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PROBLEM FOR AN INFINITE SYSTEM OF

DIFFERENTIAL EQUATIONS
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Abstract. Using techniques associated with measures of noncompactness we

prove an existence of solutions for a boundary-value problem for an infinite
system of ordinary differential equations of second order. Our approach de-

pends on transforming of the original boundary-value problem into an infinite

system of integral equations of Fredholm type. The settings for this article are
in the classical Banach sequence space lp with p ≥ 1.

1. Introduction and preliminaries concerning measures of
noncompactness

To formulate a fixed point theorem Darbo used the so-called Kuratowski measure
of noncompactness α, introduced in 1930 by Kuratowski [12]. Subsequently, in the
literature have appeared a lot of functions being measures of noncompactness (cf. [1,
2, 3, 5]). Nevertheless, it turned out that among all classical realizations of measures
of noncompactness the Hausdorff measure seems to be the most convenient and
useful in applications.

The Hausdorff measure of noncompactness was introduced in 1965 [11] (see also
[10]) by the formula

χ(X) = inf
{
ε > 0 : X has a finite ε-net in E

}
,

where X is a nonempty and bounded subset of the Banach space E.
The function χ has a lot of useful properties being essential in applications. For

example, we have that χ(X) = 0 if and only if X is a relatively compact subset
of E. To recall other properties of χ let us introduce first some auxiliary notation.
Namely, by the symbol B(x, r) we denote the closed ball centered at x and with
radius r. The symbol Br will denote the ball B(θ, r), where θ stands for the zero
element of E. If X is a subset of E then X and convX denote the closure and
the closed convex hull of X, respectively. Moreover, we use the standard notation
X + Y , λX to denote the algebraic operations on subsets of E.
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Now, let us recall a few properties of the Hausdorff measure of noncompactness
χ defined above. Namely, if X, Y are arbitrary nonempty bounded subsets of E
and λ ∈ R, then:

(1) X ⊂ Y implies χ(X) ≤ χ(Y ).
(2) χ(X) = χ(convX) = χ(X).
(3) χ(X + Y ) ≤ χ(X) + χ(Y ).
(4) χ(λX) = |λ|χ(X).

For other properties of the Hausdorff measure χ we refer to [3, 5], for example. In
what follows we recall the fixed point theorem of Darbo type (cf. [1, 3]) which will
be utilized in our considerations.

Theorem 1.1. Let Ω be a nonempty, bounded, closed and convex subset of the
space E and let F : Ω→ Ω be a continuous operator such that χ(FX) ≤ kχ(X) for
any nonempty subset X of Ω, where k ∈ [0, 1) is a constant. Then F has at least
one fixed point in the set Ω.

It is worthwhile mentioning that to apply efficiently Theorem 1.1 in a concrete
Banach space E we have to know a formula expressing the Hausdorff measure of
noncompactness χ in E in a convenient way, connected with the structure of the
underlying Banach space E. It turns out that such formulas are known only in a
few spaces [3, 5]. For our purposes we recall such a formula for the sequence space
lp.

To this end let us fix a number p, p ≥ 1, and denote by lp the classical Banach
sequence space with the norm

‖x‖lp = ‖(xn)‖lp =
( ∞∑

n=1

|xn|p
)1/p

for x = (xn) ∈ lp. In some considerations we will drop the index lp if it does not
lead to misunderstanding.

If X is a nonempty and bounded subset of lp then

χ(X) = lim
n→∞

{
sup

(xk)∈X

( ∞∑
k=n

|xk|p
)1/p}

(1.1)

(cf. [3]). The above formula will be utilized in the sequel of the paper.
Finally, let us mention that results of the present paper generalize those obtained

in [14], where the considerations were conducted in the classical Banach sequence
spaces c0 and l1.

2. Main result

Infinite systems of ordinary differential equations are closely related to several
important problems appearing naturally in applications (cf. [5, 7, 8]). For example,
let us mention that some methods of solving of partial differential equations based
on the application of the so-called semidiscretization and numerical analysis lead to
infinite systems of differential equations. Apart from this one can encounter other
significant problems in engineering, mechanics, in the theory of branching processes
and so on, which are associated with the theory of infinite systems of differential
equations (see [4, 5, 7, 13]). On the other hand infinite systems of differential
equations can be treated as ordinary differential equations in some Banach sequence
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spaces [4, 5, 7]. The above mentioned facts justify the interest in the theory of
infinite systems of differential equations.

In this paper we study the infinite systems of differential equations of second
order having the form

u′′i (t) = −fi(t, u1, u2, . . .), (2.1)
where t ∈ I = [0, T ] and i = 1, 2, . . .. The above system will be studied together
with the boundary problem

ui(0) = ui(T ) = 0, (2.2)

for each i = 1, 2, . . .. In our study of problem (2.1)-(2.2) we will apply a technique
associated with the Hausdorff measure of noncompactness χ, and the fixed point
theorem of Darbo type presented in Theorem 1.1.

An essential tool applied in our approach to the study of problem (2.1)-(2.2)
depends on converting (2.1)-(2.2) into the infinite system of integral equations of
Fredholm type of the form

ui(t) =
∫ T

0

G(t, s)fi(s, u(s))ds, (2.3)

where G(t, s) is the Green function corresponding to problem (2.1)-(2.2) on the
interval I = [0, T ] and defined on the square I2 in the following way (cf. [9])

G(t, s) =

{
t
T (T − s) for 0 ≤ t ≤ s ≤ T,
s
T (T − t) for 0 ≤ s ≤ t ≤ T .

(2.4)

Using standard methods it is easy to show the estimate

G(t, s) ≤ T

4
(2.5)

for all (t, s) ∈ I2.
In what follows we write fi(t, u) instead of fi(t, u1, u2, . . .) (i = 1, 2, . . .). To

introduce further auxiliary facts let us assume that E is a given Banach space with
the norm ‖ · ‖E . Denote by C(I, E) the Banach space consisting of all functions
u = u(t) acting continuously from the interval I into the space E and endowed by
the classical supremum norm

‖u‖C = sup{‖u(t)‖E : t ∈ I}.

Remark 2.1. Assume that χE is the Hausdorff measure of noncompactness in the
Banach space E. Next, let us take an arbitrary bounded subset X of the space
C(I, E) which is equicontinuous on the interval I. Then, it can be shown [3] that
we have the following formula expressing the Hausdorff measure of noncompactness
of the set X:

χ(X) = sup{χE(X(t)) : t ∈ I}. (2.6)

As a special case of the above discussed space C(I, E) we will consider the space
C(I,R), which will be denoted by C(I). The supremum norm in the space C(I)
will be denoted by ‖ · ‖∞. Moreover, the symbol C2(I) denotes the space of real
functions defined and twice continuously differentiable on I with the standard norm
‖ · ‖C2 defined as follows

‖u‖C2 =
2∑

i=0

‖u(i)‖∞.
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Now, let us observe that problem (2.1)-(2.2) has a solution u = (ui) belonging
to the space C2(I) if and only if the infinite system of integral equations (2.3) has
a solution u ∈ C(I). To prove this fact, for arbitrarily fixed i and t ∈ I, let us write
(cf. (2.4)):

ui(t) =
∫ t

0

s

T
(T − t)fi(s, u(s))ds+

∫ T

t

t

T
(T − s)fi(s, u(s))ds.

Hence, differentiating the above equality we subsequently obtain

u′i(t) = − 1
T

∫ t

0

sfi(s, u(s))ds+
1
T

∫ T

t

(T − s)fi(s, u(s))ds,

u′′i (t) = −fi(t, u(t)),

which proves our assertion.
We will investigate the infinite system of integral equations (2.3) imposing the

following assumptions.
(i) The function fi is defined on the set I × R∞ and takes real values for

i = 1, 2, . . ..
(ii) The operator f defined on the space I × lp by the formula

(fu)(t) = (fi(t, u)) = (f1(t, u), f2(t, u), . . .)

transforms the space I × lp into lp and is such that the family of functions
{(fu)(t)}t∈I is equicontinuous at each point of the space lp i.e., for each
arbitrarily fixed u ∈ lp and for a given ε > 0 there exists δ > 0 such that

‖(fv)(t)− (fu)(t)‖lp < ε

for each t ∈ I and for any v ∈ lp such that ‖v − u‖lp < δ.
(iii) For any natural i there exist functions gi, hi : I → R+ such that the

inequality
|fi(t, u)|p ≤ gi(t) + hi(t)|ui|p

is satisfied for t ∈ I, u = (ui) ∈ lp and i = 1, 2, . . ..
Moreover, we assume that the function gi is continuous on I (i = 1, 2, . . .)
and the function series

∑∞
i=1 gi(t) is uniformly convergent, while the func-

tion sequence (hi(t)) is equibounded on I.
Observe that in view of assumption (iii) the constant

H := sup{hi(t) : t ∈ I, i = 1, 2, . . .}
is finite. Moreover, we can define the function g = g(t) on the interval I by putting

g(t) =
∞∑

i=1

gi(t).

Obviously the function g(t) is continuous on I. Therefore, we can define the finite
constant

G = max{g(t) : t ∈ I}.
The concept of the equicontinuity utilized in assumption (iii) was introduced in

the book [15]. Now, we can formulate our main result.

Theorem 2.2. Under assumptions (i)-(iii), if additionally (H/T )1/p T 2 < 4 and
T ≤ 1, the infinite system of integral equations (2.3) has at least one solution
u(t) = (ui(t)) in the space lp i.e., (ui(t)) ∈ lp for each t ∈ I.
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Proof. At the beginning let us consider the space C(I, lp) of all functions continuous
on the interval I = [0, T ] with values in the space lp and furnished with the classical
supremum norm

‖u‖ = sup{‖u(t)‖lp : t ∈ I}.
This space is a particular case of the space C(I, E) introduced previously. Next,
let us denote by F the operator defined on the space C(I, lp) by the formula

(Fu)(t) = ((Fu)i(t)) =
(∫ T

0

G(t, s)fi(s, u(s))ds
)

=
(∫ T

0

G(t, s)f1(s, u(s))ds,
∫ T

0

G(t, s)f2(s, u(s))ds, . . .
)
.

At first, let us notice that the operator F maps the space C(I, lp) into itself. Indeed,
for a fixed u = u(t) = (ui(t)) ∈ C(I, lp) and for an arbitrary t ∈ I, using the imposed
assumptions and the Hölder inequality, we obtain

‖(Fu)(t)‖plp =
∞∑

i=1

∣∣∣ ∫ T

0

G(t, s)fi(s, u(s))ds
∣∣∣p

≤
∞∑

i=1

(∫ T

0

|G(t, s)|p|fi(s, u(s))|pds
)(∫ T

0

ds
)p/q

≤ T p/q
∞∑

i=1

∫ T

0

|G(t, s)|p[gi(s) + hi(s)|ui(s)|p]ds

≤ T p/q
∞∑

i=1

[ ∫ T

0

|G(t, s)|pgi(s)ds+
∫ T

0

|G(t, s)|phi(s)|ui(s)|pds
]
,

where q > 1 is a number such that 1/p+ 1/q = 1.
Further, applying the Lebesgue dominated convergence theorem, from the above

estimate we obtain

‖(Fu)(t)‖plp ≤ T
p/q

∫ T

0

|G(t, s)|pg(s)ds

+ T p/qH

∫ T

0

|G(t, s)|p{|u1(s)|p + |u2(s)|p + . . .}ds.

Hence, in view of (2.5), we derive the estimate

‖(Fu)(t)‖plp ≤ T
p/q

∫ T

0

(T/4)pg(s)ds+ T p/qH

∫ T

0

(T/4)p
( ∞∑

i=1

|ui(s)|p
)
ds

≤ (T 2p−1/4p)
∫ T

0

g(s)ds+ (HT 2p−1/4p)
∫ T

0

( ∞∑
i=1

|ui(s)|p
)
ds

≤ (T 2p/4p)G+H(T 2p−1/4p)
∫ T

0

‖u‖pds

= (T 2p/4p)[G+H‖u‖p].

(2.7)

Hence we deduce that Fu is bounded on the interval I. This implies that the
operator F transforms the space C(I, lp) into itself. Apart from this, from estimate
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(2.7) we derive the following inequality

‖Fu‖ ≤ T 2

4
(G+H‖u‖p)1/p. (2.8)

Further, taking into account assumption (iii) we deduce that the positive number

r0 =
T 2G1/p

(4p −HT 2p)1/p

is the optimal solution of the inequality

T 2

4
(G+Hrp)1/p ≤ r.

Thus, in view of (2.8) we infer that the operator F transforms the ball Br0 in the
space C(I, lp) into itself.

Next we show that the operator F is continuous on the ball Br0 . To this end let
us fix arbitrarily a number ε > 0 and a function u ∈ Br0 . Then, for an arbitrary
v ∈ Br0 such that ‖v − u‖ ≤ ε and for a fixed number t ∈ I = [0, T ], in view of the
imposed assumptions we obtain

‖(Fv)(t)− (Fu)(t)‖plp

=
∞∑

i=1

∣∣∣ ∫ T

0

G(t, s)[fi(s, v(s))− fi(s, u(s))]ds
∣∣∣p

≤
∞∑

i=1

(∫ T

0

|G(t, s)|p|fi(s, v(s))− fi(s, u(s))|pds
)(∫ T

0

ds
)p/q

≤
∞∑

i=1

T p/q

∫ T

0

|G(t, s)|p|fi(s, v(s))− fi(s, u(s))|pds.

Hence, using estimate (2.5) and applying assumption (ii) concerning the equiconti-
nuity of the family of functions {(fu)(t)}t∈I , we obtain

‖(Fv)(t)− (Fu)(t)‖plp

≤ T p/q(T/4)p
∞∑

i=1

∫ T

0

|fi(s, v(s))− fi(s, u(s))|pds

= (T 2p−1/4p) lim
k→∞

k∑
i=1

∫ T

0

|fi(s, v(s))− fi(s, u(s))|pds

= (T 2p−1/4p) lim
k→∞

∫ T

0

( k∑
i=1

|fi(s, v(s))− fi(s, u(s))|p
)
ds.

(2.9)

Further on, let us observe that keeping in mind assumption (ii) on the equicontinuity
of the family {(fu)(t)}t∈I at every point u ∈ lp, we conclude that δ(ε)→ 0 as ε→ 0,
where δ = δ(ε) is the function defined by the equality

δ(ε) = sup
{
|fi(t, v)− fi(t, u)| : u, v ∈ lp, ‖v − u‖lp ≤ ε, t ∈ I, i = 1, 2, . . .

}
.

Combining the above fact with (2.9) and applying the Lebesgue dominated conver-
gence theorem we arrive at the estimate

‖(Fv)(t)− (Fu)(t)‖plp ≤
T 2p−1

4p

∫ T

0

(δ(ε))pds = (T/2)2p(δ(ε))p.
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The above estimate allows us to infer that the operator F is continuous on the ball
Br0 .

Further, let us notice that the function G(t, s) defined by (2.4) is uniformly
continuous on the square I2. Combining this fact with the definition of the operator
F , it is easily seen that the set FBr0 is equicontinuous on the interval I. Now, let
us consider the set B1

r0
= convFBr0 . Obviously B1

r0
⊂ Br0 and the functions from

the set B1
r0

are equicontinuous on I.
Next, let us take a nonempty subset X of the set B1

r0
. From the above facts

we conclude that X is equicontinuous on the interval I. Choose a function u ∈ X
and fix an arbitrary natural number n. Then, for arbitrarily fixed t ∈ I, in view of
assumption (iii) we obtain

∞∑
i=n

|(Fu)i(t)|p =
∞∑

i=n

|
∫ T

0

G(t, s)fi(s, u(s))ds|p

≤
∞∑

i=n

(
∫ T

0

|G(t, s)||fi(s, u(s))|ds)p.

Hence, using the Hölder inequality, we obtain

∞∑
i=n

|(Fu)i(t)|p ≤
∞∑

i=n

[( ∫ T

0

|G(t, s)|p|fi(s, u(s))|pds
)1/p(∫ T

0

ds
)1/q]p

≤ T p/q
∞∑

i=n

∫ T

0

|G(t, s)|p|fi(s, u(s))|pds

≤ T p/q(T/4)p
∞∑

i=n

∫ T

0

|fi(s, u(s))|pds.

Now, applying the earlier conducted reasoning depending on the use of the Lebesgue
dominated convergence theorem, from the above estimate we derive the inequality

∞∑
i=n

|(Fu)i(t)|p

≤ (T 2p−1/4p)
∫ T

0

( ∞∑
i=n

|fi(s, u(s))|p
)
ds

≤ (T 2p−1/4p)
∫ T

0

( ∞∑
i=n

[gi(s) + hi(s)|ui(s)|p]
)
ds

≤ (T 2p−1/4p)
{∫ T

0

( ∞∑
i=n

gi(s)
)
ds+

∫ T

0

(
∞∑

i=n

hi(s)|ui(s)|p)ds
}

≤ (T 2p−1/4p)
{∫ T

0

( ∞∑
i=n

gi(s)
)
ds+H

∫ T

0

( ∞∑
i=n

|ui(s)|p
)
ds
}
.
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Hence, we obtain

sup
u∈X

∞∑
i=n

|(Fu)i(t)|p ≤ (T 2p−1/4p)
∫ T

0

( ∞∑
i=n

gi(s)
)
ds

+ (HT 2p−1/4p) sup
u∈X

∫ T

0

( ∞∑
i=n

|ui(s)|p
)
ds.

(2.10)

Now, keeping in mind assumption (iii) and formula (1.1) expressing the Hausdorff
measure of noncompactness χ in the space lp and taking into account the fact that
the set X consists of functions equicontinuous on the interval I on the base of
Remark 2.1 and estimate (2.10) we infer the following inequality(

χ(FX)
)p ≤ (HT 2p−1/4p)(χ(X))p.

Consequently, we obtain

χ(FX) ≤ [(H/T )1/p T 2/4]χ(X).

The above obtained inequality in conjunction with Theorem 1.1 applied to the
operator F on the set B1

r0
completes the proof. �

Further, let us notice that in view of the equivalence of the infinite system of
integral equations (2.3) and the boundary-value problem (2.1)-(2.2), we obtain the
following reformulation of Theorem 2.2.

Theorem 2.3. Under assumptions of Theorem 2.2 the infinite system of differen-
tial equations of the second order (2.1) satisfying boundary conditions (2.2), has at
least one solution u(t) = (u1(t), u2(t), . . .) such that ui ∈ C2(I) for i = 1, 2, . . . and
u(t) ∈ lp for any t ∈ I.

Remark 2.4. Observe that reasoning conducted in the proof of Theorem 2.2 re-
quire to impose the additional assumption that p > 1. The case p = 1 was consid-
ered in [14].

Next we provide an example illustrating our considerations and results covered
by Theorems 2.2 and 2.3.

Example 2.5. Let us consider the infinite system of differential equations of the
second order of the form

u′′i = −
√
t e−it

i
−
∞∑

k=i

ln(1 + t)
k(1 + i)

· uk(t)
1 + (k − i)2 u2

k(t)
, (2.11)

for t ∈ I = [0, T ] and i = 1, 2, . . .. The system (2.11) is considered together with
the boundary conditions

ui(0) = ui(T ) = 0 (2.12)

for i = 1, 2, . . ..
In our further considerations we will apply the fact that for any fixed positive β

we have the equality

max
a>0

a

1 + β2a2
=

1
2β
. (2.13)
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Further, let us observe that problem (2.11)-(2.12) is a particular case of problem
(2.1)-(2.2) if we put

fi(t, u1, u2, . . .) =
√
t e−it

i
+
∞∑

k=i

ln(1 + t)
k(1 + i)

· uk

1 + (k − i)2 u2
k

for an arbitrary i = 1, 2, . . ..
Next fixing arbitrarily a natural number i, we obtain the estimates

|fi(t, u1, u2, . . .)|2

=
∣∣∣√t e−it

i
+
∞∑

k=i

ln(1 + t)
k(1 + i)

· uk

1 + (k − i)2 u2
k

∣∣∣2
≤ 2
{ t e−2it

i2
+
[ ∞∑

k=i

ln(1 + t)
k(1 + i)

· uk

1 + (k − i)2 u2
k

]2}
≤ 2
{ t e−2it

i2
+
[( ∞∑

k=i

ln2(1 + t)
k2(1 + i)2

)1/2( ∞∑
k=i

(
uk

1 + (k − i)2 u2
k

)2
)1/2]2}

≤ 2te−2it

i2
+ 2
( ∞∑

k=i

ln2(1 + t)
k2(1 + i)2

)
·
∞∑

k=i

( uk

1 + (k − i)2 u2
k

)2

.

Hence, applying (2.13), we obtain

|fi(t, u1, u2, . . .)|2

≤ 2te−2it

i2
+

2 ln2(1 + t)
(1 + i)2

· π
2

6
(
u2

k +
1
4

+
1

4 · 22
+

1
4 · 32

+ · · ·
)

≤ 2te−2it

i2
+

2 ln2(1 + t)
(1 + i)2

· π
2

24
( 1

12
+

1
22

+ · · ·
)

+
2 ln2(1 + t)

(1 + i)2
· π

2

6
· u2

k

≤ 2te−2it

i2
+
π4

72
· ln2(1 + t)

(1 + i)2
+
π2

3
· ln2(1 + t)

(1 + i)2
· u2

k.

(2.14)

Now, if we put

gi(t) =
2te−2it

i2
+
π4

72
· ln2(1 + t)

(1 + i)2
, hi(t) =

π2

3
· ln2(1 + t)

(1 + i)2
,

then the functions gi, hi (i = 1, 2, . . .) are continuous on the interval I. Moreover,
let us notice that the series

∑∞
i=1 gi(t) is uniformly convergent on I which is a

simple consequence of the estimate

|gi(t)| = gi(t) ≤
2T
i2

+
π4

72
ln2(1 + T ) · 1

(i+ 1)2
≤ [2T +

π4

72
ln2(1 + T )]

1
i2

(t ∈ I) and the classical Weierstrass test for uniform convergence of a function
series. On the other hand we have the obvious inequality

|hi(t)| = hi(t) ≤
π2 ln2(1 + T )

12
for t ∈ I and for all i = 1, 2, . . .. This means that the function sequence (hi(t)) is
equibounded on I.

Combining the above established facts with (2.14) we see that

|fi(t, u1, u2, . . .)|2 ≤ gi(t) + hi(t)|ui|2
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for t ∈ I and i = 1, 2, . . .. This shows that assumption (iii) is satisfied. Moreover,
we can accept the following constants G and H appearing in our considerations:

G =
π2

6
[2T +

π4

72
ln2(1 + T )],

H =
π2

12
ln2(1 + T ).

It is easily seen that the functions fi satisfy assumption (i) for each i = 1, 2, . . ..
To prove that assumption (ii) is satisfied let us fix arbitrarily t ∈ I and u =

(ui) = (u1, u2, . . .) ∈ l2. Then, in view of the above estimates, we obtain
∞∑

i=1

|fi(t, u1, u2, . . .)|2 ≤
∞∑

i=1

gi(t) +
∞∑

i=1

hi(t)|ui|2 ≤ G+H

∞∑
i=1

|ui|2.

Hence we deduce that the operator f = (fi) transforms the space I × l2 into l2.
To show the remainder part of assumption (ii) let us fix arbitrarily a positive

number ε > 0 and an arbitrary point u = (ui) ∈ l2. Then, taking a point v = (vi) ∈
l2 such that ‖v − u‖l2 < ε, we have

‖(fv)(t)− (fu)(t)‖l2

=
∞∑

i=1

|fi(t, v1, v2, . . .)− fi(t, u1, u2, . . .)|2

=
∞∑

i=1

∣∣∣ ∞∑
k=i

ln(1 + t)
k(1 + i)

· vk(t)
1 + (k − i)2 v2

k(t)
−
∞∑

k=i

ln(1 + t)
k(1 + i)

· uk(t)
1 + (k − i)2 u2

k(t)

∣∣∣2
≤
∞∑

i=1

∣∣∣ ∞∑
k=i

ln(1 + t)
k(1 + i)

[ vk(t)
1 + (k − i)2 v2

k(t)
− uk(t)

1 + (k − i)2 u2
k(t)

]∣∣∣2
≤
∞∑

i=1

[ ln(1 + t)
1 + i

∞∑
k=i

1
k
| vk(t)
1 + (k − i)2 v2

k(t)
− uk(t)

1 + (k − i)2 u2
k(t)
|
]2

≤
∞∑

i=1

ln2(1 + t)
(1 + i)2

[ ∞∑
k=i

1
k
| vk(t)
1 + (k − i)2 v2

k(t)
− uk(t)

1 + (k − i)2 u2
k(t)
|
]2
.

Hence, applying the classical Cauchy-Schwarz inequality, we derive the estimates

‖(fv)(t)− (fu)(t)‖2l2

≤
∞∑

i=1

ln2(1 + t)
(1 + i)2

[( ∞∑
k=i

1
k2

)1/2( ∞∑
k=i

| vk(t)
1 + (k − i)2v2

k(t)
− uk(t)

1 + (k − i)2u2
k(t)
|2
)1/2]2

≤ π2

6
ln2(1 + t)

∞∑
i=1

1
(1 + i)2

( ∞∑
k=i+1

[∣∣∣ vk(t)
1 + (k − i)2 v2

k(t)
− uk(t)

1 + (k − i)2 u2
k(t)

∣∣∣2
+ |vi(t)− ui(t)|2

])
.

Hence, we obtain

‖(fv)(t)− (fu)(t)‖2l2 ≤
π2

6
ln2(1 + t)

∞∑
i=1

1
(1 + i)2

( ∞∑
k=i

|vk − uk|2
)
.
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Consequently, from the above inequality we derive the following one

‖(fv)(t)− (fu)(t)‖2l2 ≤
π2

6
ln2(1 + t)

∞∑
i=1

1
(1 + i)2

ε2 ≤ ε2π
4

36
ln2(1 + t).

Finally, we obtain

‖(fv)(t)− (fu)(t)‖l2 ≤ ε
π2

6
ln(1 + t) ≤ επ

2

6
ln(1 + T )

for any t ∈ I. This estimate proves the desired equicontinuity of the family of
functions {(fu)(t)}t∈I and simultaneously shows that problem (2.11)-(2.12) has at
least one solution u(t) = (ui(t)) in the space C(I, l2) provided (H/T )1/2 T 2 < 4 and
T ≤ 1. Keeping in mind our earlier obtained evaluation concerning the constant
H, we conclude that in our considerations connected with problem (2.11)-(2.12) we
can take any T such that T

√
T ln(1+T ) < 8

√
3/π. For example, the number T = 1

satisfies this inequality.
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Józef Banaś
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Warszawy 8, 35-959 Rzeszów, Poland
E-mail address: jbanas@prz.edu.pl

Mohammad Mursaleen
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

E-mail address: mursaleenm@gmail.com
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