ ( 3
√
qε)n

n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

+ ( 3
√
qε̄)n

n−1∑
k=0

εkfk
3( 3
√
q)k+3

=( 3
√
q)n

n−1∑
k=0

(1 + εn−k + ε̄n−k)fk
3( 3
√
q)k+3

,

for n ∈ N0.
Since (xhn)n∈N0 is obviously the general solution to the corresponding homoge-

neous difference equation, that is, to equation (1.5), while (xpn)n∈N0 is a particular
solution to equation (2.1), which is easily checked by some calculation, by a well-
known result [1, 14, 16, 20], it follows that formula (2.2) really presents the general
solution to nonhomogeneous difference equation (2.1), completing the proof of the
result. �

Remark 2.2. It is known that the method of undetermined coefficients used in the
proof of Proposition 2.1 can be applied to any nonhomogeneous linear difference
equation with constant coefficients. However, the formula in the general case is of
theoretical importance, since by the Abel-Ruffini theorem the polynomials of degree
greater than or equal to five need not be solvable by radicals. In the case of equation
(2.1) the associated characteristic polynomial to the corresponding homogeneous
equation is of the third-order, so solvable by radicals. In fact, the polynomial is
a special case of the following one: Pk(λ) = λk + a, k ∈ N, which is solvable by
radicals. Besides, the formulas in the general case seem complicated for calculating
in some reasonably simple closed forms.
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Corollary 2.3. The solution to equation (2.1) with the initial values xj ∈ C,
j = 0, 2, where q ∈ C \ {0} and (fn)n∈N0 ⊂ C is given by

xn =( 3
√
q)n
(qx0 + ( 3

√
q)2x1 + 3

√
qx2

3q
+
n−1∑
k=0

fk
3( 3
√
q)k+3

)
+ ( 3
√
qε)n

(qx0 + ε̄( 3
√
q)2x1 + ε 3

√
qx2

3q
+
n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

)
+ ( 3
√
qε̄)n

(qx0 + ε( 3
√
q)2x1 + ε̄ 3

√
qx2

3q
+
n−1∑
k=0

εkfk
3( 3
√
q)k+3

)
, n ∈ N0.

(2.18)

Proof. By using formula (2.2) and some calculation, it follows that for the solution
to equation (2.1) with the initial values xj ∈ C, j = 0, 2, the following equalities
must hold:

x0 = a0 + b0 + c0,

x1 = 3
√
qa0 + 3

√
qεb0 + 3

√
qε̄c0,

x2 = ( 3
√
q)2a0 + ( 3

√
q)2ε2b0 + ( 3

√
q)2ε̄2c0.

(2.19)

Let ∆ be the determinant of system (2.19). Then it is easy to see that

∆ = qW3(1, ε, ε̄).

From this, by some calculation and (1.7), we have

a0 =
1

qW3(1, ε, ε̄)

∣∣∣∣∣∣
x0 1 1
x1

3
√
qε 3

√
qε̄

x2 ( 3
√
q)2ε2 ( 3

√
q)2ε̄2

∣∣∣∣∣∣
=

(ε̄− ε)(qx0 + ( 3
√
q)2x1 + 3

√
qx2)

q(ε− 1)(ε̄− 1)(ε̄− ε)

=
qx0 + ( 3

√
q)2x1 + 3

√
qx2

3q
,

(2.20)

b0 =
1

qW3(1, ε, ε̄)

∣∣∣∣∣∣
1 x0 1
3
√
q x1

3
√
qε̄

( 3
√
q)2 x2 ( 3

√
q)2ε̄2

∣∣∣∣∣∣
=

(ε̄− ε)(qx0 + ε̄( 3
√
q)2x1 + ε 3

√
qx2)

q(ε− 1)(ε̄− 1)(ε̄− ε)

=
qx0 + ε̄( 3

√
q)2x1 + ε 3

√
qx2

3q
,

(2.21)

c0 =
1

qW3(1, ε, ε̄)

∣∣∣∣∣∣
1 1 x0
3
√
q 3

√
qε x1

( 3
√
q)2 ( 3

√
q)2ε2 x2

∣∣∣∣∣∣
=

(ε̄− ε)(qx0 + ε( 3
√
q)2x1 + ε̄ 3

√
qx2)

q(ε− 1)(ε̄− 1)(ε̄− ε)

=
qx0 + ε( 3

√
q)2x1 + ε̄ 3

√
qx2

3q
.

(2.22)

Using (2.20)-(2.22) in (2.2), is obtained formula (2.18). �
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The following two theorems show how formula (2.2) can be effectively used in
getting some results on the boundedness of solutions to equation (1.3) for the case
when the sequence (qn)n∈N0 is constant, but such that the modulus of the constant
is different from 1, while the sequence (fn)n∈N0 is bounded.

The first theorem deals with the case 0 < |q| < 1 and is certainly folklore. It
can be obtained in a direct, but not unified, way by iterating the following simple
consequence of (2.1)

|xn+3| ≤ |q||xn|+ |fn|,
using the conditions posed in the theorem, and some simple inequalities and sum-
mation formulas (this is one of the basic estimates concerning linear difference
equations, with enormous applications to many classes of difference equations).
However, the proof which we present here is straightforward, so, more elegant.

Theorem 2.4. Consider equation (2.1), where q ∈ C, 0 < |q| < 1 and (fn)n∈N0 ⊂
C is a bounded sequence. Then every solution to the equation is bounded.

Proof. By using formula (2.2), the conditions of the theorem and some simple
estimates, we have

|xn| ≤| 3
√
q|n
∣∣∣a0 +

n−1∑
k=0

fk
3( 3
√
q)k+3

∣∣∣+ | 3
√
qε|n

∣∣∣b0 +
n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

∣∣∣
+ | 3
√
qε̄|n

∣∣∣c0 +
n−1∑
k=0

εkfk
3( 3
√
q)k+3

∣∣∣
≤| 3
√
q|n
(
|a0|+

n−1∑
k=0

|fk|
3| 3
√
q|k+3

)
+ | 3
√
q|n
(
|b0|+

n−1∑
k=0

|fk|
3| 3
√
q|k+3

)
+ | 3
√
q|n
(
|c0|+

n−1∑
k=0

|fk|
3| 3
√
q|k+3

)
≤| 3
√
q|n
(
|a0|+ |b0|+ |c0|

)
+
‖f‖∞
| 3
√
q|2

n−1∑
k=0

| 3
√
q|n−k−1

≤|a0|+ |b0|+ |c0|+
‖f‖∞

| 3
√
q|2(1− | 3

√
q|)
,

for every n ∈ N0, from which the theorem follows. �

The following result solves the problem of the unique existence of a bounded
solution to equation (1.3) for the case qn = q, n ∈ N0, |q| > 1, in a unified way.

Theorem 2.5. Consider equation (2.1), where q ∈ C, |q| > 1 and (fn)n∈N0 ⊂ C is
a bounded sequence. Then there is a unique bounded solution to the equation.

Proof. By Proposition 2.1 the general solution to (2.1) is given by (2.2). Hence

x3n = qn
(
a0 + b0 + c0 +

3n−1∑
k=0

(1 + εk + ε̄k)fk
3( 3
√
q)k+3

)
, (2.23)

x3n+1 = ( 3
√
q)3n+1

(
a0 + b0ε+ c0ε̄+

3n∑
k=0

(1 + εk−1 + ε̄k−1)fk
3( 3
√
q)k+3

)
, (2.24)
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x3n+2 = ( 3
√
q)3n+2

(
a0 + b0ε

2 + c0ε̄
2 +

3n+1∑
k=0

(1 + εk−2 + ε̄k−2)fk
3( 3
√
q)k+3

)
, (2.25)

for every n ∈ N0.
Since |q| > 1 and (fn)n∈N0 is a bounded sequence, by using some elementary

inequalities, we have∣∣∣ ∞∑
k=0

(1 + εk−j + ε̄k−j)fk
3( 3
√
q)k+3

∣∣∣ ≤ ∞∑
k=0

‖f‖∞
| 3
√
q|k+3

=
‖f‖∞

| 3
√
q|2(| 3
√
q| − 1)

<∞, (2.26)

for j = 0, 2, which shows that the sums appearing in equalities (2.23)-(2.25) are
absolutely convergent.

Using this fact, along with equalities (2.23)-(2.25) and the assumption |q| > 1, we
see that if (xn)n∈N0 is a bounded solution to equation (2.1), the following equalities
must hold:

a0 + b0 + c0 = −
∞∑
k=0

(1 + εk + ε̄k)fk
3( 3
√
q)k+3

=: S1, (2.27)

a0 + b0ε+ c0ε̄ = −
∞∑
k=0

(1 + εk−1 + ε̄k−1)fk
3( 3
√
q)k+3

=: S2, (2.28)

a0 + b0ε
2 + c0ε̄

2 = −
∞∑
k=0

(1 + εk−2 + ε̄k−2)fk
3( 3
√
q)k+3

=: S3. (2.29)

Indeed, since |q| > 1, we have | 3
√
q|3n+j → +∞, as n→ +∞, for each j ∈ {0, 1, 2},

from which by letting n→ +∞ in (2.23)-(2.25), we see that a solution (xn)n∈N0 to
equation (2.1) is bounded only if equalities (2.27)-(2.29) hold.

The equalities can be regarded as a three-dimensional linear system in variables
a0, b0 and c0. The system can be solved, so, by using (2.10) and by some calculation,
it follows that

a0 =
1

W3(1, ε, ε̄)

∣∣∣∣∣∣
S1 1 1
S2 ε ε̄
S3 ε2 ε̄2

∣∣∣∣∣∣ =
(ε̄− ε)(S1 + S2 + S3)

W3(1, ε, ε̄)
=
S1 + S2 + S3

3

=−
∞∑
k=0

2∑
j=0

(1 + εk−j + ε̄k−j)fk
9( 3
√
q)k+3

= −
∞∑
k=0

fk
3( 3
√
q)k+3

,

(2.30)

b0 =
1

W3(1, ε, ε̄)

∣∣∣∣∣∣
1 S1 1
1 S2 ε̄
1 S3 ε̄2

∣∣∣∣∣∣ =
(ε̄− ε)(S1 + ε̄S2 + εS3)

W3(1, ε, ε̄)
=
S1 + ε̄S2 + εS3

3

=−
∞∑
k=0

2∑
j=0

ε̄j(1 + εk−j + ε̄k−j)fk
9( 3
√
q)k+3

= −
∞∑
k=0

ε̄kfk
3( 3
√
q)k+3

,

(2.31)

c0 =
1

W3(1, ε, ε̄)

∣∣∣∣∣∣
1 1 S1

1 ε S2

1 ε2 S3

∣∣∣∣∣∣ =
(ε̄− ε)(S1 + εS2 + ε̄S3)

W3(1, ε, ε̄)
=
S1 + εS2 + ε̄S3

3

=−
∞∑
k=0

2∑
j=0

εj(1 + εk−j + ε̄k−j)fk
9( 3
√
q)k+3

= −
∞∑
k=0

εkfk
3( 3
√
q)k+3

.

(2.32)
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When we use (2.30)-(2.32) in (2.2), we obtain

xn =( 3
√
q)n
(S1 + S2 + S3

3
+
n−1∑
k=0

fk
3( 3
√
q)k+3

)
+ ( 3
√
qε)n

(S1 + ε̄S2 + εS3

3
+
n−1∑
k=0

ε̄kfk
3( 3
√
q)k+3

)
+ ( 3
√
qε̄)n

(S1 + εS2 + ε̄S3

3
+
n−1∑
k=0

εkfk
3( 3
√
q)k+3

)
=− ( 3

√
q)n

∞∑
k=n

fk
3( 3
√
q)k+3

− ( 3
√
qε)n

∞∑
k=n

ε̄kfk
3( 3
√
q)k+3

− ( 3
√
qε̄)n

∞∑
k=n

εkfk
3( 3
√
q)k+3

=− ( 3
√
q)n

∞∑
k=n

(1 + εk−n + ε̄k−n)fk
3( 3
√
q)k+3

, (2.33)

for n ∈ N0.
That sequence (xn)n∈N0 given by (2.33) is a solution to equation (2.1) is easily

checked by some calculation. On the other hand, similar to (2.26), it is proved the
following estimate:

|xn| ≤
‖f‖∞

| 3
√
q|2(| 3
√
q| − 1)

<∞, n ∈ N0,

which means that the sequence is bounded. That the sequence presents a unique
bounded solution to equation (2.1) follows from the unique choice of constants a0,
b0 and c0, in (2.30)–(2.32).

Moreover, since

a0 + b0 + c0 = x0, (2.34)

a0 + εb0 + ε̄c0 =
x1

3
√
q
, (2.35)

a0 + ε̄b0 + εc0 =
x2

( 3
√
q)2

, (2.36)

from (2.27)-(2.29), we obtain that

x0 = S1, x1 = 3
√
qS2, x2 = ( 3

√
q)2S3, (2.37)

are the initial values for which is obtained the bonded solution to (2.1) in the
case. �

Remark 2.6. The case |q| = 1 is a boundary one, and, as usual, in such situations,
there is no a unique result regarding the boundedness character of the solutions to
equation (2.1) in the case. For example, if q = 1, then, depending on the choice of
a bounded sequence (fn)n∈N0 , sequence (xn)n∈N0 can converge, or goes to infinity,
or its limit set can be the whole closed interval [lim infn→∞ xn, lim supn→∞ xn], or
it can be even a more complicated set ([19, 22]). For some related results in metric
spaces see [3].
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The following result considers the case when (qn)n∈N0 is not a constant sequence,
but is bounded. It solves Problem 1.1 for the case of equation (1.3) on its original
domain N0.

Theorem 2.7. Consider equation (1.3), where

1 < a ≤ qn ≤ b, n ∈ N0, (2.38)

or
− b ≤ qn ≤ −a < −1, n ∈ N0, (2.39)

for some positive numbers a and b, and (fn)n∈N0 is a bounded sequence of complex
numbers. Then the equation has a unique bounded solution.

Proof. We prove the theorem in the case when condition (2.38) holds. The case
when condition (2.39) holds is dealt with analogously. Hence, the proof in the case
is omitted.

Let q be a positive number such that

q ∈
(

max{a, (b+ 1)/2}, b). (2.40)

Write equation (1.3) in the form

xn+3 − qxn = (qn − q)xn + fn, n ∈ N0. (2.41)

Let A be an operator defined on l∞, as follows

A(u) =
(
− ( 3
√
q)n

1
3

∞∑
k=n

((1 + εk−n + ε̄k−n)((qk − q)uk + fk)
( 3
√
q)k+3

)
n∈N0

. (2.42)

Assume that u ∈ l∞. Then, from (2.42) we have

‖A(u)‖∞ = sup
n∈N0

∣∣∣− ( 3
√
q)n

1
3

∞∑
k=n

(1 + εk−n + ε̄k−n)((qk − q)uk + fk)
( 3
√
q)k+3

∣∣∣
≤ sup
n∈N0

∞∑
k=n

(qk + q)|uk|+ |fk|
| 3
√
q|k+3−n

≤ (b+ q)‖u‖∞ + ‖f‖∞
| 3
√
q|2(| 3
√
q| − 1)

<∞,

(2.43)

which means that A(u) ∈ l∞.
If u, v ∈ l∞, then

‖A(u)−A(v)‖∞ = sup
n∈N0

∣∣∣( 3
√
q)n

1
3

∞∑
k=n

(1 + εk−n + ε̄k−n)(qk − q)(uk − vk)
( 3
√
q)k+3

∣∣∣
= sup
n∈N0

∣∣∣( 3
√
q)n

∞∑
j=0

(qn+3j − q)(un+3j − vn+3j)
( 3
√
q)n+3j+3

∣∣∣
≤ sup
n∈N0

∞∑
j=0

|qn+3j − q||un+3j − vn+3j |
qj+1

≤max{q − a, b− q}
q − 1

‖u− v‖∞ = q1‖u− v‖∞.

(2.44)

From a > 1 and (2.40), it follows that q1 ∈ (0, 1). Hence, A is a contraction from
l∞ into itself.
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By the contraction mapping principle we obtain that A has a unique fixed point,
say x∗ = (x∗n)n∈N0 ∈ l∞. Hence

x∗n = −( 3
√
q)n

1
3

∞∑
k=n

(1 + εk−n + ε̄k−n)((qk − q)x∗k + fk)
( 3
√
q)k+3

, (2.45)

for every n ∈ N0.
It is easy to verify that (2.45) is a solution to equation (1.3), so that such obtained

x∗ is its unique (bounded) solution. �

2.2. Equation (1.3) with negative indices. If qn 6= 0, n ∈ N0, then equation
(1.3) can be written in the form

xn =
xn+3 − fn

qn
, n ∈ N0, (2.46)

from which it follows that if the sequences qn and fn are also defined for n ≤ −1 and
qn 6= 0, n ≤ −1, then each solution to equation (1.3) can be also calculated/defined
for every n ≤ −1, and consequently on the whole Z.

In this case equation (2.46) can be written as follows

x−(n+3) =
1

q−(n+3)
x−n −

f−(n+3)

q−(n+3)
, n ≥ −2, (2.47)

which, by using the change of variables

yn = x−n, (2.48)

and the notation

q̂n :=
1

q−(n+3)
and f̂n := −

f−(n+3)

q−(n+3)
, (2.49)

becomes
yn+3 = q̂nyn + f̂n, (2.50)

which is an equation of the form in (1.3), but defined on a slightly bigger domain.
If we consider difference equation (2.50) not on the whole domain n ≥ −2, but

on the restricted one N0, then by employing Proposition 2.1 to the equation, and
using the change of variables and notations in (2.48) and (2.49), the following result
is obtained.

Proposition 2.8. Consider difference equation (2.47). Assume that q−n = q ∈
C \ {0}, n ≥ 3, and (f−n)n≥3 ⊂ C. Then the general solution to the equation on
Z \ N, is given by

x−n =
1

( 3
√
q)n
(
â0 −

1
3

n−1∑
k=0

( 3
√
q)kf−(k+3)

)
+
( ε

3
√
q

)n(
b̂0 −

1
3

n−1∑
k=0

( 3
√
q)kε̄kf−(k+3)

)
+
( ε̄

3
√
q

)n(
ĉ0 −

1
3

n−1∑
k=0

( 3
√
q)kεkf−(k+3)

)
, n ∈ N0,

(2.51)

where â0, b̂0 and ĉ0 are arbitrary complex numbers, and 3
√
q is one of the three

possible third roots of q.



EJDE-2017/286 NONHOMOGENOUS LINEAR DIFFERENCE EQUATIONS 13

By using formula (2.51), the following result is proved similar to Theorem 2.4.
The proof is omitted for the similarity/duality.

Theorem 2.9. Consider the equation

x−(n+3) =
x−n
q
−
f−(n+3)

q
, n ∈ N0, (2.52)

where q ∈ C, |q| > 1 and (f−n)n≥3 ⊂ C is a bounded sequence. Then every solution
to the equation is bounded on N0.

The following theorem corresponds to Theorem 2.5 and is essentially its dual
statement on domain Z \ N. It can be obtained from Theorem 2.5 by using (2.48)
and (2.49), so its detailed proof is omitted.

Theorem 2.10. Consider equation (2.52), where q ∈ C, 0 < |q| < 1 and (f−n)n≥3 ⊂
C is a bounded sequence. Then there is a unique bounded solution to the equation
on N0.

A problem with formula (2.51) is that it is given on domain N0. What we need
is a formula for solution to equation (2.1) on domain Z\N3, which would patch well
with formula (2.18), in the sense that the equation on domains N0 and Z \ N3 has
the same initial/end values. To overcome the problem we will get now the solution
to equation (2.52) on domain n ≥ −2, with initial/end values xj , j = 0, 2, by using
the decomposition method. In fact, we will solve a more general linear difference
equation of third-order.

The nonhomogeneous linear difference equation of third-order with constant co-
efficients has the form

xn+3 + pxn+2 + qxn+1 + rxn = fn. (2.53)

We will consider the equation on domain Z \N3. So, we choose that the initial/end
values on the domain are x0, x1 and x2. We assume that r 6= 0, since otherwise it
becomes an equation of smaller order.

Let λj , j = 1, 3, be the zeros of the characteristic polynomial

P3(λ) = λ3 + pλ2 + qλ+ r, (2.54)

which is associated to the homogeneous equation

xn+3 + pxn+2 + qxn+1 + rxn = 0.

We additionally assume that the zeros are distinct, that is, λi 6= λj , i 6= j, i, j ∈
{1, 2, 3}, which happens if and only if the discriminant of the equation P3(λ) = 0
is equal to zero [12].

Hence, if n ≤ −1, then the equation can be written as follows

xn +
q

r
xn+1 +

p

r
xn+2 +

1
r
xn+3 =

fn
r
, n ≤ −1,

which can be rewritten in the form

x−n −
( 1
λ1

+
1
λ2

+
1
λ3

)
x−(n−1) +

( 1
λ1λ2

+
1

λ2λ3
+

1
λ3λ1

)
x−(n−2)

−
x−(n−3)

λ1λ2λ3

= − f−n
λ1λ2λ3

, n ∈ N.

(2.55)
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We will solve equation (2.55) by the method of decomposition (see, for example,
[15, 20]). Let

y−n = x−n −
1
λ3
x−(n−1), n ≥ −1. (2.56)

Then (2.55) can be written as follows:

y−n −
( 1
λ1

+
1
λ2

)
y−(n−1) +

y−(n−2)

λ1λ2
=

f̂−n
λ1λ2

, n ∈ N, (2.57)

where
f̂−n = −f−n

λ3
, n ∈ N.

If we write (2.57) in the form

y−n −
y−(n−1)

λ1
=

1
λ2

(
y−(n−1) −

y−(n−2)

λ1

)
+

f̂−n
λ1λ2

, n ∈ N, (2.58)

and multiply the equation

y−j −
y−(j−1)

λ1
=

1
λ2

(
y−(j−1) −

y−(j−2)

λ1

)
+

f̂−j
λ1λ2

(2.59)

by λ−(n−j)
2 , j = 1, n, and summing up such obtained equalities, we obtain

y−n =
y−(n−1)

λ1
+

1
λn2

(
y0 −

y1

λ1

)
+

1
λ1λ2

n∑
j=1

f̂−j

λn−j2

, (2.60)

for n ∈ N.
Multiplying the following equality

y−i =
y−(i−1)

λ1
+

1
λi2

(
y0 −

y1

λ1

)
+

1
λ1λ2

i∑
j=1

f̂−j

λi−j2

, (2.61)

by λ−(n−i)
1 , i = 1, n, and summing up such obtained equalities, we obtain

y−n =
y0

λn1
+

1
λ2

(
y0 −

y1

λ1

) n−1∑
j=0

1
λj1λ

n−1−j
2

+
1

λ1λ2

n∑
i=1

1
λn−i1

i∑
j=1

f̂−j

λi−j2

(2.62)

=y0
λ
−(n+1)
1 − λ−(n+1)

2

λ−1
1 − λ

−1
2

− y1

λ1λ2

λ−n1 − λ−n2

λ−1
1 − λ

−1
2

+
1

λ1λ2

n∑
j=1

f̂−j
λn1

λj2

n∑
i=j

(λ1

λ2

)i
=y0

λ
−(n+1)
1 − λ−(n+1)

2

λ−1
1 − λ

−1
2

− y1

λ1λ2

λ−n1 − λ−n2

λ−1
1 − λ

−1
2

+
1

λ1λ2

n∑
j=1

f̂−j
λj−n−1

1 − λj−n−1
2

λ−1
1 − λ

−1
2

=
λ
−(n+1)
1 (y0 − y1λ

−1
2 + (λ1λ2)−1

∑n
j=1 f̂−jλ

j
1)

λ−1
1 − λ

−1
2

−
λ
−(n+1)
2 (y0 − y1λ

−1
1 + (λ1λ2)−1

∑n
j=1 f̂−jλ

j
2)

λ−1
1 − λ

−1
2

=
λ−n1 (λ2y0 − y1 +

∑n
j=1 f̂−jλ

j−1
1 )− λ−n2 (λ1y0 − y1 +

∑n
j=1 f̂−jλ

j−1
2 )

λ2 − λ1
,

(2.63)

for n ∈ N0.
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Combining (2.56) and (2.63), we obtain

x−n =
x−(n−1)

λ3
+
λ−n1 (λ−1

3 (x2 − (λ2 + λ3)x1 + λ2λ3x0) +
∑n
j=1 f̂−jλ

j−1
1 )

λ2 − λ1

−
λ−n2 (λ−1

3 (x2 − (λ1 + λ3)x1 + λ1λ3x0) +
∑n
j=1 f̂−jλ

j−1
2 )

λ2 − λ1
,

(2.64)

for n ∈ N.
Multiplying the following equality

x−i =
x−(i−1)

λ3
+
λ−i1 (λ−1

3 (x2 − (λ2 + λ3)x1 + λ2λ3x0) +
∑i
j=1 f̂−jλ

j−1
1 )

λ2 − λ1

−
λ−i2 (λ−1

3 (x2 − (λ1 + λ3)x1 + λ1λ3x0) +
∑i
j=1 f̂−jλ

j−1
2 )

λ2 − λ1
,

(2.65)

by λ−(n−i)
3 , i = 1, n, and summing up such obtained equalities, we obtain

x−n =
x0

λn3
+

x2−(λ2+λ3)x1+λ2λ3x0
λ3

∑n
i=1

1
λn−i3 λi1

+
∑n
i=1 λ

i−n
3 λ−i1

∑i
j=1 f̂−jλ

j−1
1

λ2 − λ1

−
x2−(λ1+λ3)x1+λ1λ3x0

λ3

∑n
i=1

1
λn−i3 λi2

+
∑n
i=1 λ

i−n
3 λ−i2

∑i
j=1 f̂−jλ

j−1
2

λ2 − λ1

=
x0

λn3
+

x2−(λ2+λ3)x1+λ2λ3x0
λ3−λ1

(
1
λn1
− 1

λn3

)
+
∑n
j=1 f−j

λj−n−1
3 −λj−n−1

1
λ3−λ1

λ2 − λ1

−
x2−(λ1+λ3)x1+λ1λ3x0

λ3−λ2

(
1
λn2
− 1

λn3

)
+
∑n
i=j f−j

λj−n−1
3 −λj−n−1

2
λ3−λ2

λ2 − λ1

=
1
λn1

x2 − (λ2 + λ3)x1 + λ2λ3x0 −
∑n
j=1 f−jλ

j−1
1

(λ2 − λ1)(λ3 − λ1)

+
1
λn2

x2 − (λ1 + λ3)x1 + λ1λ3x0 −
∑n
j=1 f−jλ

j−1
2

(λ2 − λ1)(λ2 − λ3)

+
1
λn3

x2 − (λ2 + λ1)x1 + λ2λ1x0 −
∑n
j=1 f−jλ

j−1
3

(λ3 − λ1)(λ3 − λ2)
, (2.66)

for n ≥ −2. From the above analysis which leads to formula (2.66) we see that the
following result holds.

Proposition 2.11. Consider equation (2.53), where p, q ∈ C, r ∈ C \ {0} and
(fn)n≤−1 ⊂ C. Assume that the zeros λj, j = 1, 3, of the characteristic polynomial
(2.54) are distinct. Then the solution to the equation with the initial/end values
xj ∈ C, j = 0, 2, on domain Z \ N3, is given by formula (2.66).

By using formula (2.66) the following theorem is easily proved similar to Theorem
2.4. Hence, we also omit the proof.

Theorem 2.12. Consider equation (2.53), where p, q ∈ C, r ∈ C \ {0} and the
sequence (fn)n≤−1 ⊂ C is bounded. If the roots of the polynomial (2.54) are distinct
and satisfy the condition minj=1,3 |λj | > 1, then every solution to the equation is
bounded on domain Z \ N3.
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Corollary 2.13. Consider equation (2.1). If |q| > 1 and (fn)n≤−1 ⊂ C is a
bounded sequence. Then every solution to the equation is bounded on domain Z\N3.

Theorem 2.14. Consider equation (2.53), where p, q ∈ C, r ∈ C \ {0} and the
sequence (fn)n≤−1 ⊂ C is a bounded. If the roots of polynomial (2.54) are distinct
and satisfy the condition

max
j=1,3

|λj | < 1, (2.67)

then there is a unique bounded solution to the equation on domain Z \ N3.

Proof. If (xn)n≤2 is a bounded solution to equation (2.53), then from (2.66) we
have that it must be

x2 − (λ2 + λ3)x1 + λ2λ3x0 =
∞∑
j=1

f−jλ
j−1
1 =: S̃1, (2.68)

x2 − (λ1 + λ3)x1 + λ1λ3x0 =
∞∑
j=1

f−jλ
j−1
2 =: S̃2, (2.69)

x2 − (λ1 + λ2)x1 + λ1λ2x0 =
∞∑
j=1

f−jλ
j−1
3 =: S̃3. (2.70)

Indeed, assume without loss of generality that |λ1| < |λ2| < |λ3| (the other five
cases are obtained from this one by permutations of some letters), and note that∣∣∣ ∞∑

j=1

f−jλ
j−1
i

∣∣∣ ≤ ‖f‖∞
1− |λi|

, i = 1, 3, (2.71)

which implies that the quantities S̃j , j = 1, 3, are finite.
Then, if (2.70) were not hold from (2.66), (2.67) and (2.71) we would have

|x−n| � O
( 1
|λ3|n

)
,

which would contradict the boundedness of (xn)n≤2 (note that condition (2.67)
implies the unboundedness of the right-hand side of the last relation).

Hence, equality (2.70) holds, so by using the equality in the last addend in (2.66),
it follows that∣∣∣x2 − (λ2 + λ1)x1 + λ2λ1x0 −

∑n
j=1 f−jλ

j−1
3

λn3 (λ3 − λ1)(λ3 − λ2)

∣∣∣
=
∣∣∣∑∞j=n+1 f−jλ

j−1−n
3

(λ3 − λ1)(λ3 − λ2)

∣∣∣ ≤ ‖f‖∞
|(λ3 − λ1)(λ3 − λ2)|(1− |λ3|)

<∞.

(2.72)

If (2.69) were not hold, then from (2.66), (2.67), (2.71) and (2.72) we would have

|x−n| � O
( 1
|λ2|n

)
,

which would contradict the boundedness of (xn)n≤2 (as above condition (2.67)
implies the unboundedness of the right-hand side of the last relation).
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Hence, (2.69) holds, so by using it in the last but one addend in (2.66) we obtain∣∣∣x2 − (λ1 + λ3)x1 + λ1λ3x0 −
∑n
j=1 f−jλ

j−1
2

λn2 (λ2 − λ1)(λ2 − λ3)

∣∣∣
=
∣∣∣∑∞j=n+1 f−jλ

j−1−n
2

(λ2 − λ1)(λ2 − λ3)

∣∣∣ ≤ ‖f‖∞
|(λ2 − λ1)(λ2 − λ3)|(1− |λ2|)

<∞.

(2.73)

If (2.68) were not hold, then from (2.66), (2.67), (2.71), (2.72) and (2.73) we
would have

|x−n| � O
( 1
|λ1|n

)
,

which would contradict the boundedness of (xn)n≤2.
Hence, (2.68) holds, so by using it in the first addend from the right-hand side

of the equality in (2.66) we obtain∣∣∣x2 − (λ2 + λ3)x1 + λ2λ3x0 −
∑n
j=1 f−jλ

j−1
1

λn1 (λ2 − λ1)(λ3 − λ1)

∣∣∣
=
∣∣∣∑∞j=n+1 f−jλ

j−1−n
1

(λ2 − λ1)(λ3 − λ1)

∣∣∣
≤ ‖f‖∞
|(λ2 − λ1)(λ3 − λ1)|(1− |λ1|)

<∞.

(2.74)

Hence, if there is a bounded solution to (2.53) in this case, it is given by

x−n =

∑∞
j=n+1 f−jλ

j−1−n
1

(λ1 − λ2)(λ1 − λ3)
+

∑∞
j=n+1 f−jλ

j−1−n
2

(λ2 − λ1)(λ2 − λ3)
+

∑∞
j=n+1 f−jλ

j−1−n
3

(λ3 − λ1)(λ3 − λ2)
. (2.75)

A direct calculation shows that (2.75) is really a solution to (2.53). Moreover, since

∆1 =

∣∣∣∣∣∣
λ2λ3 −(λ2 + λ3) 1
λ3λ1 −(λ3 + λ1) 1
λ1λ2 −(λ1 + λ2) 1

∣∣∣∣∣∣ = (λ2 − λ1)(λ3 − λ1)(λ2 − λ3) 6= 0,

we also see that three-dimensional system (2.68)-(2.70) has a unique solution in
variables x0, x1 and x2.

Hence, the bounded solution to equation (2.53) on Z \ N3, is obtained for

x0 =
1

∆1

∣∣∣∣∣∣∣
S̃1 −(λ2 + λ3) 1
S̃2 −(λ3 + λ1) 1
S̃3 −(λ1 + λ2) 1

∣∣∣∣∣∣∣ , (2.76)

x1 =
1

∆1

∣∣∣∣∣∣∣
λ2λ3 S̃1 1
λ3λ1 S̃2 1
λ1λ2 S̃3 1

∣∣∣∣∣∣∣ , (2.77)

x2 =
1

∆1

∣∣∣∣∣∣∣
λ2λ3 −(λ2 + λ3) S̃1

λ3λ1 −(λ3 + λ1) S̃2

λ1λ2 −(λ1 + λ2) S̃3

∣∣∣∣∣∣∣ , (2.78)

which completes the proof. �

Since the characteristic polynomial associated with (1.5) has three different zeros,
from Theorem 2.14 we obtain the following corollary.
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Corollary 2.15. Consider equation (2.1). If |q| < 1 and (fn)n≤−1 ⊂ C is a
bounded sequence, then there is a unique bounded solution to the equation on domain
Z \ N3, which is given by

x−n =
1
3

∞∑
j=n

(1 + εj−n + ε̄j−n)( 3
√
q)j−nf−(j+3), n ≥ −2. (2.79)

Proof. From the proof of Theorem 2.14 we see that the bounded solution to (2.1)
on the domain Z \N3 is given by (2.75) with λj = εj−1 3

√
q, j = 1, 3. From this, by

using (1.7), and by some calculation formula (2.79) is obtained. �

From Theorems 2.4 and 2.5, and Corollaries 2.13 and 2.15, we obtain the follow-
ing result.

Corollary 2.16. Consider equation (2.1). If |q| 6= 1 and (fn)n∈Z ⊂ C is a bounded
sequence. Then, the following statements are true.

(a) There is a unique bounded solution to the equation on domain Z.
(b) If |q| > 1, then the bounded solution is obtained for the initial values given

in (2.37).
(c) If |q| < 1, then the bounded solution is obtained for the initial values given

in (2.76)-(2.78), with λj = 3
√
qεj−1, j = 1, 3.

Now we consider equation (1.3) on domain Z \ N3 when the sequence qn is not
constant.

Theorem 2.17. Consider equation (1.3) on domain Z \ N3. Assume that the
sequence (qn)n≤−1 satisfies

1 < â ≤ 1/q−n ≤ b̂, n ∈ N, (2.80)

or
− b̂ ≤ 1/q−n ≤ −â < −1, n ∈ N, (2.81)

for some positive numbers â and b̂, and that (fn)n≤−1 is a bounded sequence of
complex numbers. Then the difference equation has a unique bounded solution on
the domain.

Proof. We prove the theorem when (2.80) holds. The case (2.81) is treated similarly,
so its proof is omitted.

Let q be a positive number such that

1/q ∈
(

max{â, (b̂+ 1)/2}, b̂). (2.82)

Write equation (1.3) in the form

x−(n+3) −
x−n
q

=
( 1
q−(n+3)

− 1
q

)
x−n −

f−(n+3)

q−(n+3)
, n ≥ −2.

Let A be an operator defined on l∞, as follows

A(u) =
(1

3

∞∑
k=n

(1 + εk−n + ε̄k−n)( 3
√
q)k−n+3

(f−(k+3)

q−(k+3)
−
( 1
q−(k+3)

− 1
q

)
u−k

))
n∈N0

.

Assume that u ∈ l∞.
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Then, we have

‖A(u)‖∞

= sup
n∈N0

∣∣∣ ∞∑
k=n

(1 + εk−n + ε̄k−n)
3

( 3
√
q)k−n+3

(f−(k+3)

q−(k+3)
−
( 1
q−(k+3)

− 1
q

)
u−k

)∣∣∣
≤ sup
n∈N0

∞∑
k=n

(( 1
q−(k+3)

+
1
q

)
|u−k|+

∣∣f−(k+3)

q−(k+3)

∣∣)| 3
√
q|k−n+3

≤ (qb̂+ 1)‖u‖∞ + qb̂‖f‖∞
1− | 3

√
q|

<∞,

which means that A(u) ∈ l∞.
If u, v ∈ l∞, then
‖A(u)−A(v)‖∞

= sup
n∈N0

∣∣∣ ∞∑
k=n

(1 + εk−n + ε̄k−n)
3

( 3
√
q)k−n+3

( 1
q−(k+3)

− 1
q

)
(v−k − u−k)

∣∣∣
= sup
n∈N0

∣∣∣ ∞∑
j=0

( 3
√
q)3j+3

( 1
q−(n+3j)

− 1
q

)
(u−(n+3j) − v−(n+3j))

∣∣∣
≤ max{q−1 − â, b̂− q−1}

q−1 − 1
‖u− v‖∞ = q̂1‖u− v‖∞.

(2.83)

From (2.82) and since â > 1, we have q̂1 ∈ (0, 1). Hence, operator A is a contraction
on l∞.

By the contraction mapping principle it follows that A has a unique fixed point,
say x̂∗ = (x̂∗−n)n≥−2 ∈ l∞. Hence, it must be

x̂∗−n =
1
3

∞∑
k=n

(1 + εk−n + ε̄k−n)( 3
√
q)k−n+3

(f−(k+3)

q−(k+3)
−
( 1
q−(k+3)

− 1
q

)
x̂∗−k

)
, (2.84)

for every n ≥ −2.
It is easy to verify that (2.84) is a solution to (1.3), so that such obtained x̂∗ is

its unique (bounded) solution. �

From Theorems 2.7 and 2.17, we obtain the following result.

Corollary 2.18. Consider equation (1.3) on Z, where one of conditions (2.38)
and (2.39), and one of conditions (2.80) and (2.81) hold, and where (fn)n∈Z is a
bounded sequence of complex numbers. Then the equation has a unique bounded
solution on the domain.

2.3. A natural extension to equation (1.3). The linear difference equation

xn+4 − qnxn = fn, n ∈ N0, (2.85)

is the fourth-order cousin of the equations in (1.2) and (1.3). The results regarding
equation (2.85) which correspond to above mentioned ones can be formulated and
proved similarly. Here we want to mention only one of them which corresponds
to Proposition 2.1. The result can be proved by using the same method but is
technically more complicated than the one of Proposition 2.1.
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Proposition 2.19. Consider the equation

xn+4 − qxn = fn, n ∈ N0, (2.86)

where q ∈ C \ {0}, and (fn)n∈N0 ⊂ C. Then the general solution to the equation is
given by

xn =( 4
√
q)n
(
a0 +

n−1∑
k=0

fk
4( 4
√
q)k+4

)
+ (− 4

√
q)n
(
b0 +

n−1∑
k=0

(−1)kfk
4( 4
√
q)k+4

)
+ ( 4
√
qi)n

(
c0 +

n−1∑
k=0

(−i)kfk
4( 4
√
q)k+4

)
+ (− 4

√
qi)n

(
d0 +

n−1∑
k=0

ikfk
4( 4
√
q)k+4

)
,

(2.87)

for n ∈ N0, where a0, b0, c0 and d0 are arbitrary complex numbers, and 4
√
q is one

of the four possible fourth roots of q.

Because of the mentioned similarity, the formulations and proofs of the other
corresponding results concerning difference equations (2.85) and (2.86) are left to
the interested reader as some exercises.

Based on above presented results and corollaries, given remarks and conducted
detailed analyses and calculations, we strongly believe that the methods and ideas
in this paper can be applied for proving the corresponding results for the general
difference equation

xn+k − qnxn = fn, (2.88)
where k ∈ N, and qn and fn are given sequences satisfying the corresponding
conditions. However, there are several technical difficulties which request some
much more involved calculations and more complex formulas, which, at the moment,
prevent us to give complete proofs of the corresponding results for the case of
general difference equation in (2.88). Hence, we leave the problem for a further
investigation.

It is also highly expected that some other difference equations and systems of
difference equations can be studied by using some modifications of the above combi-
nation of solvability methods and the contraction mapping principle, which should
be a general problem of some interest.
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[7] L. Berg, S. Stević; On some systems of difference equations; Appl. Math. Comput., 218

(2011), 1713-1718.

[8] L. Brand; Differential and Difference Equations, John Wiley & Sons, Inc. New York, 1966.
[9] J. Diblik, E. Schmeidel; On the existence of solutions of linear Volterra difference equations

asymptotically equivalent to a given sequence, Appl. Math. Comput., 218 (2012) 9310-9320.
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