
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 26, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

INVERSE PROBLEMS FOR STURM-LIOUVILLE OPERATORS
WITH BOUNDARY CONDITIONS DEPENDING ON A

SPECTRAL PARAMETER

MURAT SAT

Communicated by Ira Herbst

Abstract. In this article, we study the inverse problem for Sturm-Liouville

operators with boundary conditions dependent on the spectral parameter. We

show that the potential q(x) and coefficient a1λ+b1
c1λ+d1

functions can be uniquely

determined from the particular set of eigenvalues.

1. Introduction

The theory of inverse problem for differential operators takes an important po-
sition in the trend development of the spectral theory of linear operators. Inverse
problems of spectral analysis consist in recovering operators from their spectral
characteristics [1, 7, 14, 16, 18, 21]. Such problems often come along in mathe-
matical physics, mechanics, electronics, geophysics and other branches of natural
sciences. The inverse problem of a regular Sturm-Liouville operator was studied
firstly by Ambarzumyan in 1929 [2] and secondly by Borg in 1945 [7]. From then
on, Borg’s result has been extended to various versions.

McLaughlin and Rundell in 1986 [19], established a new uniqueness theorem
for the inverse Sturm-Liouville problem. They showed that the measurement of a
particular set of eigenvalues was sufficient to define the obscure potential functions.
They considered the eigenvalue problem

y′′ + (λ− q(x))y = λy, 0 < x < 1,

y(0, λ) = 0, y′(π, λ) +Hky(π, λ) = 0.

They indicated that the spectral knowledge, for a constant index n (n = 0, 1, 2, . . . ),
{λn(q,Hk)}+∞k=1 is equivalent to two spectra of boundary value problems with the
equation and the first initial situation (one common boundary situation at x = 0)
and the second boundary situation (two different boundary conditions at x = π).
In [19] the spectral data was handled by the Hochstadt and Lieberman method
[17]. Wang [22, 23] discussed the inverse problem for uncertain Sturm-Liouville
operators on the finite interval [a, b] and diffusion operators. Here, we consider
inverse spectral problems for Sturm Liouville operators with boundary conditions
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dependent on the spectral parameter with the above spectral knowledge. As far as
we know, inverse spectral problems for Sturm Liouville operators with boundary
conditions depending on the spectral parameter have not been studied with the
spectral data before.

Eigenvalue dependent boundary conditions have been studied extensively. Refer-
ences [3, 4, 5, 6, 8, 10, 12, 13] are well known examples for problems with boundary
conditions depending linearly on the eigenvalue parameter. Recently inverse prob-
lems according to various spectral knowledge for eigenparameter linearly dependent
Sturm-Liouville operator have been studied in [9, 11, 15, 20, 24, 25, 26, 27].

We consider the Sturm-Liouville operator L := L(q,Hk) defined by

Ly ≡ −y′′ + q(x)y = λy, 0 ≤ x ≤ π, (1.1)

with boundary conditions dependent on the spectral parameter

(a1λ+ b1)y(0, λ)− (c1λ+ d1)y′(0, λ) = 0, (1.2)

y′(π, λ) +Hky(π, λ) = 0. (1.3)

Also we consider the Sturm-Liouville operator L̃ := L̃(q̃, Hk) defined by

L̃y ≡ −ỹ′′ + q̃(x)ỹ = λỹ, (0 ≤ x ≤ π), (1.4)

with boundary conditions depending on the spectral parameter

(ã1λ+ b̃1)ỹ(0, λ)− (c̃1λ+ d̃1)ỹ′(0, λ) = 0, (1.5)

ỹ′(π, λ) +Hkỹ(π, λ) = 0, (1.6)

where a1, b1, c1, d1, ã1, b̃1, c̃1, d̃1, Hk ∈ R, such that δ1 = a1d1 − b1c1 < 0, δ̃1 =
ã1d̃1 − b̃1c̃1 < 0, 0 < H1 < H2 < · · · < Hk < Hk+1 < · · · < H0, the potentials
q(x) and q̃(x) are real valued functions, q(x), q̃(x) ∈ L1[0, π] and λ is a spectral
parameter.

For the boundary-value problem (1.1)-(1.3) with coefficientH = − (a2λ+b2)
(c2λ+d2)

where
c2 6= 0 and d2 6= 0, instead of Hk describes the actual background of Sturm Liouville
operators with boundary conditions dependent on a spectral parameter; see [12].

In this article, we construct a uniqueness theorem for Sturm-Liouville opera-
tors with boundary conditions depending on the spectral parameter on the finite
interval [0, π]. i.e. for a constant index n ∈ N, we demonstrate that if the spec-
tral set {λn(q,Hk)}+∞k=1 for different Hk can be restrained, then the spectral set
{λn(q,Hk)}+∞k=1 is sufficient to define the potential q(x) and coefficient a1λ+b1

c1λ+d1
of the

boundary condition. The techniques used here will be adopted from [17, 19, 26].

Lemma 1.1 ([4, 26]). Eigenvalues λn (n 6= 0) of the boundary-value problem (1.1)-
(1.3) for coefficient H = Hk = − (a2λ+b2)

(c2λ+d2)
in (1.3) are roots of (1.3) and satisfy the

asymptotic formula √
λn = n+ [1 +O(

1
n

)]. (1.7)

Lemma 1.2 ([26]). The solution to the (1.1) with the initial conditions y(0, λ) =
(c1λ+ d1) and y′(0, λ) = (a1λ+ b1) is

y(x, λ) = (c1λ+ d1)
[

cos
√
λx+

∫ x

0

A(x, t) cos
√
λt dt

]
+ (a1λ+ b1)

[
sin

√
λx√
λ

+
1√
λ

∫ x

0

B(x, t) sin
√
λt dt

] (1.8)
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where the kernel A(x, t) satisfies

∂2A(x, t)
∂x2

− q(x)A(x, t) =
∂2A(x, t)
∂t2

,

where q(x) = 2dA(x,x)
dx , A(0, 0) = h, ∂A(x,t)

∂t

∣∣
t=0

= 0; and the kernel B(x, t) satisfies

∂2B(x, t)
∂x2

− q(x)B(x, t) =
∂2B(x, t)
∂t2

where q(x) = 2dB(x,x)
dx , B(x, 0) = 0.

2. Main results and their proofs

Theorem 2.1. Let σ(Lkj ) := {λn(q,Hkj )} (j = 1, 2) be the spectrum of the bound-
ary value problem (1.1)-(1.3) with coefficient Hkj . If Hk1 6= Hk2 , then

σ(Lk1) ∩ σ(Lk2) = ∅ (2.1)

where kj ∈ N, and ∅ denotes an empty set.

Lemma 2.2. Let λn(q,Hk) be the n-th eigenvalue of the boundary-value problem
(1.1)-(1.3). Then the spectral set {λn(q,Hk)}+∞k=1 is a bounded infinite set, where
0 < H1 < H2 < · · · < Hk < Hk+1 < · · · < H0.

The above Lemma carries a significant part in the proof of the next theorem.

Theorem 2.3. Let λn(q,Hk) be the n-th eigenvalue of the boundary-value problem
(1.1)-(1.3) and λn(q̃, Hk) be the n-th eigenvalue of the boundary-value problem (1.4)-
(1.6), for a constant index n(n ∈ N). If λn(q,Hk) = λn(q̃, Hk) for all k ∈ N, then

q(x) = q̃(x)a.e. on [0, π],

ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+ b1
c1λ+ d1

, ∀λ ∈ C.

Proof of Theorem 2.1. Suppose the argument of Theorem 2.1 is false. Then there
exists λn1(Hk1) = λn2(Hk2) ∈ R, where λnj (Hkj ) ∈ σ(Lkj ) for j = 1, 2 and nj ∈ N.
Let ykj (x, λnj (Hkj )) be the solution of (1.1)-(1.3) with the eigenvalue λnj (Hkj ) and
satisfy the initial conditions ykj (0, λnj (Hkj )) = (c1λ + d1) and y′kj (0, λnj (Hkj )) =
(a1λ+ b1). For a fixed index n, we have

− y′′k1(x, λn1(Hk1)) + q(x)yk1(x, λn1(Hk1)) = λn1(Hk1)yk1(x, λn1(Hk1)) (2.2)

and

− y′′k2(x, λn2(Hk2)) + q(x)yk2(x, λn2(Hk2)) = λn2(Hk2)yk2(x, λn2(Hk2)). (2.3)

By multiplying (2.2) by yk2(x, λn2(Hk2)) and (2.3) by yk1(x, λn1(Hk1)) respectively
and subtracting and integrating from 0 to π, we obtain

(yk2y
′
k1 − yk1y

′
k2)
∣∣π
0

= 0. (2.4)

Using the initial conditions, we obtain

yk2(π, λn2(Hk2))y′k1(π, λn1(Hk1))− yk1(π, λn1(Hk1))y′k2(π, λn2(Hk2)) = 0. (2.5)
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On the other hand, we have the equality

yk2(π, λn2(Hk2))y′k1(π, λn1(Hk1))− yk1(π, λn1(Hk1))y′k2(π, λn2(Hk2))

= yk2(π, λn2(Hk2))[y′k1(π, λn1(Hk1)) +Hk1yk1(π, λn1(Hk1))]

− yk1(π, λn1(Hk1))[y′k2(π, λn2(Hk2)) +Hk2yk2(π, λn2(Hk2))]

+ (Hk2 −Hk1)yk1(π, λn1(Hk1))yk2(π, λn2(Hk2))

= (Hk2 −Hk1)yk1(π, λn1(Hk1))yk2(π, λn2(Hk2)).

(2.6)

Since Hk2 −Hk1 6= 0, if yk1(π, λn1(Hk1))yk2(π, λn2(Hk2)) = 0, it follows that

yk1(π, λn1(Hk1)) = 0 or yk2(π, λn2(Hk2)). (2.7)

By virtue of (2.7) together with (1.3), this yields

yk1(π, λn1(Hk1)) = y′k1(π, λn1(Hk1)) = 0 (2.8)

or
yk2(π, λn2(Hk2)) = y′k2(π, λn2(Hk2)) = 0. (2.9)

By (2.8) and (2.9), this yields

yk1(x, λn1(Hk1)) = 0 or yk2(x, λn2(Hk2)) = 0 on [0, π], (2.10)

This is impossible. Thus, we obtain

yk2(π, λn2(Hk2))y′k1(π, λn1(Hk1))− yk1(π, λn1(Hk1))y′k2(π, λn2(Hk2)) 6= 0. (2.11)

Clearly, this contradicts (2.5); therefore (2.1)) holds. The proof is complete. �

Proof of Lemma 2.2. We will show that the following formula holds

λn(H0) < · · · < λn(Hk+1) < λn(Hk) < · · · < λn(H1). (2.12)

Let y(x, λn(H)) be the solution of the boundary value problem (1.1)-(1.3) of the
eigenvalue λn(H) and satisfies the initial conditions y(0, λn(H)) = (c1λ + d1) and
y′(0, λn(H)) = (a1λ+ b1). We have

−y′′(x, λn(H)) + q(x)y(x, λn(H)) = λn(H)y(x, λn(H)), (2.13)

− y′′(x, λn(H + ∆H)) + q(x)y(x, λn(H + ∆H))

= λn(H + ∆H)y(x, λn(H + ∆H))
(2.14)

where ∆H is the enhancement of H. Multiplying (2.13) by y(x, λn(H + ∆H)) and
multiplying (2.14) by y(x, λn(H)) and subtracting from each other and integrating
from 0 to π, we obtain

∆λn(H)
∫ π

0

y(x, λn(H))y(x, λn(H + ∆H))dx

= ∆Hy(π, λn(H)y(π, λn(H + ∆H)),
(2.15)

where ∆λn(H) = λn(H + ∆H)− λn(H).
It is well understood that y(x, λn(H)) and λn(H) are real and continuous with

respect to H. Dividing (2.15) by ∆H, and letting ∆H → 0 in (2.15), we have

∂λn(H)
∂H

∫ π

0

y2(x, λn(H))dx = y2(π, λn(H)). (2.16)

If y(π, λn(H)) = 0, then y′(π, λn(H)) = 0. By the uniqueness theorem, this yields

y(x, λn(H)) ≡ 0.
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This contradicts the eigenfunction y(x, λn(H) 6= 0 corresponding to eigenvalue
λn(H). Hence y2(π, λn(H)) > 0 and

∫ π
0
y2(x, λn(H))dx > 0. From (2.16), we have

∂λn(H)
∂H

> 0.

This implies that (2.12) holds. Therefore the spectral set {λn(q,Hk)}+∞k=1 is a
bounded infinite set. The proof is complete. �

Finally, using Theorem 2.1, Lemma 2.2 and the properties of entire functions,
we show that Theorem 2.3 holds.

Proof of Theorem 2.3. According to Lemma 1.2, solutions to equation (1.1) with
boundary condition (1.2) and the equation (1.4) with boundary condition (1.5) can
be stated in the integral forms:

y(x, λ) = (c1λ+ d1)
[

cos
√
λx+

∫ x

0

A(x, t) cos
√
λt dt

]
+ (a1λ+ b1)

[
sin

√
λx√
λ

+
1√
λ

∫ x

0

B(x, t) sin
√
λt dt

] (2.17)

and

ỹ(x, λ) = (c̃1λ+ d̃1)
[

cos
√
λx+

∫ x

0

Ã(x, t) cos
√
λt dt

]
+ (ã1λ+ b̃1)

[
sin

√
λx√
λ

+
1√
λ

∫ x

0

B̃(x, t) sin
√
λt dt

] (2.18)

respectively. Let λ = s2. From (2.17), (2.18) and [26, proof of Theorem 2.1] we
obtain

yỹ =
(c1s2 + d1)(c̃1s2 + d̃1)

2

[
1 + cos 2sx+

∫ x

0

k(x, τ) cos 2sτdτ
]

+
(a1s

2 + b1)(ã1s
2 + b̃1)

2s2
[
1− cos 2sx+

∫ x

0

h(x, τ) cos 2sτdτ
]

+
1
2s

(c1s2 + d1)(ã1s
2 + b̃1)

[
sin 2sx+

∫ x

0

l(x, τ) sin 2sτdτ
]

+
1
2s

(c̃1s2 + d̃1)(a1s
2 + b1)

[
sin 2sx+

∫ x

0

m(x, τ) sin 2sτdτ
]
,

(2.19)

where the functions k(x, τ), h(x, τ), l(x, τ) and m(x, τ) are continuous functions.
We define the function

w(λ) = (a2λ+ b2)y(π, λ)− (c2λ+ d2)y′(π, λ).

From (2.17), we obtain the asymptotic forms

y(π, λ) = (c1λ+ d1) cos
√
λπ +O(

√
λe| Im

√
λ|π),

y′(π, λ) = −(c1λ+ d1)
√
λ sin

√
λπ +O(

√
λe| Im

√
λ|π).

Hence

w(λ) = (c1λ+ d1)(c2λ+ d2)
√
λ sin

√
λπ +O(|λ|2e| Im

√
λ|π). (2.20)
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Zeros of w(λ) are the eigenvalues of the Sturm-Liouville problem (1.1)-(1.3) where
Hk = H = − (a2λ+b2)

(c2λ+d2)
. w(λ) is an entire function of order 1

2 of λ. Multiplying (1.4)
by y, (1.1) by ỹ and subtracting and integrating from 0 to π, we take

(ỹy′ − yỹ′)
∣∣π
0

+
∫ π

0

(q̃ − q)yỹdx = 0.

Using y(0, λ) = (c1λ+d1), ỹ(0, λ) = (c̃1λ+ d̃1), y′(0, λ) = (a1λ+ b1) and ỹ′(0, λ) =
(ã1λ+ b̃1), this yields

0 = [ỹ(π, λ)y′(π, λ)− y(π, λ)ỹ′(π, λ)] + (a1λ+ b1)(c̃1λ+ d̃1)

− (c1λ+ d1)(ã1λ+ b̃1) +
∫ π

0

(q̃(x)− q(x))yỹdx.
(2.21)

Let Q(x) = (q̃(x)− q(x)) and

K(λ) = (a1c̃1 − ã1c1)λ2 + (a1d̃1 + b1c̃1 − ã1d1 − b̃1c1)λ

+ (b1d̃1 − b̃1d1) +
∫ π

0

Q(x)yỹdx.
(2.22)

Clearly, the function K(λ) is an entire function. Because the first term of equation
(2.21) for λ = λn(q,Hk) is zero, then

K(λn(q,Hk)) = 0.

From Lemmas 1.1 and 2.2, we see that the spectral set {λn(q,Hk)}+∞k=1 is a
bounded infinite set. Therefore, if consists of λn0(q) ∈ R, such that λn0(q) is a
finite accumulation dot of the spectrum set {λn(q,Hk)}+∞k=1. It is well understood
that the set of zeros of every entire function which is not identically zero hasn’t any
finite accumulation dot.

Hence
K(λ) = 0, ∀λ ∈ C. (2.23)

From (2.22), (2.23) and [26, proof of Theorem 2.1], we have

Q(x) = q̃(x)− q(x) = 0, a.e. on [0, π],

ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+ b1
c1λ+ d1

, ∀λ ∈ C.

The proof is complete. �

References

[1] D. Alpay, I. Gohberg; Inverse problems associated to a canonical differential system, Recent
Advances in Operator Theory and Related Topics. Birkhäuser Basel, 127 (2001), 1–27.
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