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CHARACTERIZATION OF SOLUTIONS TO EQUATIONS
INVOLVING THE p(x)-LAPLACE OPERATOR

IULIA DOROTHEEA STÎRCU, VASILE FLORIN UŢĂ

Communicated by Vicentiu D. Radulescu

Abstract. In this article we study two problems, a nonlinear eigenvalue prob-

lem involving the p(x)-Laplacian and a subcritical boundary value problem for

the same operator. We work on the variable exponent Sobolev spaces and use
one of the variants of the Mountain-Pass Lemma.

1. Introduction

In the previous few decades, variable exponent Sobolev spaces attracted a lot of
interest in the study of the partial differential equations. Problems involving the
p(x)-Laplace operator such as

∆p(x) := div(|∇u|p(x)−2∇u),

where p is a continuous nonconstant function, were intensely studied. This dif-
ferential operator is a natural generalization of the p-Laplace operator ∆p :=
div(|∇u|p−2)∇u), where p > 1 is a real constant. Due to the fact that the p(x)-
Laplacian is nonhomogeneous, it possess more complicated nonlinearities than the
p-Laplace operator. For more details we refer to [1, 2, 5, 6, 10, 11, 12, 14, 18, 20].

The variable exponent Sobolev spaces are used to model various phenomenona
which are the image restoration and the modeling of the electrorheoleogical and
thermorheological fluids. The first major discovery on the electrorheological fluids
(or smart fluids) was in 1949, known as the Winslow effect, and it describes the
behavior of certain fluids that become solids or quasi-solids when they are subjected
to an electric field. Electrorheological fluids have been used in robotics and space
technology. The experimental research has been mainly in the United States, for
instance in NASA laboratories.

In this article we establish two results. The first one proves an alternative for a
nonlinear eigenvalue problem involving the p(x)-Laplacian. Several ideas developed
in the study of the spectrum of such general operators in divergence form are
developed by Mihăilescu, Rădulescu, Repovs̆ in [16], Molica Bisci, Repovs̆ in [17],
and Stăncuţ, St̂ırcu in [30]. In the second part we study an existence result of a
subcritical boundary value problem for the same operator. To prove our first result
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we use a mountain pass lemma on the product space W 1,p(·)
0 (Ω) × R, considering

a special hyperplane which is intended to separating surface instead of a sphere
[18, 26]. The result obtained in the second problem is based on a special version of
the mountain pass lemma of Ambrosetti-Rabinowitz [19]. For more details about
the Mountain-Pass Lemma we refer to [5, 23, 24].

This article is organized as follows. In the next section we make a brief intro-
duction of the variable exponent Sobolev spaces that is natural to look for weak
solutions of this kind of problems. In section 3 we establish the main results con-
cerning our first problem and we prove them. Finally, section 4 is dedicated to the
study of the second problem of this paper which implies the p(x)-Laplace operator.

2. Preliminaries

Let Ω be a bounded domain in RN . We define

C+(Ω) =
{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
and for any continuous function p : Ω→ (1,∞), denote

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u : Ω→ R a measurable function :

∫
Ω

|u|p(x) dx <∞
}
.

Equipped with the Luxemburg norm

|u|p(x) = inf
{
µ > 0 :

∫
Ω

∣∣u(x)
µ

∣∣p(x)
dx ≤ 1

}
,

Lp(x)(Ω) becomes a Banach space.
If p(x) = p ≡constant for every x ∈ Ω, then the Lp(x)(Ω) space is reduced to

the classic Lebesgue space Lp(Ω) and the Luxemburg norm becomes the standard
norm in Lp(Ω), ‖u‖Lp =

(∫
Ω
|u(x)|p dx

)1/p.
For 1 < p− ≤ p+ < ∞, Lp(x)(Ω) is a reflexive uniformly convex Banach space,

and for any measurable bounded exponent p, the Lp(x)(Ω) space is separable.
If p1 and p2 are two variable exponents such that p1(x) ≤ p2(x) almost every-

where in Ω, with |Ω| <∞, then there exists a continuous embedding

Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

whose norm does not exceed |Ω|+ 1.
We define the conjugate variable exponent p′ : Ω → (1,∞), satisfying 1

p(x) +
1

p′(x) = 1, for every x ∈ Ω. We denote by Lp
′(x)(Ω) the conjugate space of the

Lp(x)(Ω).
If u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) then the Hölder type inequality holds:∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.1)

The modular of the Lp(x)(Ω) space, defined by the mapping ρp(x) : Lp(x)(Ω)→ R,

ρp(x)(u) =
∫

Ω

|u(x)|p(x) dx,
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has an important role in manipulating the generalized Lebesgue spaces. If p(x) =
p ≡constant for every x ∈ Ω, then the modular ρp(x)(u) becomes ‖u‖pLp .

If p(x) 6≡constant in Ω and u, un ∈ Lp(x)(Ω) then the following relations hold:

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.2)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.3)

|u|p(x) = 1 ⇒ ρp(x)(u) = 1, (2.4)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (2.5)

For more details about these variable exponent Lebesgue spaces see [8, 15, 22].
Finally, we define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
equipped with the equivalent norms

‖u‖p(x) = |u|p(x) + |∇u|p(x),

‖u‖ = inf
{
µ > 0 :

∫
Ω

(∣∣∣∇u(x)
µ

∣∣∣p(x)

+
∣∣∣u(x)
µ

∣∣∣p(x))
dx ≤ 1

}
.

We define W 1,p(x)
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖ · ‖p(x)

or
W

1,p(x)
0 (Ω) =

{
u : u|∂Ω = 0, u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
.

If p− > 1, the function spaces W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are reflexive, uniformly

convex Banach spaces. Furthermore, for any measurable bounded exponent p, the
spaces W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are separable.

For the density of C∞0 (Ω) in W 1,p(x)
0 (Ω) we consider p ∈ C+(Ω) to be logarithmic

Hölder continuous, so there exists M > 0 such that

|p(x)− p(y)| ≤ −M
log(|x− y|)

, for every x, y ∈ Ω with |x− y| ≤ 1
2
.

Moreover, if Ω is bounded and p is global logarithmic Hölder continuous, which
means, there exist C1, C2 > 0 two constants and p∞ a real constant such that

|p(x)− p(y)| ≤ C1

log
(
e+ 1

|x−y|
) , for every x, y ∈ Ω,

|p(x)− p∞| ≤
C2

log(e+ |x|)
, for every x ∈ Ω

then, on the space W 1,p(x)(Ω) we have the Poincaré type inequality, so, there exists
a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), ∀u ∈W 1,p(x)
0 (Ω). (2.6)

If Ω ⊂ RN is a bounded domain and p is global log-Hölder continuous onW 1,p(x)
0 (Ω),

we can work with the norm |∇u|p(x) equivalent with ‖u‖p(x).
As well, we remark that if s ∈ C+(Ω) and s(x) < p∗(x) for every x ∈ Ω, where

p∗(x) = Np(x)
N−p(x) and p(x) < N , the embedding

W
1,p(x)
0 (Ω) ↪→ Ls(x)(Ω)

is compact and continuous.
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We define the modular of the space W 1,p(x)(Ω) as the mapping % : W 1,p(x)(Ω)→
R defined by

%p(x)(u) =
∫

Ω

(
|∇u|p(x) + |u|p(x)

)
dx.

Then, if u, (un) ∈W 1,p(x)(Ω), the following relations hold:

‖u‖p(x) < 1 ⇒ ‖u‖p
+

p(x) ≤ %p(x)(u) ≤ ‖u‖p
−

p(x), (2.7)

‖u‖p(x) > 1 ⇒ ‖u‖p
−

p(x) ≤ %p(x)(u) ≤ ‖u‖p
+

p(x), (2.8)

‖un − u‖p(x) → 0 ⇔ %p(x)(un − u)→ 0. (2.9)

For more properties about these spaces we refer [3, 9, 13, 25, 27, 28, 29]. We note
that, for simplicity, throughout this paper we use ‖ · ‖ instead of ‖ · ‖

W
1,p(x)
0

.

3. A nonlinear eigenvalue problem involving the p(x)-Laplacian

Throughout this paper we assume that p satisfies the following properties:

p ∈ C+(Ω),

1 < p− ≤ p(x) ≤ p+ <∞,
p is global log-Hölder continuous.

(3.1)

Let Ω be a bounded domain in RN . In this section we are concerned in the study
of the following nonlinear eigenvalue problem involving the p(x)-Laplacian

−∆p(x)u = λf(x, u) in Ω,
u = 0 on ∂Ω,

0 < λ ≤ a,
(3.2)

with constraints on eigenvalues, where a is a positive constant and the function f
satisfies the following conditions

(H1) f is a measurable function in x ∈ Ω and continuous in u ∈ R, with f(x, 0) 6=
0 on a subset of Ω (where |Ω| > 0); then, f is a Carathéodory function;

(H2) |f(x, u)| ≤ c1 + c2|u|q(x)−1 for almost everywhere in Ω and all u ∈ R, where
c1 and c2 are two positive constants, q ∈ C+(Ω) and 1 < p− ≤ p(x) ≤ p+ <
q− ≤ q(x) ≤ q+ < p∗(x), where

p∗(x) =

{
Np(x)
N−p(x) , if p(x) < N

+∞, if p(x) ≥ N.

(H3) for a.e. x ∈ Ω and every u ∈ R, there exist b1 ≥ 0 and b2 ≥ 0 two constants,
β a continuous function and ν a constant with 1 ≤ β(x) < p(x) < ν such
that

f(x, u)u− ν
∫ u

0

f(x, t)dt ≥ −b1 − b2|u|β(x).

We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of problem (3.2) if∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx− λ
∫

Ω

f(x, u)ϕdx = 0, for all ϕ ∈W 1,p(x)
0 (Ω).
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Remark 3.1. If p, q : Ω → (1,∞) are Lipschitz continuous, p+ < N and p(x) ≤
q(x) ≤ p∗(x) for every x ∈ Ω, then there exists a continuous embedding W 1,p(x)

0 (Ω)
↪→ Lq(x)(Ω) (see [28]). Thus, there exists a positive constant C > 0 such that

|u|q(x) ≤ C‖u‖W 1,p(x)
0

, for any u ∈W 1,p(x)
0 (Ω). (3.3)

For using them later, we denote:

a1 = 2c1|1|q′(x) and a2 = C
(
2c1|1|q′(x) + c2(q−)−1

)
. (3.4)

We first state a version of the Mountain-Pass Theorem by Ambrosetti and Ra-
binowitz.

Lemma 3.2 ([18]). Let X be a Banach space and let J ∈ C1(X × R,R) be a
functional satisfying the hypotheses:

(i) there exist ρ > 0 and α > 0 two constants such that J(v, ρ) ≥ α, for every
v ∈ X;

(ii) there exists r > ρ with J(0, 0) = J(0, r) = 0. Then we have a critical value
of J , denoted by

c := inf
g∈Γ

max
0≤τ≤1

J(g(τ)),

where
Γ = {g ∈ C([0, 1]), X × R); g(0) = (0, 0), g(1) = (0, r)}

and
c ≥ inf

v∈X
J(v, ρ) ≥ α > 0.

Now, we give our result concerning the nonlinear eigenvalue problem (3.2).

Theorem 3.3. Suppose that relation (3.1) holds and the hypotheses (H1)–(H3) are
satisfied by the function f : Ω×R→ R. Let γ : R→ R be a C1 function such that,
for some constants 0 < ρ < r, σ > 0, the following relations hold:

(1) γ(0) = γ(r) = 0;

(2) γ(ρ) =
a1 + a2

σ + 1
;

(3) lim|t|→∞ γ(t) = +∞;
(4) γ′(t) < 0 if and only if t < 0 or ρ < t < r.

Then, for every a > 0, the one the following alternatives holds:
(a) for the problem (3.2), a > 0 is an eigenvalue with the corresponding eigen-

function u ∈W 1,p(x)
0 (Ω) established by

α ≤ −
∫

Ω

∫ u(x)

0

f(x, t) dt dx+
1
a

∫
Ω

1
p(x)
|∇u|p(x) dx ≤ a1 + α

or
(b) one can state z > 0 a number which satisfies

ρ < z < r (3.5)

and determines by means of the following relations an eigensolution (u, λ) ∈
W

1,p(x)
0 (Ω)× (0, a] of the problem (3.2):

‖u‖ = |z|−σ/q
−

(−γ′(z))1/q−
(∫

Ω

1
p(x)
|∇u|p(x) dx

)−1/q−

, (3.6)
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λ−1 = z
(
− γ′(z)

)( ∫
Ω

1
p(x)
|∇u|p(x) dx

)−1

+ a−1, (3.7)

α ≤ zσ+1‖u‖q
−
∫

Ω

1
p(x)
|∇u|p(x) dx+ (σ + 1)γ(z)

−
∫

Ω

∫ u(x)

0

f(x, t) dt dx+
1
a

∫
Ω

1
p(x)
|∇u|p(x) dx ≤ a1 + α.

(3.8)

Proof. Our purpose is to establish problem (3.2) in terms of Lemma 3.2. Therefore,
we set a C1 functional J : W 1,p(x)

0 (Ω)× R→ R associated to our problem, defined
by

J(v, t) = |t|σ+1‖v‖q
−
∫

Ω

1
p(x)
|∇v|p(x) dx+ (σ + 1)γ(t)

−
∫

Ω

∫ v(x)

0

f(x, t) dt dx+
1
a

∫
Ω

1
p(x)
|∇v|p(x) dx.

(3.9)

First, we remark that from (1) in the assumptions and (3.9), condition (ii) of
Lemma 3.2 is satisfied.

We may assume, without loss of generality, that |u|q(x) < 1 and ‖u‖ < 1, for all
u ∈W 1,p(x)

0 (Ω).
Therefore, by (H2), (3.3) and (3.4) we deduce that for any v ∈W 1,p(x)

0 (Ω),∫
Ω

∫ v(x)

0

f(x, t) dt dx ≤ c1
∫

Ω

v(x) dx+ c2

∫
Ω

1
q(x)
|v(x)|q(x) dx

≤ 2c1|1|q′(x)|v|q(x) +
c2
q−

∫
Ω

|v(x)|q(x) dx

≤ 2c1|1|q′(x)|v|q(x) +
c2
q−
|v|q

−

q(x)

≤ 2c1|1|q′(x) +
(
2c1|1|q′(x) + c2(q−)−1

)
|v|q

−

q(x)

≤ 2c1|1|q′(x) + C
(
2c1|1|q′(x) + c2(q−)−1

)
‖v‖q

−

= a1 + a2‖v‖q
−
.

(3.10)

To apply the mountain pass theorem with a separating surface, established in
Lemma 3.2, we need to prove that the functional J satisfies the condition J(v, ρ) >
α > 0, for every v ∈ W 1,p(x)

0 (Ω) and ρ a fixed constant. So, by (3.9), (3.10) and
assumption (2) of this theorem,

J(v, ρ) ≥ ρσ+1

p+
‖v‖q

−
∫

Ω

|∇v|p(x) dx+ (σ + 1)γ(ρ)− a1 − a2‖v‖q
−

+
1
ap+

∫
Ω

|∇v|p(x) dx

≥ ‖v‖q
−
(ρσ+1

p+
‖v‖p

+
− a2

)
+ (σ + 1)γ(ρ)− a1 ≥ α,

for every v ∈W 1,p(x)
0 (Ω). Therefore, the hypothesis (i) in Lemma 3.2 is satisfied.

Now we verify if the functional J satisfies the Palais-Smale condition. Let be
(vn, tn) in W

1,p(x)
0 (Ω)× R a sequence such that J(vn, tn) is bounded and

J ′(vn, tn) = (Jv(vn, tn), Jt(vn, tn))→ 0 in W−1,p′(x)(Ω)× R,
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where p′(x) = p(x)
p(x)−1 . Hence,

|J(vn, tn)| ≤M, (3.11)

−Jv(vn, tn) = |tn|σ+1‖vn‖q
−

∆p(x)vn + f(·, vn) + a−1∆p(x)vn

→ 0 in W−1,p′(x)(Ω),
(3.12)

Jt(vn, tn) = |tn|σ(sgn tn)‖vn‖q
−
∫

Ω

1
p(x)
|∇vn|p(x) dx+ γ′(tn)→ 0 in R. (3.13)

By (3.9), (3.10) and (3.11) we deduce that

‖vn‖q
−
(
|tn|σ+1

∫
Ω

1
p(x)
|∇vn|p(x) dx− a2

)
+ (σ + 1)γ(tn)− a1 ≤M.

Using hypothesis (3) in this theorem, we can prove the sequence (tn) is bounded in
R. We may suppose that (vn) is bounded away from zero. Forwards, we consider
two cases.
Case 1: We suppose that along a subsequence we have tn → 0. Thus, by (4), we
obtain that γ′(tn)→ γ(0) = 0. Therefore, by (3.13),

|tn|σ‖vn‖q
−
∫

Ω

1
p(x)
|∇vn|p(x) dx→ 0 as n→∞. (3.14)

From (3.9), (3.11) and (3.14) we infer that∫
Ω

∫ vn(x)

0

f(x, τ)dτ dx− 1
a

∫
Ω

1
p(x)
|∇vn|p(x) dx is bounded in R. (3.15)

By [7, Proposition 12.3.2] there exists a function g ∈ Lp′(x)(Ω) such that
‖∆p(x)vn‖W−1,p′(x) ≈ ‖g‖Lp′(x) . We know that tn → 0 and vn is bounded away from
zero, then from (3.14) it follows that

|tn|σ+1‖vn‖q
−
‖∆p(x)vn‖W−1,p′(x)

≈ |tn||tn|σ‖vn‖q
−
∫

Ω

1
p(x)
|∇vn|p(x) dx

(∫
Ω

1
p(x)
|∇vn|p(x) dx

)−1

‖g‖Lp′(x) → 0

as n→∞. Then, by (3.12) we obtain

f(·, vn) + a−1∆p(x)vn → 0 as n→∞. (3.16)

Taking into account (3.15) and (3.16) we have that for any constant M > 0,
considering ν > 2 in (H3),

M + ν−1‖vn‖

≥ 1
a

∫
Ω

1
p(x)
|∇vn|p(x) dx−

∫
Ω

∫ vn(x)

0

f(x, τ)dτ dx

+
1
ν

(∫
Ω

f(x, vn)vn dx+
1
a

∫
Ω

(
∆p(x)vn

)
vn dx

)
≥ 1
ap+
‖vn‖p

+
−
∫

Ω

∫ vn(x)

0

f(x, τ)dτ dx+
1
ν

∫
Ω

f(x, vn)vn dx−
1
aν
‖vn‖p

−

=
1
a

( 1
p+
‖vn‖p

+−p− − 1
ν

)
‖vn‖p

−
+

1
ν

∫
Ω

(
f(x, vn)vn − ν

∫ vn(x)

0

f(x, τ)dτ
)
dx,
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for n large enough. By (H3) and (3.3) we can provide that there exist two constants
e1 ≥ 0 and e2 ≥ 0 such that

M + ν−1‖vn‖ ≥
1
a

( 1
p+
‖vn‖p

+−p− − 1
ν

)
‖vn‖p

−
− 1
ν

∫
Ω

(
b1 + b2|vn|β(x)

)
dx

≥ 1
a

( 1
p+
‖vn‖p

+−p− − 1
ν

)
‖vn‖p

−
− e1 − e2‖vn‖β

−
.

Since 1 ≤ β− ≤ β(x) ≤ β+ < p− ≤ p(x) ≤ p+ < ν, the last inequality ensures
that (vn) is bounded in W

1,p(x)
0 (Ω).

We remark that hypothesis (H2) ensures that the restriction of Nemytskii’s op-
erator to W 1,p(x)

0 (Ω),

v ∈W 1,p(x)
0 (Ω) 7→ f(·, v(·)) ∈W−1,p′(x)(Ω),

is a compact mapping, namely, it maps any bounded set onto a relatively compact
set (see [10]). So, passing eventually to a subsequence,

f(·, vn(·)) converges in W−1,p′(x)(Ω). (3.17)

Therefore, relations (3.16) and (3.17) ensure that there exists a convergent subse-
quence of (vn) in W

1,p(x)
0 (Ω).

Case 2: We suppose that (tn) is bounded away from zero. By (3.13) we deduce
that (vn) is bounded in W

1,p(x)
0 (Ω) and consequently, (3.17) comes true. From

(3.12) we obtain that

∆p(x)vn

(
a|tn|σ+1‖vn‖q

−
+ 1
)

converges in W−1,p′(x)(Ω).

Then, (∆p(x)vn) is convergent in W−1,p′(x)(Ω). Hence, we finally obtain that, up
to a subsequence, (vn) is convergent in W

1,p(x)
0 (Ω). This ends the proof that the

functional J satisfies the Palais-Smale condition.
Taking into account that the hypotheses of Lemma 3.2 are satisfied, there exists

(u, z) in W
1,p(x)
0 (Ω)× R which satisfies

−∆p(x)u =
1

|z|σ+1‖u‖q− + a−1
f(·, u), (3.18)

|z|σ(sgn z)‖u‖q
−
∫

Ω

1
p(x)
|∇u|p(x) dx+ γ′(z) = 0, (3.19)

|z|σ+1‖u‖q
−
∫

Ω

1
p(x)
|∇u|p(x) dx+ (σ + 1)γ(z)

−
∫

Ω

∫ u(x)

0

f(x, z) dt dz +
1
a

∫
Ω

1
p(x)
|∇u|p(x) dx ≥ α.

(3.20)

Relation (3.19) leads us to
zγ′(z) ≤ 0. (3.21)

We consider two possibilities:
(i) If z = 0 the statement (a) of Theorem 3.3 follows from (3.18) and (3.20).

From the definition of c and Γ in Lemma 3.2, taking into account the path g ∈ Γ
given by g(t) = (0, tr), for 0 ≤ t ≤ 1, we obtain the second inequality of (a) in the
Theorem 3.3.
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(ii) In the case that z 6= 0, we argue by contradiction. If z < 0 then, following
the assumption (γ4), we obtain that γ′(z) < 0, which is a contradiction with (3.21).
Hence, we only consider that z > 0. Again, by (4) in Theorem 3.3 we obtain that

ρ ≤ t ≤ r. (3.22)

If t = ρ or t = r, by (3.19) and (γ4), we have u = 0. Thus, we obtain a
contradiction between (3.18) and hypothesis (H1). So, we showed that (3.22) is
reduced to (3.5). Because z > 0, (3.19) yields to (3.6).

Relation (3.12) proves that (u, λ) ∈W 1,p(x)
0 (Ω)×R is an eigensolution of problem

(3.2), where

λ =
1

|z|σ+1‖u‖q− + a−1
. (3.23)

Replacing ‖u‖ as determined by (3.6) in (3.23) we obtain (3.7). From Lemma 3.2,
making use of the path g(t) = (0, tr), 0 ≤ t ≤ 1, the inequality (3.8) follows. �

Corollary 3.4. Suppose that the hypotheses (H1)–(H3) are satisfied by a function
f : Ω × R → R, with the assumption that (3.1) holds. Let be a number a > 0
which is not an eigenvalue of problem 3.2. So, there exists a sequence (un, λn) ∈
W

1,p(x)
0 (Ω)× (0, a) of eigensolutions of (3.2) which satisfies

un → 0 in W
1,p(x)
0 (Ω) and λ−1

n ‖un‖p
−
→ 0 as n→∞.

Proof. Let be ε > 0. For any such ε, we can establish γε ∈ C1 (R,R) which satisfies
the hypotheses (1)–(4) of Theorem 3.3 with ρ = ρε < r = rε, depending on ε, and
σ > 0, α > 0 independent of ε such that

|γ′ε(t)| ≤ εq
−
t−1

∫
Ω

1
p(x)
|∇u|p(x) dx, ∀t ≥

( p+a2

‖u‖p+
)1/(σ+1)

. (3.24)

By Theorem 3.3, there exists the number z = zε ∈ (ρε, rε) that describes an
eigensolution (uε, λε) of problem (3.2) by relations (3.6) and (3.7) with u = uε and
λ = λε. Obviously, we can suppose that

zε → +∞ as ε→ 0. (3.25)

Therefore, by (3.6), (3.24) and (3.25) we obtain

‖uε‖ = z−σ/q
−

ε

(
− γ′(zε)

)1/q−(∫
Ω

1
p(x)
|∇u|p(x) dx

)−1/q−

≤ εz−(σ+1)/q−

ε → 0 as ε→ 0.
(3.26)

We have the equality

− 1
λε

∆p(x)uε = f(x, uε).

When ε→ 0, taking into account that uε → 0 in W 1,p(x)
0 (Ω) and the hypothesis

(H1), it results that λε → 0 as ε→ 0. Moreover, by (3.7) we obtain

λ−1
ε − a−1 = zε

(
− γ′(zε)

)( ∫
Ω

1
p(x)
|∇u|p(x) dx

)−1

≤ εq
−
. (3.27)

By (3.26) and (3.27) we remark that

‖uε‖p
−

(λ−1
ε − a−1) ≤ εp

−
z
−p−(σ+1)

q−
ε εq

−
= εq

−+p+z
−p−(σ+1)

q−
ε .
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which means, by (3.26), that λ−1
ε ‖uε‖p

− → 0 as ε → 0, and this completes the
proof. �

Corollary 3.5. Considering the hypotheses of Corollary 3.4, for any C1 function
γ : R → R which satisfies relations (1)–(4) in theorem 3.3, with fixed constants
ρ, r, σ, α, there exists a one-to-one mapping from [1,+∞) into the set of eigenso-
lutions (u, λ) of problem (3.2). Especially, there exist uncountable many solutions
(u, λ) of (3.2).

Proof. We first remark that if γ ∈ C1(R,R) satisfies the hypotheses (γ1) − (γ4),
where ρ, r, σ, α are given numbers, then this is true for each function ηγ, where
η ≥ 1 is an arbitrary number.

Assume that there exists some a > 0 which is not an eigenvalue of (3.2). If we
apply the Theorem 3.3 with ηγ, for η ≥ 1, replacing γ, we can find an eigensolution
(uη, λη) ∈W 1,p(x)

0 (Ω)× (0, a) and a number zη ∈ (0, r) such that

‖uη‖ = z−σ/q
−

η

(
− γ′(zη)

)1/q−
η1/q−

(∫
Ω

1
p(x)
|∇uη|p(x) dx

)−1/q−

. (3.28)

From (3.23), we have
λ−1
η = |zη|σ+1‖uη‖q

−
+ a−1. (3.29)

Let us consider η1, η2 ≥ 1 where η1 6= η2. Hence, (3.29) proves that zη1 = zη2 .
Therefore, by (3.28), it follows that η1 = η2. So, we obtain a contradiction which
completes the proof. �

4. A subcritical boundary value problem with variable exponent

We consider now the other problem related to the p(x)-Laplace operator:

−∆p(x)u = λ|u|p(x)−2u+ |u|q(x)−2u in Ω,
u = 0 on ∂Ω,
u 6≡ 0 in Ω,

(4.1)

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary, λ > 0 is a real
number, p, q are continuous functions on Ω which satisfy

1 < p(x) < q(x) < p∗(x),

where p∗(x) = Np(x)
N−p(x) and p(x) < N , for all x ∈ Ω.

Definition 4.1. We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of problem (4.1) if∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = λ

∫
Ω

|u|p(x)−2uϕdx+
∫

Ω

|u|q(x)−2uϕdx,

for every ϕ ∈W 1,p(x)
0 (Ω).

Finally, we give our existence result.

Theorem 4.2. If λ < λP∗ , where

λP∗ = inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω
|∇u|p(x) dx∫

Ω
|u|p(x) dx

,

1 < p− ≤ p(x) ≤ p+ < q− ≤ q(x) ≤ q+ < p∗(x),
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with p satisfying hypothesis (3.1), then there exists a weak solution for the problem
(4.1).

The main tool that we use in the proof of the second result is the Mountain-Pass
Theorem in the following variant.

Theorem 4.3 ([19]). Let X be a real Banach space and F ∈ C1(X,R) be a func-
tional which satisfies the Palais-Smale condition. If F satisfies the following geo-
metric conditions

(1) there exist two constants R, c0 > 0 such that F (u) ≥ c0, for every u ∈ X
with ‖u‖ = R,

(2) F (0) < c0 and there exists v ∈ X with ‖v‖ > R such that F (v) < c0, then
there exists at least a critical point for the functional F .

Proof of Theorem 4.2. We set

a(u, x) =

{
uq(x)−1 if u ≥ 0,
0 if u < 0,

and define A(u, x) =
∫ u(x)

0
a(t, x)dt. Denote the functional

E(u) =
∫

Ω

1
p(x)
|∇u|p(x) dx− λ

∫
Ω

1
p(x)
|u|p(x) dx−

∫
Ω

A(u, x) dx.

Note that

A(u, x) =
∫ u(x)

0

a(t, x)dt ≤ 1
q(x)
|u|q(x) = C|u|q(x)

and by the fact that 1 < p(x) < q(x) < p∗(x), it yields that W 1,p(x)
0 (Ω) ⊂ Lq(x)(Ω),

which implies that E is well defined on W
1,p(x)
0 (Ω). From [10] we have that E is a

C1 functional and for every ϕ ∈W 1,p(x)
0 (Ω),

E′(u)(ϕ) =
∫

Ω

(
|∇u|p(x)−2∇u · ∇ϕ− λ|u|p(x)−2uϕ

)
dx−

∫
Ω

a(u)ϕdx.

By the Definition 4.1 we observe that the critical points of E are weak solutions of
the problem (4.1). �

Before proceed to the proof of the Theorem 4.2 we will point out some results
obtained by Fan, Zang, Zhao from the study of the following eigenvalue problem

−∆p(x)u = λ|u|p(x)−2u in Ω,
u 6≡ 0 in Ω,
u = 0 on ∂Ω.

(4.2)

We introduce the following Rayleigh quotient for the above problem:

λP∗ = inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω
|∇u|p(x) dx∫

Ω
|u|p(x) dx

and the set
Λ = Λp(x) = {λ ∈ Rλ is an eigenvalue of (4.2)}.

So, we can deduce in [11],

λP∗ = inf Λ = inf
{∫

Ω
|∇u|p(x) dx∫

Ω
|u|p(x) dx

: u ∈W 1,p(x)
0 (Ω) \ {0}

}
.
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Remark 4.4. From the assumption that λ < λP∗ we obtain a constant Cλ > 0
such that, for every u ∈W 1,p(x)

0 (Ω) one has

Cλ

∫
Ω

|∇u|p(x) dx ≤
∫

Ω

(
|∇u|p(x) − λ|u|p(x)

)
dx. (4.3)

The following results play a crucial role in obtaining the existence of a nontrivial
weak solution for the problem (4.1).

Considering the fact that the space X = W
1,p(x)
0 (Ω) equipped with the norm

|∇u|p(x) = ‖u‖ is a separable and reflexive Banach space, from [10] we have the
following proposition.

Proposition 4.5. (i) −∆p(x) : X → X∗ is a strictly monotone operator;
(ii) −∆p(x) is a mapping of type (S+), i.e. if un ⇀ u in X and

lim sup
n→∞

〈
(−∆p(x)un)− (−∆p(x)u), un − u

〉
≤ 0,

then un → u in X;
(iii) −∆p(x) : X → X∗ is a homeomorphism.

Lemma 4.6. Assume that hypotheses of the Theorem 4.2 hold, then E admits a
Palais-Smale sequence.

Proof. Let (un) be a sequence in W
1,p(x)
0 (Ω) such that

sup
n
|E(un)| < +∞, (4.4)

‖E′(un)‖W−1,p′(x) → 0, as n→∞. (4.5)

First of all we show that (un) is bounded in W 1,p(x)
0 (Ω). Observe that (4.5) implies

that, for every v ∈W 1,p(x)
0 (Ω),∫

Ω

(
|∇un|p(x)−2∇un · ∇v − λ|un|p(x)−2unv

)
dx

=
∫

Ω

a(un, x)v dx+ o(1)‖v‖,
(4.6)

as n→∞. Taking v = un we obtain∫
Ω

(
|∇un|p(x) − λ|un|p(x)

)
dx =

∫
Ω

a(un, x)un dx+ o(1)‖un‖. (4.7)

Note that (4.4) means we can find M > 0 such that, for any n ≥ 1,∣∣∣ ∫
Ω

1
p(x)

(
|∇un|p(x) − λ|un|p(x)

)
dx−

∫
Ω

A(un, x) dx
∣∣∣ ≤M. (4.8)

A direct computation shows that∫
Ω

a(un, x)un dx =
∫

Ω

q(x)A(un, x) dx. (4.9)

By (4.7), (4.8), (4.9) and 1 < p+ < q− ≤ q+ we find that∫
Ω

A(un, x) dx = O(1) + o(1)‖un‖. (4.10)

Hence, using (4.7) and (4.10) we obtain∫
Ω

(
|∇un|p(x) − λ|un|p(x)

)
dx ≤ O(1) + o(1)‖un‖.
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Therefore, ∫
Ω

|∇un|p(x) dx = O(1) + o(1)‖un‖,

thus (un) is bounded in W
1,p(x)
0 (Ω).

Now, we point out that (un) is relatively compact. We can write (4.6) as∫
Ω

|∇un|p(x)−2∇un · ∇v dx =
∫

Ω

θ(un, x)v dx+ o(1)‖v‖, (4.11)

for every v ∈W 1,p(x)
0 (Ω), where θ(u, x) = a(u, x) + λ|u|p(x)−2u, and λ < λP∗ .

It is clear that θ is continuous, because q(x) < Np(x)
N−p(x) , for every x ∈ Ω, and

there exists C > 0 such that

|θ(u, x)| ≤ C
(

1 + |u|(Np(x)−N+p(x))/(N−p(x))
)
, (4.12)

for every x ∈ Ω and u ∈ R. Furthermore

θ(u, x) = o
(
|u|Np(x)/(N−p(x))

)
, as |u| → ∞, uniformly for x ∈ Ω. (4.13)

We define −∆p(x) : W 1,p(x)
0 (Ω)→W−1,p′(x)(Ω), by

−∆p(x) = −div
(
|∇u|p(x)−2∇u

)
.

Using Proposition 4.5 the operator
(
−∆p(x)

)
is invertible, continuous and the op-

erator (
−∆p(x)

)−1 : W−1,p′(x)(Ω)→W
1,p(x)
0 (Ω)

is continuous. Therefore it is sufficient to prove that θ(un, x) is relatively compact
in W−1,p′(x)(Ω). Using the Sobolev embeddings for variable exponent spaces, this
will be obtained by proving that a subsequence of θ(un, x) is convergent in(

LNp(x)/(N−p(x))(Ω)
)∗

= LNp(x)/(Np(x)−N+p(x))(Ω).

Knowing that (un) is bounded in W 1,p(x)
0 (Ω) ⊂ LNp(x)/(N−p(x))(Ω), we can suppose,

up to a subsequence eventually, that

un → u ∈ Lp
∗(x)(Ω) a.e. in Ω.

Using [4, Egorov Theorem], for each δ, there exists B ⊂ Ω, with |B| < δ, such that
un → u, uniformly in Ω \B. So, it is sufficient to prove that∫

B

|θ(un, x)− θ(u, x)|Np(x)/(Np(x)−N+p(x))
dx < ξ,

for any fixed ξ > 0. But by (4.12),∫
B

|θ(u, x)|Np(x)/(Np(x)−N+p(x))
dx ≤ C

∫
B

(
1 + |u|Np(x)/(N−p(x))

)
dx

which for a sufficiently small δ > 0, can be made small enough.
By (4.13), we obtain∫

B

|θ(un, x)− θ(u, x)|Np(x)/(Np(x)−N+p(x))
dx

≤ ε
∫
B

|un − u|Np(x)/(N−p(x))
dx+ Cε|B|,
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which can be made arbitrarily small, by Sobolev embeddings for spaces with variable
exponent and by the boundedness of (un) in W

1,p(x)
0 (Ω). Therefore, E admits a

Palais-Smale sequence. �

Lemma 4.7. Under the conditions of Theorem 4.2 for the energy functional E :
W

1,p(x)
0 (Ω)→ R, there exist two constants R, c0 > 0 such that E(u) ≥ c0, for every

u ∈W 1,p(x)
0 (Ω) with ‖u‖ = R.

Proof. For every u ∈ R, we can write |a(u, x)| ≤ |u|q(x)−1. Hence, for every u ∈ R,

|A(u, x)| ≤ 1
q(x)
|u|q(x). (4.14)

Now, (4.3) and (4.14) yield

E(u) =
∫

Ω

1
p(x)
|∇u|p(x) dx− λ

∫
Ω

1
p(x)
|u|p(x) dx−

∫
Ω

A(u, x) dx

=
∫

Ω

1
p(x)

(
|∇u|p(x) − λ|u|p(x)

)
dx−

∫
Ω

A(u, x) dx

≥ Cλ
p+

∫
Ω

|∇u|p(x) dx− 1
q−

∫
Ω

|u|q(x) dx

= C1

∫
Ω

|∇u|p(x) dx− C2

∫
Ω

|u|q(x) dx,

where C1 and C2 are positive constants.
By the hypothesis 1 < p− ≤ p+ < q− ≤ q+ < p∗(x) the embeddingW 1,p(x)

0 (Ω) ↪→
Lq(x)(Ω) is compact and continuous, hence there exists a constant C̃ > 0 such that

‖u‖Lq(x) ≤ C̃‖u‖W 1,p(x)
0

.

Therefore, we may find a constant C3 > 0, such that

E(u) ≥ C1

∫
Ω

|∇u|p(x) dx− C3(‖u‖q
+

+ ‖u‖q
−

).

Set ‖u‖ = |∇u|p(x) < 1. Hence |∇u|p+ ≤ ρp(x)(∇u), which leads to

E(u) ≥ C1|∇u|p
+

p(x) − C3(‖u‖q
+

+ ‖u‖q
−

)

and from the hypothesis 1 < p− ≤ p+ < q− ≤ q+ we have

E(u) ≥ C1|∇u|p
+

p(x) − C3(‖u‖q
+

+ ‖u‖q
−

).

For R > 0 small enough, taking |∇u|p(x) = ‖u‖ = R, we deduce that E(u) ≥ c0 >
0. �

Lemma 4.8. Assuming that the hypotheses of Theorem 4.2 hold, for the energy
functional E : W 1,p(x)

0 (Ω) → R, there exist two constants R, c0 > 0 such that
E(0) < c0 and there exists v ∈W 1,p(x)

0 (Ω) with ‖v‖ > R such that E(v) < c0.

Proof. We choose u0 ∈W 1,p(x)
0 (Ω), u0 > 0 in Ω and t > 0. From a straightforward

computation we obtain

E(tu0) =
∫

Ω

tp(x)

p(x)

(
|∇u0|p(x) − λ|u0|p(x)

)
dx−

∫
Ω

tq(x)

q(x)
|u0|q(x) dx
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≤ tp
+

p−

∫
Ω

(
|∇u0|p(x) − λ|u0|p(x)

)
dx− tq

−

q+

∫
Ω

|u0|q(x) dx.

Since p+ < q− ≤ q+, for t large enough we obtain E(tu0) < 0 < c0. Then we can
consider v = tu0 with ‖v‖ = t‖u0‖ > R such that E(v) < c0, for t > 0 chosen
sufficiently large. �

Proof of Theorem 4.2 completed. Since the Palais-Smale condition and the moun-
tain pass geometry are assured by Lemmas 4.6, 4.7 and 4.8, we only have to apply
Theorem 4.3 and the existence of a nontrivial weak solution is assured. �
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