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Abstract. In this article, we consider the existence of multiple nodal solutions

of the nonlinear Choquard equation

−∆u + u = (|x|−1 ∗ |u|p)|u|p−2u in R3,

u ∈ H1(R3),

where p ∈ (5/2, 5). We show that for any positive integer k, the above problem

has at least one radially symmetrical solution changing sign exactly k-times.

1. Introduction

In this article, we consider the existence of multiple nodal solutions for the
nonlinear Choquard equation

−∆u+ u = (|x|−1 ∗ |u|p)|u|p−2u in R3,

u ∈ H1(R3)
(1.1)

where p ∈ (5/2, 5).
In the case p = 2, equation (1.1) is the Choquard-Pekar equation introduced by

Pekar in [27], see also Section 2.1 in [11], to describe the quantum theory of a polaron
at rest and proposed by Choquard [18] in the study of a certain approximation to
Hartree-Fock theory for one component plasma. Further physical consideration of
(1.1), known as the Schrödinger-Poisson equation, can be found in [16, 23] as a
model of self-gravitating matter and in [17] as a non-relativistic model of boson
stars.

In the 1980’s, the nonlinear Choquard equation (1.1) was studied in [18, 20, 21,
22] by the variational method, and recently, this problem and its generalization
have attractive the attention of many researches. Existence and qualitative prop-
erties of solutions have been investigated in [6, 8, 9, 14, 24, 25, 26] and references
therein. In particular, the existence of nodal solutions for the Choquard equation
was investigated in [7, 9, 10, 14], by the variational method, that is, by seeking for
critical points of an associated functional. The energy functional associated with
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the Choquard equation (1.1) is defined for each u in H1(R3) by

I(u) =
1
2

∫
R3

(|∇u|2 + |u|2)dx− 1
2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy. (1.2)

By the Hardy-Littlewood-Sobolev inequality, the functional I is well defined on
H1(R3) if p ∈ ( 5

2 , 5). Hence, critical points of I(u) are weak solutions of problem
(1.1), and necessarily contained in the Nehari manifold

N = {u ∈ H1(R3) : u 6= 0, 〈I ′(u), u〉 = 0}.

A standard way to find critical points of I is to seek for minimizers of the functional
I constraint to the Nehari manifold N . This idea was used in [14] in constructing
a sign-changing solution for the Choquard equation in an odd Nehari manifold.
Another way to construct a nodal solution is to find a critical point of I in the
Nehari set

N0 = {u ∈ H1(R3) : u± 6= 0, 〈I ′(u), u±〉 = 0}.

However, N0 is not a manifold. The argument then among other things, lies in
showing that there is a minimizer of I constraint on N0, and verifying that the
minimizer is a critical point of I. Using this approach, a sign-changing solution
is constructed in [14] for the Choquard equation, and in [1, 29] for the nonlinear
Schrödinger-Poisson system and in [2, 13] for the Kirchhoff equation, further results
can found in references therein.

In this paper, we intend to show that for every fixed integer k, there exists a
radial solution of problem (1.1) which changes sign exactly k times. Particularly,
for k = 2, there is a radially sign changing solution of problem (1.1).

For every integer k ≥ 0, it was proved in [3] and [5] independently that, there is
a pair of solutions u±k having exact k nodes of

−∆u+ V (|x|)u = f(|x|, u) in RN ,

u ∈ H1(RN ).
(1.3)

Such solutions of (1.3) are obtained by gluing solutions of the equation in each
annulus, including every ball and the complement of it. However, this approach
cannot be applied directly to problems with nonlocal terms, because nonlocal terms
need the global information of u. This difficulty was overcome by regarding the
problem as a system of k + 1 equations with k + 1 unknown functions ui, each
ui is supported on only one annulus and vanishes at the complement of it. This
argument relies on, among other things, constructing a functional Ek and a Nehari
type manifold Nk, then finding a minimizer of Ek constraint on Nk. In this way,
Kim and Seok [15] found infinitely many nodal solutions for Schrödinger-Poisson
system, and then Deng et at [12] treated Kirchhoff problems in R3 in a similar way.
However, this argument can not be simply carried out to deal with the Choquard
equation (1.1), because in the proof of Nk being a manifold for problems considered
in [12] and [15], a key ingredient used is that the related matrix is diagonally
dominant at each point of Nk, but this is not the case for the Choquard equation
(1.1). In this paper, we find a way to show that the matrix associated to our
Nehari type set Nk is nonsingular, the fact eventually allows us to verify that Nk
is a manifold. This method might be possible to apply to analogous problems. Our
main result in this paper is stated as follows.
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Theorem 1.1. Suppose 5/2 < p < 5. For every positive integer k, there exists a
radial solution of (1.1), which changes sign exactly k-times.

This theorem will be proved by the variational method. We will define in Section
2 a functional E = E(u1, . . . , uk+1) on Hk = H1×· · ·×Hk+1, where Hi are Hilbert
spaces for i = 1, . . . , k + 1. Then, we consider the variational problem

Emin = inf
(u1,...,uk+1)∈Nk

E(u1, . . . , uk+1),

where

Nk =
{

(u1, . . . , uk+1) ∈ Hk : ui 6= 0, ∂ui
E(u1, . . . , uk+1)ui = 0 for each i.

}
is a Nehari type set. We will show that each component of a minimizer (u1, . . . , uk+1)
in Nk of Emin is a solution of the problem on decomposed regions. Hence, it is nec-
essary to verify that Nk is a manifold, where a difficulty arises. Nodal solutions
of problem (1.1) will be constructed by gluing each component of a minimizer
(u1, . . . , uk+1) ∈ Nk of Emin together.

This paper is organized as follows. In Section 2, we present variational framework
to deal with problem (1.1) and find a minimizer of the related minimization problem.
Nodal solutions of problem (1.1) will be constructed in Section 3.

2. Preliminaries

In this section, we present the variational framework and modify the energy
functional I to a functional corresponding to a system of (k + 1)-equations. For
each k ∈ N+, we define

Γk :=
{
rk = (r1, . . . , rk) ∈ Rk : 0 = r0 < r1 < · · · < rk < rk+1 =∞

}
,

and denote

B1 = Brk
1 = {x ∈ R3 : 0 ≤ |x| < r1},

Bi = Brk
i = {x ∈ R3 : ri−1 < |x| < ri}

for i = 2, . . . , k + 1. Therefore, B1 is a ball, B2, . . . , Bk are annuli and Bk+1 is the
complement of a ball. Fix rk = (r1, . . . , rk) ∈ Γk and thereby a family of {Bi}k+1

i=1 ,
we denote

Hi :=
{
u ∈ H1

0 (Bi) : u(x) = u(|x|), u(x) = 0 if x /∈ Bi
}

for i = 1, . . . , k + 1. It can be verified that Hi is a Hilbert space with the norm

‖u‖2i =
∫
Bi

(|∇u|2 + u2)dx.

Let Hk = H1 × · · · ×Hk+1. We define the functional E : Hk → R by

E(u1, . . . , uk+1) :=
1
2

k+1∑
i=1

‖ui‖2i −
1
2p

k+1∑
i=1

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

− 1
2p

k+1∑
j 6=i

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy,

(2.1)

where ui ∈ Hi, i = 1, . . . , k + 1. It is obvious that

E(u1, . . . , uk+1) = I(
k+1∑
i=1

ui).
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Moreover, if (u1, . . . , uk+1) ∈ Hk is a critical point of E, then each component ui
satisfies

−∆ui + ui = (|x|−1 ∗ |
k+1∑
i=1

ui|p)|ui|p−2ui, x ∈ Bi

ui = 0, x /∈ Bi

(2.2)

Nodal solutions of problem (1.1) will be constructed by gluing solutions of problem
(2.2), i = 1, . . . , k+1. In order to find critical points of E with nonzero component,
we consider the minimization problem

Emin = inf
(u1,...,uk+1)∈Nk

E(u1, . . . , uk+1) (2.3)

constrained on the Nehari type set

Nk =
{

(u1, . . . , uk+1) ∈ Hk : ui 6= 0, ∂ui
E(u1, . . . , uk+1)ui = 0, i = 1, . . . , k + 1

}
,

where

∂uiE(u1, . . . , uk+1)ui

= ‖ui‖2i −
∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy −

k+1∑
j 6=i

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy.

It is necessary to show that the set Nk is nonempty, and then Emin is well defined.
We know that a minimizer u of Emin is a critical point of Emin constrained on Nk if
Nk is a manifold in Hk, hence, each component u is possibly a solution of problem
(2.2). In this section, we will prove these facts, and find a solution of problem (2.2)
for each i. We commence with proving the set Nk is nonempty.

Lemma 2.1. Assume that p ∈ (5/2, 5). For (u1, . . . , uk+1) ∈ Hk with ui 6= 0 for
i = 1, . . . , k + 1, there is a unique (k + 1)-tuple (t1, . . . , tk+1) of positive numbers
such that (t1u1, . . . , tk+1uk+1) ∈ Nk.

Proof. Fix (u1, . . . , uk+1) ∈ Hk with ui 6= 0, i = 1, . . . , k + 1. Then we have
(t1u1, . . . , tk+1uk+1) ∈ Nk for some (t1, . . . , tk+1) ∈ (R>0)k+1 if and only if

t2i ‖ui‖2i − t
2p
i

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

∫
Bi

∫
Bj

tpi t
p
j |ui(x)|p|uj(y)|p

|x− y|
dx dy = 0

(2.4)

for i = 1, . . . , k + 1. Hence, the problem is reduced to verify that there is only one
solution (t1, . . . , tk+1) of system (2.4) with ti > 0, for each i = 1, . . . , k + 1. To
this end, we introduce a parameter 0 ≤ µ ≤ 1, and consider the solvability of the
following system of (k + 1) equations

Gi(t1, . . . , tk+1) :=t2i ‖ui‖2i − t
2p
i

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

− µ
k+1∑
j 6=i

∫
Bi

∫
Bj

tpi t
p
j |ui(x)|p|uj(y)|p

|x− y|
dx dy = 0,

(2.5)

for i = 1, . . . , k + 1. Let

Z =
{
µ : 0 ≤ µ ≤ 1 and (2.5) is uniquely solvable in (R>0)k+1

}
. (2.6)
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Apparently, 0 ∈ Z, so the set Z is nonempty in [0, 1]. We claim that Z = [0, 1],
which implies the result. To prove the claim, it is sufficient to show that Z is both
open and closed in [0, 1].

We first prove that the set Z is open in [0, 1]. Suppose that µ0 ∈ Z and
(t̄1, . . . , t̄k+1) ∈ (R>0)k+1 is the unique solution of (2.5) with µ = µ0. To apply the
implicit function theorem at µ0, we calculate the matrix

M = (Mij) = (∂tjGi)i,j=1,...,k+1. (2.7)

Each component of the matrix M is then given by

Mii = 2t̄i‖ui‖2i − 2pt̄2p−1
i

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

− µ0pt̄
p−1
i

k+1∑
j 6=i

∫
Bi

∫
Bj

t̄pj |ui(x)|p|uj(y)|p

|x− y|
dx dy

= (2− p)t̄i‖ui‖2i − pt̄
2p−1
i

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

for i = 1, . . . , k + 1, where we have used (2.5), and

Mij = −µ0pt̄
p
i t̄
p−1
j

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy

for i 6= j, i, j = 1, . . . , k + 1. Therefore,

detM =
(−1)k+1

t̄1 . . . t̄k+1
det M̃, (2.8)

where components of the matrix M̃ = (M̃ij) are given by

M̃ii = (p− 2)t̄2i ‖ui‖2i + pt̄2pi

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

for i = 1, . . . , k + 1, and

M̃ij = µ0pt̄
p
i t̄
p
j

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy, for i 6= j, i, j = 1, . . . , k + 1.

By Lemma 4.3 in the appendix, we obtain detM 6= 0. Hence, the implicit function
theorem implies that there are an open neighborhood U0 of µ0 and a neighborhood
A0 ⊂ (R>0)k+1 of (t̄1, . . . , t̄k+1) such that system (2.5) is uniquely solvable in
U0 ×A0.

Now we show (2.5) is uniquely solvable in U0 × (R>0)k+1, this means U0 ⊂
Z, and Z is open. Suppose, on the contrary, that there is µ1 ∈ U0 such that
there exists the second solution (t̃1, . . . , t̃k+1) ∈ (R>0)k+1 \ A0 of (2.5). By the
implicit function theorem, we can find a solution curve (µ, (t̃1(µ), . . . , t̃k+1(µ))) in
(µ1 − ε, µ1 + ε) ×

(
(R>0)k+1 \ A0

)
. If µ0 < µ1, we extend this curve as much as

possible. Since it cannot be defined at µ0 and enter into U0 × A0, there should
have a point µ2 ∈ [µ0, µ1) such that (t1(µ), . . . , tk+1(µ)) being defined in (µ2, µ1]
and blowing up as µ → µ+

2 . However, this is impossible, since if (t1, . . . , tk+1) has
sufficiently large norm, the left-hand side of (2.5) is strictly negative for at least
one i. This gives a contradiction. Thus, U0 ⊂ Z. The case µ0 > µ1 can be proved
in the same way.
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Next, we show that the set Z is closed in [0, 1]. Let {µn} be a sequence in Z
converging to µ0 ∈ [0, 1] and (tn1 , . . . , t

n
k+1) ∈ (R>0)k+1 be the solution of (2.5)

for µn. By the preceding argument, we see that the sequence (tn1 , . . . , t
n
k+1) is

bounded above. Thus we may assume that (tn1 , . . . , t
n
k+1) converges to a solution

(t01, . . . , t
0
k+1) ∈ (R≥0)k+1 of (2.5) for µ0. Let vn = tn1u1+· · ·+tnk+1uk+1. Since {vn}

is uniformly bounded in Hk, by (2.5) and the Hardy-Littlewood-Sobolev inequality,
we derive

(tni )2‖ui‖2i = (tni )2p

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

+ µn

k+1∑
j 6=i

∫
Bi

∫
Bj

(tni )p(tnj )p|ui(x)|p|uj(y)|p

|x− y|
dx dy

≤ (tni )2p

∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

+
k+1∑
j 6=i

∫
Bi

∫
Bj

(tni )p(tnj )p|ui(x)|p|uj(y)|p

|x− y|
dx dy

=
∫
Bi

∫
R3

|tni ui(x)|p|vn(y)|p

|x− y|
dx dy

≤ C1(tni )p‖ui‖p6p
5
‖vn‖p6p

5
≤ C2(tni )p‖ui‖pi .

(2.9)

This implies that 0 < Ci < tni holds uniformly in n. As a result, t0i ≥ Ci > 0
for i = 1, . . . , k + 1, that is, (t01, . . . , t

0
k+1) ∈ (R>0)k+1. By the implicit function

theorem again, (t01, . . . , t
0
k+1) is the unique solution of (2.5) in (R>0)k+1. Hence, Z

is closed. The conclusion of Lemma 2.1 then follows. �

Lemma 2.2. For any 5/2 < p < 5, Nk is a differentiable manifold in Hk. More-
over, all critical points of the restriction E

∣∣
Nk

of E to Nk are critical points of E
with no zero component.

Proof. We show that Nk is a manifold first. We may write

Nk = {(u1, . . . , uk+1) ∈ Hk : ui 6= 0,F(u1, . . . , uk+1) = 0},
where F = (F1, . . . , Fk+1) : Hk → Rk+1 is given by

Fi(u1, . . . , uk+1) = ‖ui‖2i −
∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy

(2.10)

for i = 1, . . . , k + 1.
To prove that Nk is a differentiable manifold in Hk, it suffices to check that the

matrix
N := (Nij) =

(
(∂ui

Fj(u1, . . . , uk+1), ui)
)
i,j=1,...,k+1

(2.11)

is nonsingular at each point (u1, . . . , uk+1) ∈ Nk, since it implies that 0 is a regular
value of F. By direct computations, we have

Nii = 2‖ui‖2i − 2p
∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy
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− p
k+1∑
j 6=i

∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy

= (2− p)‖ui‖2i − p
∫
Bi

∫
Bi

|ui(x)|p|ui(y)|p

|x− y|
dx dy,

for i = 1, . . . , k + 1, and

Nij = −p
∫
Bi

∫
Bj

|ui(x)|p|uj(y)|p

|x− y|
dx dy,

for i 6= j and i, j = 1, . . . , k + 1. By Lemma 4.3, we may verify as the proof of
Lemma 2.1 that det N 6= 0 at each point of Nk. So Nk is a differentiable manifold
in Hk.

Next, we verify that any critical point (u1, . . . , uk+1) of E
∣∣
Nk

is a critical point
of E. Indeed, if (u1, . . . , uk+1) is a critical point of E

∣∣
Nk

, then there are Lagrange
multipliers λ1, . . . , λk+1 such that

λ1F
′
1(u1, . . . , uk+1) + · · ·+ λk+1F

′
k+1(u1, . . . , uk+1) = E′(u1, . . . , uk+1). (2.12)

The values of the operator identity (2.12) at points

(u1, 0, . . . , 0), (0, u2, 0, . . . , 0), . . . , (0, . . . , 0, uk+1)

form a system

N

 λ1

...
λk+1

 =

 0
...
0

 .

Since the matrix N is nonsingular at each point of Nk, λ1, . . . , λk+1 are all zero
and (u1, . . . , uk+1) is a critical point of E.

Finally, for any (u1, . . . , uk+1) ∈ Nk, we may derive as inequality (2.9) that each
ui is bounded away from zero. Thus, critical points of E in Nk cannot have any
zero component. The proof is complete. �

For a fixed (u1, . . . , uk+1) ∈ Hk with nonzero component, by Lemma 2.1 there
exists a unique vector (t1, . . . , tk+1) such that (t1u1, . . . , tk+1uk+1) ∈ Nk. The
vector (t1, . . . , tk+1) has the following property.

Lemma 2.3. The vector (t1, . . . , tk+1) is the unique maximum point of the function
φ : (R>0)k+1 → R defined as

φ(c1, . . . , ck+1) = E(c1u1, . . . , ck+1uk+1).

Proof. By Lemma 2.1, we know that (t1, . . . , tk+1) is the unique critical point of φ
in (R>0)k+1. Since p ∈ ( 5

2 , 5), it is observed that φ(c1, . . . , ck+1)→ −∞ uniformly
as |(c1, . . . , ck+1)| → +∞, so it is sufficient to check that a maximum point cannot
be achieved on the boundary of (R>0)k+1. Choose (c01, . . . , c

0
k+1) ∈ ∂(R>0)k+1,

without loss of generality, we may assume that c01 = 0. Since

φ(t, c02, . . . , c
0
k+1) = E(tu1, c

0
2u2, . . . , c

0
k+1uk+1)

=
t2

2
‖u1‖21 −

t2p

2p

∫
B1

∫
B1

|u1(x)|p|u1(y)|p

|x− y|
dx dy

− tp

p

k+1∑
i=2

∫
B1

∫
Bi

|u1(x)|p|c0iui(y)|p

|x− y|
dx dy +

1
2

k+1∑
i=2

‖c0iui‖2i
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− 1
2p

k+1∑
i,j=2

∫
Bi

∫
Bj

|c0iui(x)|p|c0iuj(y)|p

|x− y|
dx dy

is increasing with respect to t if t is small enough, (0, c02, . . . , c
0
k+1) is not a maximum

point of φ in (R>0)k+1. The assertion follows. �

Finally, we have the following existence result for problem (2.2).

Lemma 2.4. For any 5/2 < p < 5 and fixed rk = (r1, . . . , rk) ∈ Γk, there is a
minimizer (w1, . . . , wk+1) of E

∣∣
Nk

such that each (−1)i+1wi is positive on Bi for
i = 1, . . . , k + 1. Moreover, (w1, . . . , wk+1) satisfies (2.2).

Proof. By the Hardy-Littlewood-Sobolev inequality and Sobolev embedding theo-
rem, we deduce for (u1, . . . , uk+1) ∈ Nk that

‖ui‖2i =
∫

R3

∫
Bi

|u(x)|p|ui(y)|p

|x− y|
dx dy

≤ C‖ui‖p6p
5
‖u‖p6p

5

≤ C‖u‖p‖ui‖pi
≤ C‖ui‖pi .

Hence, there exists a constant αi > 0 such that ‖ui‖i ≥ αi > 0, i = 1, . . . , k + 1. If
(u1, . . . , uk+1) ∈ Nk, there holds

E(u1, . . . , uk+1) = (
1
2
− 1

2p
)
k+1∑
i=1

‖ui‖2i ≥ α > 0 (2.13)

for some α > 0. This implies that any minimizing sequence {(un1 , . . . , unk+1)} of
E
∣∣
Nk

is bounded in Hk. We assume that the minimizing sequence (un1 , . . . , u
n
k+1)

weakly converges to an element (u0
1, . . . , u

0
k+1) in Hk.

We claim that u0
i 6= 0 for each i = 1, . . . , k+1. Indeed, if (un1 , . . . , u

n
k+1) strongly

converges to (u0
1, . . . , u

0
k+1) in Hk, we may show in the same way as the proof of

(2.9) that ‖uni ‖2i ≤ C‖uni ‖
p
i for each i, In other words, ‖uni ‖i ≥ µi > 0, thereby

‖u0
i ‖i ≥ µ0

i > 0 for i = 1, . . . , k + 1.
Suppose now that (un1 , . . . , u

n
k+1) 6→ (u0

1, . . . , u
0
k+1) strongly in Hk as n → ∞.

That is, ‖u0
i ‖i < lim infn→∞ ‖uni ‖i for at least one i ∈ {1, . . . , k + 1}. Again, we

have u0
i 6= 0 for each i = 1, . . . , k + 1. Indeed, since (un1 , . . . , u

n
k+1) ∈ Nk,

‖uni ‖2i =
∫

R3

∫
Bi

|un(x)|p|uni (y)|p

|x− y|
dx dy

and the inclusion H1
r (R3) ↪→ Lq(R3) is compact for 2 < q < 6,∫

R3

∫
Bi

|un(x)|p|uni (y)|p

|x− y|
dx dy →

∫
R3

∫
Bi

|u0(x)|p|u0
i (y)|p

|x− y|
dx dy (2.14)

as n→∞, we obtain

‖u0
i ‖2i ≤ lim inf

n→∞
‖uni ‖2i ≤ lim

n→∞

∫
R3

∫
Bi

|un(x)|p|uni (y)|p

|x− y|
dx dy

=
∫

R3

∫
Bi

|u0(x)|p|u0
i (y)|p

|x− y|
dx dy ≤ C‖u0

i ‖
p
i ,
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implying that there exists a constant µ0 > 0 such that ‖u0
i ‖i ≥ µ0 > 0.

Since each component of (u0
1, . . . , u

0
k+1) is nonzero, by Lemma 2.1, one can find

(t01, . . . , t
0
k+1) ∈ (R>0)k+1 and (t01, . . . , t

0
k+1) 6= (1, . . . , 1) such that

(t01u
0
1, . . . , t

0
k+1u

0
k+1) ∈ Nk. But, in this case, by (2.14) and Lemma 2.3 we derive

that

inf
(u1,...,uk+1)∈Nk

E(u1, . . . , uk+1)

≤ E(t01u
0
1, . . . , t

0
k+1u

0
k+1)

< lim inf
n→∞

{1
2

k+1∑
i=1

(t0i )
2‖uni ‖2i −

1
2p

k+1∑
i=1

(t0i )
2p

∫
Bi

∫
Bi

|uni (x)|p|uni (y)|p

|x− y|
dx dy

− 1
2p

k+1∑
j 6=i

∫
Bi

∫
Bj

(t0i )
p(t0j )

p|uni (x)|p|unj (y)|p

|x− y|
dx dy}

≤ lim inf
n→∞

E(un1 , . . . , u
n
k+1)

= inf
(u1,...,uk+1)∈Nk

E(u1, . . . , uk+1),

which is a contradiction. Therefore, (un1 , . . . , u
n
k+1) converges strongly to

(u0
1, . . . , u

0
k+1) in Hk and (u0

1, . . . , u
0
k+1) ∈ Nk is a minimizer of E

∣∣
Nk

.
Furthermore, we can check that

(w1, . . . , wk+1) := (|u0
1|,−|u0

2|, . . . , (−1)k|u0
k+1|)

is also in Nk and is a minimizer of E
∣∣
Nk

. Hence, it is a critical point of E
∣∣
Nk

. By
Lemma 2.2, it is also a critical point of E and satisfies (2.2). The strong maximum
principle yields that each (−1)i+1wi is positive in Bi. The assertion follows. �

3. Existence of sign-changing radial solutions

It is known that for any rk = (r1, . . . , rk) ∈ Γk, there is a solution wrk =
(wrk

1 , . . . , wrk

k+1) of (2.2) which consists of sign changing components. We will find
a r̄k = (r̄1, . . . , r̄k) ∈ Γk such that wr̄k = (wr̄k

1 , . . . , wr̄k

k+1) is a solution of (2.2)
which is characterized as a least energy solution among all elements in Γk with
nonzero components. Using this solution as a building block, we will construct
a radial solution of (1.1) that changes sign exactly k times. Denote by Brk

i the
nodal domain and by Erk the functional related to rk. Note that wrk

i is C2(Brk
i )

for each i by standard elliptic regularity results. Hence, it is enough to match the
first derivative with respect to the radial variable, of adjacent components wrk

i and
wrk
i+1 at the point ri to ensure the existence of a solution of equation (1.1) with k

times sign changing.
T find a least energy radial solution of (2.2) among elements in Γk with nonzero

components, we need to estimate the energy of the solution (wrk
1 , . . . , wrk

k+1) of (2.2).
To this end, we first define the function ψ : Γk → R by

ψ(rk) = ψ(r1, . . . , rk) = Erk(wrk
1 , . . . , wrk

k+1)

= inf
(u

rk
1 ,...,u

rk
k+1)∈N rk

k

Erk(urk
1 , . . . , u

rk

k+1). (3.1)
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Lemma 3.1. Suppose 5/2 < p < 5. For any positive integer k, let rk = (r1, . . . , rk)
in Γk. Then

(i) if ri − ri−1 → 0 for some i ∈ {1, . . . , k}, then ψ(rk)→ +∞;
(ii) if rk →∞, then ψ(rk)→ +∞;

(iii) ψ is continuous in Γk.
In particular, there is a r̄k = (r̄1, . . . , r̄k) ∈ Γk such that

ψ(r̄k) = inf
rk∈Γk

ψ(rk).

Proof. (i) Suppose that ri0 − ri0−1 → 0 for some i0 ∈ {1, . . . , k}, by the Hardy-
Littlewood-Sobolev inequality, Hölder inequality and Sobolev inequality, we have

‖wrk
i0
‖2i0 =

∫
R3

∫
B

rk
i0

|wrk(x)|p|wrk
i0

(y)|p

|x− y|
dx dy

≤ C‖wrk‖p6p
5
‖wrk

i0
‖p6p

5

≤ C‖wrk
i0
‖pi0 |B

rk
i0
|
5−p
6 ,

(3.2)

which implies ‖wrk
i0
‖i0 → +∞ as ri0−ri0−1 → 0 since 5/2 < p < 5. Thus, we derive

from (2.13) that

ψ(rk) = Erk(wrk
1 , . . . , wrk

k+1) ≥ (
1
2
− 1

2p
)‖wrk

i0
‖2i0 →∞,

Therefore, the first item holds.
(ii) By the Strauss inequality [28], that is, for u ∈ H1

r (R3), there exists C > 0,
such that

|u(x)| ≤ C ‖u‖
|x|

, a.e. in R3,

we deduce, as in (3.2), that

‖wrk

k+1‖
2
k+1 =

∫
R3

∫
B

rk
k+1

|wrk(x)|p|wrk

k+1(y)|p

|x− y|
dx dy

≤ C
(∫

B
rk
k+1

|wrk

k+1(x)|
6p
5 dx

)5/6

≤ C‖wrk

k+1‖
p
k+1

5
6p− 15

r
15−6p

5
k ;

that is,

r
6p−15

5
k ≤ C 5

6p− 15
‖wrk

k+1‖
p−2
k+1.

Since 5/2 < p < 5, we deduce that ‖wrk

k+1‖k+1 → +∞ as rk →∞. Then, by (2.13),
we obtain

ψ(rk) = Erk(wrk
1 , . . . , wrk

k+1) ≥ (
1
2
− 1

2p
)‖wrk

k+1‖
2
k+1 →∞,

and the conclusion in (ii) holds.
(iii) Take a sequence {rnk}∞n=1 = {(rn1 , . . . , rnk )} ⊆ Γk such that

rnk → r̃k = (r̃1, . . . , r̃k) ∈ Γk.

The assertion follows by showing

ψ(r̃k) ≥ lim sup
n→∞

ψ(rnk ), ψ(r̃k) ≤ lim sup
n→∞

ψ(rnk ). (3.3)



EJDE-2017/268 NONLINEAR CHOQUARD EQUATIONS 11

First, we prove ψ(r̃k) ≥ lim supn→∞ ψ(rnk ). Defined v
rn

k
i : [rni−1, r

n
i ] → R such

that
v

rn
k
i (t) = tni w

r̃k
i

( r̃i − r̃i−1

rni − rni−1

(t− rni−1) + r̃i−1

)
for i = 1, . . . , k and

v
rn

k

k+1(t) = tnk+1w
r̃k

k+1

( r̃k
rnk
t
)
,

where rn0 = 0, rnk+1 =∞ and each (tn1 , . . . , t
n
k+1) is a unique (k+1)-tuple of positive

real numbers such that (vrn
k

1 , . . . , v
rn

k

k+1) ∈ N rn
k

k . By the definition of (wrn
k

1 , . . . , w
rn

k

k+1),
we have

Ern
k (vrn

k
1 , . . . , v

rn
k

k+1) ≥ Ern
k (wrn

k
1 , . . . , w

rn
k

k+1) = ψ(rnk )
Therefore, for n large enough, we have

‖vrn
k
i ‖

2

B
rn
k

i

= (tni )2‖wr̃k
i ‖

2

B
r̃k
i

+ o(1)

and ∫
B

rn
k

i

∫
B

rn
k

i

|vrn
k
i (x)|p|vrn

k
j (y)|p

|x− y|
dx dy

= (tni )p(tnj )p
∫
B

r̃k
i

∫
B

r̃k
j

|wr̃k
i (x)|p|wr̃k

j (y)|p

|x− y|
dx dy + o(1).

Since (vrn
k

1 , . . . , v
rn

k

k+1) ∈ N rn
k

k , we have

‖vrn
k
i ‖

2

B
rn
k

i

−
∫
B

rn
k

i

∫
B

rn
k

i

|vrn
k
i (x)|p|vrn

k
i (y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

∫
B

rn
k

i

∫
B

rn
k

j

|vrn
k
i (x)|p|vrn

k
j (y)|p

|x− y|
dx dy = 0

for i = 1, . . . , k + 1, which implies

(tni )2‖wr̃k
i ‖

2

B
r̃k
i

− (tni )2p

∫
B

r̃k
i

∫
B

r̃k
i

|wr̃k
i (x)|p|wr̃k

i (y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

(tni )p(tnj )p
∫
B

r̃k
i

∫
B

r̃k
j

|wr̃k
i (x)|p|wr̃k

j (y)|p

|x− y|
dx dy = o(1).

(3.4)

Hence, the fact (wr̃k
1 , . . . , wr̃k

k+1) ∈ N r̃k

k , namely,

‖wr̃k
i ‖

2

B
r̃k
i

−
∫
B

r̃k
i

∫
B

r̃k
i

|wr̃k
i (x)|p|wr̃k

i (y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

∫
B

r̃k
i

∫
B

r̃k
j

|wr̃k
i (x)|p|wr̃k

j (y)|p

|x− y|
dx dy = 0

(3.5)

and (3.4) yield limn→∞ tni = 1 for all i. Consequently,

ψ(r̃k) = E r̃k(wr̃k
1 , . . . , wr̃k

k+1) = lim sup
n→∞

Ern
k (vrn

k
1 , . . . , v

rn
k

k+1)

≥ lim sup
n→∞

Ern
k (wrn

k
1 , . . . , w

rn
k

k+1) = lim sup
n→∞

ψ(rnk ).
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This also implies that

lim sup
n→∞

‖wrn
k
i ‖

2

B
rn
k

i

<∞, lim sup
n→∞

∫
B

rn
k

i

∫
B

rn
k

i

|wrn
k
i (x)|p|wrn

k
j (y)|p

|x− y|
dx dy <∞. (3.6)

Next, we turn to prove ψ(r̃k) ≤ lim supn→∞ ψ(rnk ).
In the same way, we define functions v̄rn

k
i : [r̃i−1, r̃i]→ R such that

v̄
rn

k
i (t) = sni w

rn
k
i

(rni − rni−1

r̃i − r̃i−1
(t− r̃i−1) + rni−1

)
for i = 1, . . . , k and

v̄
rn

k

k+1(t) = snk+1w
rn

k

k+1

(rnk
r̃k
t
)
,

where rn0 = 0, rnk+1 = ∞ and each (sn1 , . . . , s
n
k+1) is a unique (k + 1)-tuple of

positive real numbers such that (v̄rn
k

1 , . . . , v̄
rn

k

k+1) ∈ N r̃k

k . Then, by the definition of
(wr̃k

1 , . . . , wr̃k

k+1), we have

Ern
k (v̄rn

k
1 , . . . , v̄

rn
k

k+1) ≥ E r̃k(wr̃k
1 , . . . , wr̃k

k+1) = ψ(r̃k).

Similarly, we may derive that

(sni )2‖wrn
k
i ‖

2

B
rn
k

i

− (sni )2p

∫
B

rn
k

i

∫
B

rn
k

i

|wrn
k
i (x)|p|wrn

k
i (y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

(sni )p(snj )p
∫
B

rn
k

i

∫
B

rn
k

j

|wrn
k
i (x)|p|wrn

k
j (y)|p

|x− y|
dx dy = o(1)

(3.7)

and

‖wrn
k
i ‖

2

B
rn
k

i

−
∫
B

rn
k

i

∫
B

rn
k

i

|wrn
k
i (x)|p|wrn

k
i (y)|p

|x− y|
dx dy

−
k+1∑
j 6=i

∫
B

rn
k

i

∫
B

rn
k

j

|wrn
k
i (x)|p|wrn

k
j (y)|p

|x− y|
dx dy = 0

(3.8)

for each i = 1, . . . , k + 1. We deduce from (3.7) and (3.8) that limn→∞ sni = 1 for
all i. Therefore,

ψ(r̃k) = E r̃k(wr̃k
1 , . . . , wr̃k

k+1) ≤ lim inf
n→∞

Ern
k (v̄rn

k
1 , . . . , v̄

rn
k

k+1)

= lim inf
n→∞

Ern
k (wrn

k
1 , . . . , w

rn
k

k+1) = lim inf
n→∞

ψ(rnk ).

This completes the proof of (iii).
As a result, we infer from (i)–(iii) that there is a minimum point r̄k = (r̄1, . . . , r̄k)

in Γk of ψ. �

Finally, we show that the solution (wr̄k
1 , . . . , wr̄k

k+1) of (2.2), corresponding to the
point r̄k = (r̄1, . . . , r̄k) ∈ Γk which we found in the previous lemma, is the exact
element which gives the solution of (1.1) with desired sign changing property.

Proof of Theorem 1.1. Suppose on the contrary that
∑k+1
i=1 w

r̄k
i is not a solution of

(1.1), there would exist l ∈ {1, . . . , k} such that

w− = lim
t→r̄−l

dwr̄k

l (t)
dt

6= lim
t→r̄+l

dwr̄k

l+1(t)
dt

= w+. (3.9)
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Denote wl(t) = wr̄k

l (t) and wl+1(t) = wr̄k

l+1(t). Fix a small positive number δ
and set

ȳ(t) =


wl(t), if t ∈ (r̄l−1, r̄l − δ),
wl(r̄l − δ) + wl+1(r̄l+δ)−wl(r̄l−δ)

2δ (t− r̄l + δ), if t ∈ (r̄l − δ, r̄l + δ),
wl+1(t), if t ∈ (r̄l + δ, r̄l+1).

There exists a unique s̄l ∈ (r̄l−1 − δ, r̄l+1 + δ) such that

ȳ(t)|t=s̄l
= 0

since ȳ(r̄l−1 − δ)ȳ(r̄l + δ) < 0. Define a (k + 1)-tuple of functions (z̄1, . . . , z̄k+1) as
follows.

z̄l(t) = ȳ(t), for t ∈ (r̄l−1, s̄l),

z̄l+1(t) = ȳ(t), for t ∈ (s̄l, r̄l+1),

z̄i(t) = wr̄k
i (t), for t ∈ (r̄i−1, r̄i) if i 6= l, l + 1.

By Lemma 2.1, there is a unique (k + 1)-tuple (t̂1, . . . , t̂k+1) ∈ (R>0)k+1 such that

(zs̄
1, . . . , z

s̄
k+1) := (t̂1z̄1, . . . , t̂k+1z̄k+1) ∈ N s̄

k

with s̄ = (r̄1, . . . , r̄l−1, s̄, r̄l+1, . . . , r̄k). On the other hand, we can verify that

(t̂1, . . . , t̂k+1)→ (1, . . . , 1) (3.10)

as δ → 0. Let W (t) :=
∑k+1
i=1 w

r̄k
i (t) ∈ H1

r (R3) and Z(t) :=
∑k+1
i=1 z

s̄
i (t) ∈ H1

r (R3).
Then

E(W ) = E r̄k(wr̄k
1 , . . . , wr̄k

k+1) ≤ E s̄(zs̄
1, . . . , z

s̄
k+1) = E(Z). (3.11)

On the other hand, for any f ∈ H1
r (R3), the solution ϕ of −∆ϕ = f is radial

and it can be expressed as

ϕ(t) =
1
t

∫ ∞
0

f(s)smin{s, t} ds

for t > 0. Therefore, W satisfies∫ ∞
0

t2(W ′2 +W 2)dt =
∫ ∞

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt (3.12)

and

E(W ) =
1
2

∫ ∞
0

(W ′2 +W 2)t2dt

− 1
2p

∫ ∞
0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

=
(1

2
− 1

2p
) ∫ ∞

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt.

(3.13)

We deduce from

w− = lim
δ→0

W (r̄l − δ)−W (r̄l)
−δ

that
W (r̄l − δ) = −δw− + o(δ). (3.14)
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Since W satisfies

−
(
t2W ′

)′ + t2W =
∫ ∞

0

|W (s)|pstmin{s, t} ds|W |p−2W (t)

for r̄l − δ ≤ t ≤ r̄l, and W (r̄l) = 0, thereby
(
t2W ′

)′(r̄l) = 0, we obtain

(r̄l − δ)2W ′(r̄l − δ) = r̄2
l w− + o(δ). (3.15)

We write

E(Z) =
1
2

∫ ∞
0

(Z ′2 + Z2)t2dt− 1
2p

∫ ∞
0

∫ ∞
0

|Z(s)|p|Z(t)|pstmin{s, t} ds dt

=
1
2

(∫ r̄l−δ

0

+
∫ ∞
r̄l+δ

)
(Z ′2 + Z2)t2dt+

1
2

∫ r̄l+δ

r̄l−δ
(Z ′2 + Z2)t2dt

− 1
2p

∫ ∞
0

∫ ∞
0

|Z(s)|p|Z(t)|pstmin{s, t} ds dt.

By (3.10), we see that∫ r̄l−δ

0

(Z ′2 + Z2)t2 dt =
∫ r̄l−δ

0

(W ′2 +W 2)t2 dt+ o(δ).

Integrating by parts and using (3.14) and (3.15), we obtain that∫ r̄l−δ

0

(W ′2 +W 2)t2 dt+ o(δ)

= W ′(r̄l − δ)W (r̄l − δ)(r̄l − δ)2

+
∫ r̄l−δ

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

= −δ(w−)2r̄2
l +

∫ r̄l−δ

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt.

Thus,∫ r̄l−δ

0

(Z ′2 + Z2)t2 dt

= −δ(w−)2r̄2
l +

∫ r̄l−δ

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt+ o(δ).

(3.16)

In the same way,∫ ∞
r̄l+δ

(Z ′2 + Z2)t2 dt

= −δ(w+)2r̄2
l +

∫ ∞
r̄l+δ

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt+ o(δ).
(3.17)

It is readily to verify that∫ r̄l+δ

r̄l−δ
Z ′2t2 dt =

1
2
r̄2
l (w+ + w−)2δ + o(δ), (3.18)∫ r̄l+δ

r̄l−δ
Z2t2 dt = o(δ). (3.19)



EJDE-2017/268 NONLINEAR CHOQUARD EQUATIONS 15

From (3.16)-(3.19), we obtain

E(Z) =− δ

2
(w−)2r̄2

l +
1
2

∫ r̄l−δ

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

− δ

2
(w+)2r̄2

l +
1
2

∫ ∞
r̄l+δ

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

+
δ

4
r̄2
l (w+ + w−)2 − 1

2p

∫ ∞
0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

+ o(δ).

(3.20)

Consequently,
E(Z)− E(W )

= −δ
4
r̄2
l (w+ − w−)2

+
1
2

(∫ r̄l−δ

0

+
∫ ∞
r̄l+δ

)∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

− 1
2p

∫ ∞
0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

−
(1

2
− 1

2p
) ∫ ∞

0

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt+ o(δ)

= −δ
4
r̄2
l (w+ − w−)2 − 1

2

∫ r̄l+δ

r̄l−δ

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt

+ o(δ).

(3.21)

This and the fact∫ r̄l+δ

r̄l−δ

∫ ∞
0

|W (s)|p|W (t)|pstmin{s, t} ds dt = o(δ)

yields

E(Z)− E(W ) = −δ
4
r̄2
l (w+ − w−)2 + o(δ) < 0

if δ > 0 sufficiently small, which contradicts (3.11). The proof is complete. �

4. Appendix: Non-singularity of matrices

We show in this section that the matrices M and N defined in (2.7) and (2.11)
respectively are nonsingular. For f, g ∈ L1

loc(R3), we recall that the Coulomb energy
is defined in [19] by

DN (f, g) =
∫

RN

∫
RN

f(x)g(y)|x− y|2−N dx dy.

It is proved in [19, Theorem 9.8] the following result.

Lemma 4.1 ([19, Theorem 9.8]). Let N ≥ 1 and f, g ∈ L
2N

N+2 , then

|DN (f, g)|2 ≤ DN (f, f)DN (g, g),

with equality for g 6= 0 if and only if f = Cg for some constant C.

Denote D(f, g) = D3(f, g). Let

A(R3) :=
{
f ∈ L1

loc(R3) : D(f, f) <∞
}
.
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Lemma 4.2. A(R3) is a linear subspace of L1
loc(R3) with the inner product D(f, f).

Proof. By Lemma 4.1, for any f, g ∈ A(R3), we have

D(f + g, f + g) ≤ D(f, f) +D(g, g) + 2
√
D(f, f)D(g, g).

It is then readily to verify that A(R3) is a linear subspace of L1
loc(R3). It is also

standard to see that D(f, g) is an inner product in A(R3). �

Now, we show that the matrices M and N defined in (2.7) and (2.11) respectively
are nonsingular. We only prove the matrix N is nonsingular, since for the matrix
M , the proof is similar.

Lemma 4.3. The matrix N defined in (2.11) is nonsingular.

Proof. Denote vi := |ui(x)|p. Then vi ∈ A(R3), for i = 1, . . . , k + 1. Apparently,
v1, . . . , vk+1 are linear independent. Let

L = span{v1, . . . , vk+1}.

So L is a subspace ofA(R3). Denote by {e1, . . . , ek+1} the orthogonal basis obtained
from {v1, . . . , vk+1} by the Gram-Schmidt Orthogonalization procedure. We may
assume vi = Σk+1

j=1aijej for i = 1, . . . , k + 1. Then, the matrix

Ak+1 =

 a11 a12 . . . a1(k+1)

...
...

. . .
...

a(k+1)1 a(k+1)2 . . . a(k+1)(k+1)


is invertible.

DenoteDij = vivj = D(vi, vj) for i, j = 1, . . . , k+1. The matrix (Dij)(k+1)×(k+1)

can be written as

(Dij)(k+1)×(k+1) =

 v1

...
vk+1

(v1 v2 . . . vk+1

)
.

Using the fact that vi = Σk+1
j=1aijej for i = 1, . . . , k + 1 and (e1, . . . , ek+1) is a

orthogonal basis, we deduce v1

...
vk+1

(v1 v2 . . . vk+1

)

=

 a11 a12 . . . a1(k+1)

...
...

. . .
...

a(k+1)1 a(k+1)2 . . . a(k+1)(k+1)


 a11 a21 . . . a(k+1)1

...
...

. . .
...

a1(k+1) a2(k+1) . . . a(k+1)(k+1)

 .

Therefore,
(Dij)(k+1)×(k+1) = Ak+1A

T
k+1

Since Ak+1 is invertible, the matrix (Dij)(k+1)×(k+1) is positive definite.
Let di = ‖ui‖2i , i = 1, . . . , k + 1. It is obvious that

detN = (−1)k+1 det Ñ , (4.1)
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where

Ñ =


pD11 + (p− 2)d1 pD12 . . . pD1(k+1)

pD21 pD22 + (p− 2)d2 . . . pD2(k+1)

...
...

. . .
...

pD(k+1)1 pD(k+1)2 . . . pD(k+1)(k+1) + (p− 2)dk+1



= p(Dij)(k+1)×(k+1) + (p− 2)


d1

d2

. . .
dk+1

 .

So Ñ is positive definite if 5/2 < p < 5 since di > 0 for all i and (Dij)(k+1)×(k+1)

is positive definite. The conclusion then follows. �
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