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NONLOCAL PROBLEM WITH MOMENT CONDITIONS FOR
HYPERBOLIC EQUATIONS
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Communicated by Ludmila S. Pulkina

Abstract. We investigate a problem with nonlocal integral moment condi-

tions with respect to the time variable for partial differential equation with
constant coefficients. We obtain necessary and sufficient conditions for the ex-

istence of solutions in the class of periodic functions with respect to the spatial

variables. For studying the asymptotic properties of this problem, we use only
the partial integration formula and the length of the interval of integration.

1. Introduction

Nonlocal conditions for partial differential equations are widely used in mathe-
matical models of many physical, biological and other natural processes. In particu-
lar, measuring the weighted average values of the solution is interpreted by integral
conditions, while the values at certain points are interpreted by local ones.

In general, the problems with nonlocal conditions are ill-posed in the sense of
Hadamard, and are related to the small denominators, in which the Diophantine
properties of the problem parameters show up. The metric approach to investi-
gating nonlocal problems in the Sobolev scales and other scales of periodic, almost
periodic functions, was used in [10, 16].

The results of studying the problems with integral conditions for partial differ-
ential equations are published in various papers (see e.g. [1, 2, 3, 6, 7, 8, 9, 11, 12,
13, 15, 17, 18]).

In this paper, we consider a problem with nonlocal integral moment conditions
with respect to the time variable. We study the dependence of the problem solv-
ability on the length of the integration interval in the Sobolev scale of periodic
functions with respect to spatial variables.

The problem is formulated in the second section. The existence of a generalized
solution is proved in the third section and the characteristic matrix structure with
the solution existence is investigated in the fourth section. In the fifth section we
examine some examples and indicate some conclusions.
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2. Formulation of the problem

In this section, we introduce the domain in which we consider the problem,
the partial differential equation and the nonlocal moment conditions, the spaces of
periodic functions, and give the definition of a solution as well.

Let Ωp be a p-dimentional torus (R/2πZ)p, Qp = [0, T ]×Ωp be a cylinder, where
p ∈ N, 0 < T0 ≤ T ≤ T1 < +∞, and let t ∈ [0, T ], x = (x1, . . . , xp) ∈ Ωp, ∂t = ∂/∂t,
∂xj = ∂/∂xj , ∂x = (∂x1 , . . . , ∂xp) and ∂sx = ∂s1x1

· · · ∂spxp for s = (s1, . . . , sp) ∈ Zp+.
In the domain Qp, we consider the following nonlocal problem in t variable:

L(∂t, ∂x)u ≡ ∂nt u+
n∑
j=1

Aj(∂x)∂n−jt u = 0, n ≥ 2, (2.1)

M(rj ;u) ≡
∫ T

0

rj
t u(t, ·) dt = ϕj , j = 1, . . . , n, (2.2)

where Aj(∂x) =
∑
|s|≤j ajs∂

s
x are differential expressions with complex coefficients

ajs, the orders rj of the moments M(rj ;u) of the solution u = u(t, x) are non-

negative real numbers, sorted ascending by r1 < · · · < rn, and
rj
t = trj/rj ! for

j = 1, . . . , n, and moreover, rj ! = Γ(rj + 1) is a factorial. The right-hand sides
ϕ1, . . . , ϕn in conditions (2.2) are given and 2π-periodic functions.

Assume that there exist such positive numbers K, R, m, m0, m1, where R ≥ 1,
that the roots µj = µj(k) of the algebraic equation

L(−λ, ik) ≡ L(ik̃µ, ik) = 0, k̃ =
√

1 + k2
1 + · · ·+ k2

p, (2.3)

in the case k̃ ≥ K have the following properties:∣∣e−ik̃µj(k)T
∣∣ ≤ R, 0 < m0 ≤ |µj(k)| ≤ m1 < +∞, |µα(k)− µβ(k)| ≥ m > 0.

(2.4)
Also we denote

λj = λj(k) = −ik̃µj(k), j = 1, . . . , n. (2.5)

The numbers m = m(~a), R = R(~a) and m1 = m1(~a) exist for a strictly hy-
perbolic equation (m is the hyperbolicity constant), and for an arbitrary vector of
coefficients ~a = (ajs; j = 1, . . . , n, |s| ≤ j) respectively. Additionally, in conditions
(2.4), we only assume the existence of a positive number m0 = m0(~a) (the last
condition could be weakened by multiplying the constant m0 by the function k̃−γ

of the vector k, where 0 < γ < 1).
Let H be a space of 2π-periodic trigonometric polynomials (the space of test

functions), and H ′ be its adjoint space of generalized function (formal trigonometric
series).

Let Hq = Hq(Ωp) be a Sobolev space of 2π-periodic in x1, . . . , xp functions
v(x) =

∑
k∈Zp vke

ik·x, which is formed by complementing the H space by the norm

‖v;Hq‖ =
( ∑
k∈Zp

k̃2q|vk|2
)1/2

, k · x = k1x1 + · · ·+ kpxp.

The embedding H ⊂ Hq ⊂ H ′ of spaces H, Hq and H ′ is continuous for all q ∈ R.
Denote by Hn

q = Hn
q (Qp) a Banach space of functions u = u(t, x) such that ∂jt u ∈

C([0, T ];Hq−j) for j = 1, . . . , n and ‖u;Hn
q ‖2 =

∑n
j=0 maxt∈[0,T ] ‖∂jt u(t, ·);Hq−j‖2.
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Definition 2.1. An element u ∈ Cn([0, T ];H ′) is called a generalized solution of
problem (2.1), (2.2) if it satisfies on time interval (0, T ) the differential equation
(2.1) and the nonlocal conditions (2.2) in the space H ′.

Definition 2.2. A generalized solution of problem (2.1), (2.2) is called a solution,
if it belongs to the space Hn

q .

It follows from the definition 2.2 that the condition {ϕ1, . . . , ϕn} ⊂ Hq is the
necessary condition of existence of solution u of problem (2.1), (2.2), for which the
following estimation is true:

‖ϕj ;Hq‖ ≤
r1+1

T ‖u;Hn
q ‖, j = 1, . . . , n.

The problem (2.1), (2.2) is considered in the scale {Hq}q∈R, i.e. ϕj and u(t, ·)
belong to this scale for all j = 1, . . . , n and t ∈ [0, T ], and is ill-posed in the sense
of Hadamard [10, 16] in this scale (as well as in other scales).

3. Existence of a generalized solution

In this section, we are introduce notations, formulate and prove the theorem
of existence of generalized solutions of problem (2.1), (2.2). Also, we give the
representation of these solutions. Let us assume that

Λk = diag
(
In1λ1 +Nn1 , . . . , Inlλl +Nnl

)
,

where λ1 . . . , λl are roots of equation (2.3) of respective multiplicities n1, . . . , nl
(n1 + · · ·+nl = n); Inj is an nj-th order identity matrix; Nnj is a nilpotent matrix

of the form Nnj =
(

0 Inj−1

0 0

)
, N1 = 0; 1k is a block row vector whose blocks are

the first rows of matrices In1 , . . . , Inl .
Then elements of vector

Ek(t) = Tn−11kΛnke
(T−t)Λk (3.1)

form a fundamental system of solutions of the differential equation

L(d/dt, ik)uk = 0.

From formula (3.1), when k̃ ≥ K, we have 1k = (1, . . . , 1), and

Ek(t) =
(
Tn−1λn1 e

(T−t)λ1 , . . . , Tn−1λnne
(T−t)λn

)
, Λk = diag(λ1, . . . , λn).

Denote the characteristic matrices of problem (2.1), (2.2) by Mk, where k ∈ Zp,
and M−k are pseudoinverse matrices to them [14, p. 428]. Then

Mk = col
(
M(r1;Ek), . . . ,M(rn;Ek)

)
(3.2)

and M−k = M−1
k for a non-degenerate matrix Mk, where the moments M(·; ·) are

defined by formula (2.2).
Let the projectors P and Q act in the scale {Hq}q∈R onto the vector-functions

v =
∑
k∈Zp vke

ik·x, whose components vk belong to Cn, as follows:

Pv =
∑
k∈Zp

Pkvke
ik·x ≡

∑
k : detMk=0

Pkvke
ik·x +

∑
k : detMk 6=0

vke
ik·x, (3.3)

Qv =
∑
k∈Zp

Qkvke
ik·x ≡

∑
k : detMk=0

Qkvke
ik·x +

∑
k : detMk 6=0

vke
ik·x, (3.4)

where Pk = M−k Mk and Qk = MkM
−
k are projectors in the Cn space.
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Now we shall state the theorem of existence of generalized solution of problem
(2.1), (2.2), which is true for an arbitrary vector of coefficients ~a.

Theorem 3.1. The generalized solution of problem (2.1), (2.2) exists if and only
if the orthogonality condition (I − Q)ϕ = (I − Q) col(ϕ1, . . . , ϕn) = 0 is satisfied.
One can be represented by the following formula:

u =
∑
k∈Zp

Ek(t)M−k ϕ̂ke
ik·x +

∑
k∈Zp

Ek(t)((I − P )U)keik·x, (3.5)

where U = col(U1, . . . , Un) is an arbitrary vector whose components belong to the
space H ′, and ϕ̂k and ((I − P )U)k are the Fourier coefficients of the vector-
functions ϕ and (I − P )U .

Proof. Since the solution of problem (2.1), (2.2) has the form u =
∑
k∈Zp uke

ik·x,
the function uk = uk(t) is a solution of the problem

L(d/dt, ik)uk = 0, M(rj ;uk) = ϕjk, j = 1, . . . , n. (3.6)

If Ck ∈ Cn are arbitrary vectors, then, from the general solution uk = Ek(t)Ck
of the equation L(d/dt, ik)uk = 0 in case MkCk = ϕ̂k, we obtain the solution of
problem (3.6).

It is known [14, p. 436], that the general solution of the latter system of linear
algebraic equations is given by the formula Ck = M−k ϕ̂k+(I−Pk)Uk. In particular,
in the case detMk 6= 0, it is the unique solution Ck = M−1

k ϕ̂k. Substituting the
calculated Ck value into the formula for uk, and uk into the formula for u, we obtain
the solution (3.5). �

Let us introduce in the space H ′ the projector Π(Z), where Z is an arbitrary
subset of Zp, acting onto the element ϕ =

∑
k∈Zp ϕke

ik·x by the formula

Π(Z)ϕ =
∑
k∈Z

ϕke
ik·x.

If Z is a finite set, then the element Π(Z)ϕ is a polynomial for each function ϕ

from the space H ′, i.e. H ′
Π(Z)−→ H.

Let K0 ≡ K0(T ) = {k ∈ Zp : detMk = 0}, and K̄0 = Zp \K0 be the complement
to the set K0. Then, the formula (3.5) could be written as

u ≡ Π(K0)u+ Π(K̄0)u

=
∑
k∈K0

Ek(t)(M−k ϕ̂k + (I − Pk)Uk)eik·x +
∑
k∈K̄0

Ek(t)M−1
k ϕ̂ke

ik·x, (3.7)

which implies the following obvious consequences.

Corollary 3.2. The null space of problem (2.1), (2.2) in the space Cn([0, T ];H ′)
consists of elements

u =
∑
k∈K0

Ek(t)(I − Pk)Ukeik·x, (3.8)

where Uk are arbitrary vectors from Cn.

Corollary 3.3. Problem (2.1), (2.2) is a Fredholm problem if and only if the set
K0 is finite. In this case, the null space of the problem has a finite dimension, that
is equal to

∑
k∈K0

rank(I−Pk), where rank(I−Pk) is the rank of the matrix I−Pk.
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Corollary 3.4. If K0 = ∅, i.e. detMk 6= 0 for all k ∈ Zp, then the generalized
solution of problem (2.1), (2.2) is unique and has the form

u =
∑
k∈Zp

Ek(t)M−1
k ϕ̂ke

ik·x. (3.9)

The inverse statement is also true: the uniqueness implies that the set K0 is empty.

4. Structure of characteristic matrices. Existence of solutions

For estimating the functions uk = uk(t), let us investigate the structure of Mk

matrices, determine the existence of inverse matrices M−1
k and find their structure.

If r1 ≥ n, then integrating by parts n times allows us to write the formula

M(rj ;Ek) =M(rj − n;Ek)Λ−nk − Tn−11k
n−1∑
α=0

rj−α
T Λn−α−1

k , j = 1, . . . , n.

In matrix form, denoted ~λ(k) = (λ1, . . . , λn) with λα 6= λβ for α 6= β, α ≤ l, β ≤ l(
l = l(k) ≤ n

)
, we obtain

Mk = Mkn − Tn−1W>
[r1
T , . . . ,

rn
T
]
JW

(
~λ(k)

)
, (4.1)

where W
[
f1, . . . , fn

]
is the Wronski matrix

(
f

(i−1)
j

)
i,j=1,...,n

of the system of func-

tions fj , W (~λ) is the Vandermonde matrix col
(
1k,1kΛk, . . . ,1kΛn−1

k

)
with gener-

ators λ1, . . . , λl of multiplicities n1, . . . , nl (if l = n, then W (~λ) = (λi−1
j )i,j=1,...,n),

the antidiagonal matrix J = (δi,n+1−j)i,j=1,...,n is formed of Kronecker delta δij
symbols, W> is a transpose matrix to W , and the matrix

Mkn ≡ col
(
M(r1 − n;Ek), . . . ,M(rn − n;Ek)

)
Λ−nk

has following form

Mkn = Tn−1 col
(
1kM

(
r1 − n; e(T−t)Λ1

)
, . . . ,1kM

(
rn − n; e(T−t)Λn

))
.

Let S1 =
({

i−1
j−1

})
i,j=1,...,n

and S2 =
(
(−1)i−j

[
i−1
j−1

])
i,j=1,...,n

be the matrices

of Stirling numbers of the first
{
i
j

}
and the second

[
i
j

]
kind respectively. Thus,

S1S2 = In, and from the formula (6.13) in [4, p. 263] we have

W
[r1
T , . . . ,

rn
T
]

= diag
(
T 1−j)

j=1,...,n
S2W (~r) diag

(rj
T
)
j=1,...,n

.

Based on the latter, and (4.1), we obtain the factorization

diag
(
1/
rj

T
)
j=1,...,n

Mk = −W>(~r)S>2 (In −H)JW
(
T~λ(k)

)
, (4.2)

where we denote W−> = (W>)−1 = (W−1)> and

H = S>1 W
−>(~r) diag

(
1/
rj

T
)
j=1,...,n

MknW
−1
(
T~λ(k)

)
J. (4.3)

For the matrix B = (bij)i,j=1,...,n, denote by ‖B‖∞ = maxi=1,...,n

∑n
j=1 |bij | the

matrix ∞-norm [5, p. 108, 109], then ‖B>‖∞ ≤ n‖B‖∞.
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Based on the formula
{
i
j

}
= j
{
i−1
j

}
+
{
i−1
j−1

}
from [20, p. 259], we obtain for matrix

S1 the estimation ‖S1‖∞ ≤ n!; and basing on formula (22.3) from [5, p. 417], we
estimate the norm of the Vandermonde matrix:

‖W−1(~r)‖∞ ≤ max
i=1,...,n

n∏
j 6=i, j=1

1 + rj
|ri − rj |

.

Thus, the multipliers of the matrix H in the case when k̃ ≥ K, and the condition
(2.4) is true, have the following estimates:

‖S>1 ‖∞ ≤ n · n!,

‖W−>(~r)‖∞ ≤ n‖W−1(~r)‖∞ <

n∏
j=1

(1 + rj) ≡ R1 <∞,

‖W−1
(
T~λ(k)

)
‖∞ ≤ ‖W−1

(
− iT~µ(k)

)
‖∞ · ‖ diag(k̃1−j)j=1,...,n‖∞

= ‖W−1
(
− iT~µ(k)

)
‖∞ <

(1 +m1T

mT

)n−1

≤
(1 +m1T0

mT0

)n−1

≡ R2 <∞.

Taking into account ‖J‖∞ = 1, by formula (4.3), we establish the inequality

‖H‖∞ ≤ n · n!R1R2‖ diag
(
1/
rj

T
)
j=1,...,n

Wkn‖∞ .

Taking into account
∣∣M(rj ; e(T−t)λα

)∣∣ ≤ R
rj+1

T , we estimate the elements of

M
(
rj−n; e(T−t)λα

)
/
rj

T , placed in the j-th row of the matrix diag
(
1/
rj

T
)
j=1,...,n

Wkn:

∣∣M(rj − n; e(T−t)λα
)
/
rj

T
∣∣ ≤ M(rj − n− 1; 1

)
+R

rj−n
T

k̃|µα|
rj

T

≤ 2Rk̃−1rj !
m0Tn0 (rj − n)!

.

From this, we obtain

‖ diag
(
1/
rj

T
)
j=1,...,n

Mkn‖∞ ≤
2nRk̃−1rn!

m0Tn0 (rn − n)!
≡ 2nk̃−1RR3 <∞.

Therefore, if k ∈ K1, where K̄1 is a finite set, and

K1 ≡
{
k ∈ Zp : k̃ ≥ K1 = max

(
K, 4n2n!RR1R2R3

)}
, (4.4)

then it holds the inequality

‖H‖∞ ≤ 2n2k̃−1n!RR1R2R3 ≤ 1/2,

thus for such vectors k there exist the matrices (In−H)−1 and M−1
k , in particular,

‖(In −H)−1‖∞ ≤ 2 and

‖
(

diag
(
1/
rj

T
)
j=1,...,n

Mk

)−1‖∞

= ‖W
(
T~λ(k)

)−1
J(In −H)−1S>1 W

−>(~r)‖∞

≤ ‖W
(
T~λ(k)

)−1‖∞‖(In −H)−1‖∞‖S>1 ‖∞‖W−>(~r)‖∞
≤ 2n2n!R1R2.

(4.5)
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Theorem 4.1. Let {ϕ1, . . . , ϕn} ⊂ Hq+n, the fixed vector ~a of coefficients of dif-
ferential equation (2.1) satisfy conditions (2.4), and r1 ≥ n. Denote T0 be a set
of numbers T ∈ [T0, T1], for which detMk = 0 at least for one k ∈ K̄1, where K1

is defined by (4.4). Then, T0 is a finite set, and for each T ∈ [T0, T1] \ T0 in the
space Hn

q there exist a unique solution (3.9) of problem (2.1), (2.2), and for each
T ∈ T0 if (I−Q)ϕ = 0, then exist a unique, accurate within the polynomial Π(K̄1)u,
solution (3.7), where

Π(K̄1)u =
∑

k∈K0(T )

Ek(t)(M−k ϕ̂k + (I − Pk)Uk)eik·x

+
∑

k∈K̄1\K0(T )

Ek(t)M−1
k ϕ̂ke

ik·x.
(4.6)

For these solutions, the following estimate holds:

‖Π(K1)u;Hn
q ‖2 ≤ n

R2
4

T 2

n∑
α=1

(rα!)2

T 2(rα−n)
‖Π(K1)ϕα;Hq+n‖2, (4.7)

where R4 = 2n2n! mn1RR1R2(Pn
j=0m

2j
1

)−1/2 , R1 =
∏n
j=1(1 + rj) R2 =

(
m1/m+ 1/mT0

)n−1.

Proof. The finiteness of the set T0 follows from the finiteness of the set of zeros of
the entire function detMk ≡ detMk(T ) on the finite interval [T0, T1], where k ∈ K̄1,
and from the finiteness of the set K̄1.

If T ∈ [T0, T1] \ T0, then K0 = ∅ and, by corollary 3.4, there exist a unique
solution of the problem (2.1), (2.2) of the form (3.9) in the space Cn([0, T ];H ′),
and

max
t∈[0,T ]

|u(α)
k (t)|2 ≤ max

t∈[0,T ]
‖E(α)

k (t)‖2‖
(

diag
(
1/
rj

T
)
j=1,...,n

Mk

)−1‖2
n∑
β=1

∣∣ϕβk/rβT ∣∣2,
where, for the vectors k ∈ K1 we have

max
t∈[0,T ]

‖E(α)
k (t)‖2 = T 2(n−1) max

t∈[0,T ]

n∑
j=1

|λ2
j |n+α

∣∣e2(T−t)λj
∣∣

≤ nT 2(n−1)R2(k̃m1)2(n+α).

Based on these estimates, and the estimate (4.5), we conclude the inequalities

k̃2(q−j) max
t∈[0,T ]

|u(j)
k (t)|2 ≤ n

(
2n2n!mn+j

1 RR1R2

)2 n∑
α=1

∣∣Tn−1k̃q+nϕαk/
rα
T
∣∣2

for j = 0, 1, . . . , n, which imply formula (4.7).
In case when T ∈ T0, then K0 is a finite non-empty set, and problem (2.1), (2.2)

has a non-trivial finite-dimensional null space described by formula (4.6), where we
assume ϕ = 0. Formula (4.7) follows of formula (3.7). �

5. Examples

Let n = 2 and problem (2.1), (2.2) be as follows:

∂tu = ∆u− u, M(r1;u) = ϕ1, M(r2;u) = ϕ2, (5.1)

where ∆ =
∑p
j=1 ∂

2
xj is the Laplace operator.
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Then µ1(k) = −µ2(k) = 1 and the assumption (2.4) is true for such values
K = R = m0 = m1 = 1 and m = 2. Provided r2 > r1 ≥ 2, theorem (4.1) holds.

Since R1 = (r1 + 1)(r2 + 1), R2 = 1/2 + 1/2T0, R3 = (r2− 1)r2/T
2
0 , we conclude

that

K1 = max
(

1, 16(r1 + 1)(r2
2 − 1)r2

1 + T0

T 3
0

)
and R4 = 8

√
3(r1 + 1)(r2 + 1)

1 + T0

T0

in formulas (4.4) and (4.7) respectively.
The example of another (ill-posed) problem is problem (5.1), in which the vector

of moment orders does not meet the condition r1 ≥ 2 and is defined by the formula
(r1, r2) = (0, 1).

The characteristic matrix Mk is determined by the formula

Mk = 2iT
(

ik̃e−iθk sin θk ik̃eiθk sin θk
e−iθk sin θk − θk θk − eiθk sin θk

)
,

moreover detMk = i8k̃T 2(sin θk − θk cos θk) sin θk, where θk = k̃T/2.
Let ϕ1 = 0, ϕ2(x) =

∑
k∈Zp ϕ2ke

ik·x and the following condition holds:

sin θk
(

sin θk − θk cos θk
)
6= 0, k ∈ Zp,

then this problem has a unique generalized solution

u =
∑
k∈Zp

sin k̃(t− T/2)
sin k̃T/2− (k̃T/2) cos k̃T/2

k̃2

2
ϕ2k e

ix·k.

The subsequences of denominators sin k̃T/2− (k̃T/2) cos k̃T/2 of the solution tend
to zero ultrafast for certain values of T , so for such values of T the solution does
not belong to any space from the scale {Hn

q (Qp)}q∈R, or another given scale.

Conclusions. We establish the conditions of unique solvability of the problem with
nonlocal integral conditions in the form of moments for hyperbolic type partial dif-
ferential equations in the space of generalized periodic functions and in the scale of
Sobolev spaces of periodic functions with respect to spatial variables. This problem
is ill-posed in the sense of Hadamard in case of small values of the moment orders,
and, in the case when the moment orders are greater than the order of differential
equation, the problem is well-posed with loss of derivatives. A similar result was
previously obtained by the authors for the problem with integral boundary condi-
tions for the system of Lame equations in the spaces of almost periodic function
with respect to spatial variables.

We also investigate the pattern of dependence of the solution norm on the prob-
lem parameters. We also consider the issue of Fredholmity of the problem, and also
determine the form of elements of its null space.
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