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ABSTRACT. In this article we study a nonlinear elliptic equation by using the
maximum principle and cutoff functions, We establish related gradient esti-
mates, the Liouville theorem, and the Harnack inequality.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS
In 1981, Gidas-Spruck [3] derived the following result.

Theorem 1.1. Let M™ be a complete manifold with nonnegative Ricci curvature.
Assume that h(z) € C?(M™) and o > 0 satisfy the following conditions:
(1) h(z) >0 on M™;
(2) Ah(xz) >0 on M™;
(3) for r(x) large, |Vlogh(z)| < C/r(x) and if n > 4, h(zx) > C(r(x))? with
o> —%, where r(x) is the geodesic distance between x and some fized
point p;
() 1<a< 2,

If u(x) is a nonnegative solution of
Au + hu® =0,
then u(x) = 0.
For = 1, Li-Yau [9] demonstrated the same result under the condition that
|Vh(x)| = o(r(x)) as 7(x) — oo. Later, Li [6] proved that as 1 < o < 25 (n > 4),

the condition (3) of Theorem is unnecessary. On these conditions were further
weakened, see [I} [5, [7]. In 2010, Yang [11] studied the equation

Au+cu =0

on a noncompact complete Riemannian manifold, where o > 0 and ¢ are two real
constants. The corresponding gradient estimates and Liouville type theorem are
also derived.
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Recently, Wang [10] deduced gradient estimates and Liouville type theorem for
positive solutions to the equation

Aru™ +cu=0

on smooth measure space with m-Bakry-Emery curvature bounded by Ricy,,, >
—(m — 1)K, where K > 0.
Inspired by the works [3] [8, 10 [IT], we investigate the nonlinear elliptic equation

Au™ + ANz)ul =0, m>1 (1.1)

on a complete Riemannian manifold with Ricci curvature bounded below, where
m > 1 and [ are real numbers, and A(z) € C?(M™). If M™ = Q is a bounded
smooth domain in R™ and A(xz) < 0 is a constant, the equation is regarded
as the thin film equation, which depict a steady state of the thin film. Concrete
content can be seen [4]. Our main results reads as follows.

Theorem 1.2. Let (M", g) be a complete Riemannian manifold without boundary.
Suppose that Bog is a geodesic ball of radius 2R around p € M and Ric(Bagr) > —K
with K > 0. Also suppose that there exist two positive numbers § and T such that
IAz,t)] <& and [VA]2 < 7IA]2. Let u(z) is a positive solution to the equation
and v = %um’l.

(a) Assume that | > 1, then

Vo2 Cy(m—1) 1

< —(1 KR)+2K H. 1.2

Bsig) o S Tl [Rz( +VKR) + +T]Is€1]1\£)nv+ 1 (1.2)
(b) Assume that l < 1, then

|Vol? < Cy(m — 1)[ 1

ﬁ(l—i-\/?R)—‘rQK-i-T] sup v + Ho. (1.3)
zeM™

su
B, (%) v m—+1

Where Cy is a constant depending only on n, and

(m—1)(n—1) 2(m+1) m—1 =
H, = —2l+1)|6
! m(m + 1) | n—1 +(m +1)] ( m wsel]l\?nv) ’
(m—=1)(n-1)2(m+1) m—1 . ot
H> = -2 1 _— f .
? m(m + 1) | n—1 +(m—2+ )|5( m zgjlwv)

Moreover, if (M™,g) has nonnegative Ricci curvature, letting R — oo, we have
following estimate for 1 > 1,

2
[Vl < C(m,n,l,K,é,1, sup v), (1.4)
v xeM™
and forl <1,
[Vo[?
< C(m,n,l,K,é,1, sup v). (1.5)
v zeEM™
Where
—1
C(m,n,l, K,d,T, sup v) = M(2K+T) sup v+ Hi,
zeMn m+1 zeMn
. C4(m— 1)
C'(m,n,l,K,6,1, sup v, inf v) = ——2(2K +7) sup v+ Hs.
< TR B ) = T PR i e i

By using (|1.4) and (1.5, we derive the related Harnack inequalities.
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Corollary 1.3. Let (M™,g) be a noncompact complete Riemannian manifold with-
out boundary. Suppose that Ric(M™) > 0. Let u(z) is a positive solution of the

equation (1.1)), and v = cu™ 1,

Ifl > 1, then
C(m,n,l, K,§,T,SUp cpm v
v(z) < v(y) exp [r(z,y)\/ ( A — €M )]. (1.6)
If 1 < 1, then
C'(m,n,l, K,0,T,8up,cpm v, infrepm v
v(z) < v(y)exp {r(w,y)\/ ( - GMSJX €M )}. (1.7)

Theorem 1.4. Let (M™, g) be a complete Riemannian manifold without boundary.
Suppose that Bag is a geodesic ball of radius 2R around p € M and Ric(Bagr) > —K
with K > 0. Let u(x) is a positive solution of the equation (1.1)). Letv = -Z-qu™~!

m—1

and |V < 7|\]? for some positive constant 7. If X > 0 and | < (it D(ml)

2(n—1)
A<0andl> %, then we have
|Vol|? 1
sup < Cy[5;(1+VKR) +2K + 7] sup v, (1.8)
B,(R) U R weMn

where Cy is a constant depending only on n.
Letting R — oo , then we infer on a complete noncompact Riemannian manifold,
Vol?
[Vol? < C4(2K +7) sup w. (1.9)
v zeM™
Applying (1.9), we can derive the following Liouville type theorem as A(z) is a
constant.

Corollary 1.5. Let (M™,g) be a noncompact complete Riemannian manifold with-
out boundary. Suppose that Ric(M™) > 0 and u(zx) is a positive solution of the
equation (1.1)), where A(z) is a constant. If X > 0 and | < % or A <0 and
1> %, then u is a constant.

Theorem 1.6. Let (M™, g) be a complete noncompact Riemannian manifold with
Ric(M™) > —K with K > 0. Let u(zx) is a positive solution to the equation

Au™ + \ul =0, (1.10)
where A > 0 is a constant. Let v = ﬁum_l and 1 <[ < % If
2m —)(n - 1)K Y ot
<3 (nlz )(n ) (m )’""1( sup v) m-t (1.11)
i) 4 (g —20 1) m weMn
then for any x € M",
2 C12(n—1)2
|V < 2(m—1)*(n—1) K sup o
v m(m+ 1) weMn
(m—1)(n—-1):2(m+1) m—1 -1

— — m—1
m(m+1) [n—l + (m =20+ D]A( m :g}fjnv) ’
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If
2(m—1)(n - 1)K (mfl)r'n—jl( sup v m-L
S v L i R

then v must be a constant.

Note that by taking [ = 1 in Theorem |1.6] our result partially generalize Wang’s
result in [10]. By (1.11), we can find the lower bound estimate as m > [, and the
upper bound estimate as m < [ for positive solutions of ((1.10)).

2. PRELIMINARIES

To prove our main results, we need the lemma below. Let v = %um’l, then

-1

— 1, 1=1
(m — 1)vAv + [Vo|2 = —\(m — 1)(’”7) T (2.1)

Lemma 2.1. Let (M™,g) be a complete Riemannian manifold without boundary.
Suppose that Bag is a geodesic ball of radius 2R around p € M and Ricci(Bag) >
—K with K > 0. Let u(z) is a positive solution to the equation (1.1) and v =

2
%umfl. Let w = @ and G = pw, where ¢(x) is a smooth cutoff function

(sge the proof of Theorem . Suppose that G(x) reaches the mazimum value at
xo and o(xz) > 0. Then at x,

Aw> [ n__ 2m N 1 ]Gj
pen = 2n—1) (n=1)(m—-1)2 m—1"vp
2m n 2 VoV n  |Ve|?
+[m—1 n—1 (n—l)(m—l)} v G+2(n—1) 2 ¢
2(m+1) m—2l4+1, m—1 =L G
w12 o — NKG (2:2)
+[(n—1)(m—1) m—1 JX m v) v (n— DK@
2 m—1 |i=L 2 m—1 |1=L VoV
= PV =) = e A () T
2 9,m—1 2 =1 [
+ n— 1)\ ( m v) v’
Proof. After calculations we obtain that
(VP
s a7
AV B 2V|Vu|?Av B |Vo|?Av n 2|Volt
o v? v? v3 (2.3)

2
Y [|Hessv|* + Vo - VAv + Ric((Vo, Vv))]

_2V|Vu]? Ve [Vo]PAy n 2|Volt
5 .

v2 v v3

Since G reaches at the maximum at xg, so we have VG = 0. Then at z,
GV
Vw = — , 2.4
2 (2.4)
G G
V|Vol? = —%w + Ve (2.5)




EJDE-2017/258 LIOUVILLE THEOREM AND GRADIENT ESTIMATES

5

Choose an orthonormal frame {ey,es, -+ ,e,} around zg, such that |Vuvle; = V.

Then

IVIVePP _
4| Vo2 Z V1

Vo - V|Vu|?

Iz E

On the other hand, we have

n n
| Hessv|? > v} +2 Z V3, + Zvia

a=2 a=2

>vll+2zvla (Zvaa)

1
v} —|—2ZU%Q + E(AU —v11)?
a=2

n 1
_1”11+2azg”1a*n 1(A7’)2

Putting (2.6)) and into , and using 7 we have
| Hess v|2 + Ric(Vv Vo)
2v m—1 | 1=1
U11+22U1a _11 miw"')‘( v) "]

1 —1 i o 2

1

n—1
n

n 2v m—1 1=t
> _121}%—% jll[m_lw—i—)\( - v) "]

n . n
Jj=1

1
e LR G
_n |[V|Vo? 1 Vu-V|Vu?, 1 m—1 1=t
T n—1 4|Vu|? n—1 |[Vu]? [m—1w+>\< v) "]

1 m—1 i 2
1
n—1

+

1 -1

0) =) = (n — 1)K|Vo?

1 m —

(2.6)

2.7)

(2.8)
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n G2 nv? G? 9 n vG*VoVp
= e & g Vel - Al
dn—1) ¢ 4(n — 1)|Vu]? ¢ 2(n — 1)|Vv| ©
2 2w m AL
)\ m—1
N CEN T
5 G 1 G)\

=—(n—1)K|Vo|*.
Noting that v > 0 when m > 1. Using the above inequality in (2.3)) and applying

(2.1) and (2.5)), then (2.2)) can be inferred. O

3. THE PROOF OF MAIN RESULTS

Proof of Theorem[1.Z Construct a smooth function 6(t) : [0, +00) — [0, 1]

1, 0<t<1
ot)y=<¢ " ~ = ~
0, t>2
such that
—CVO <0 <0, [0 <Cy. (3.1)
Define the smooth cutoff function ¢ : M — R by ¢(x) = O(L;f)). We suppose that
G = pw = @@ attains its maximal value at g € Bag. We can suppose that

G(zo) > 0, because otherwise the proof is trivial. Then at x(, we have
AG = Ap-w+2VeVw + pAw

|V

2
=Ap-w—2G 2| + pAw
P
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_ B¢ 2G|v‘§|
¥ ¥

+ pAw.
Note that

0'Vr
R )
0" A 0" - 1)1+ vVKR)¢
Aw:ﬁjLJZTJF(n )( Q\F) .
R R R R
Since AG < 0 is valid at xg, we have

Ve

0> 0" N (n—1)(1+ VER)¢

3n—4 (6)2
O R2 O R2 ]G -

2(n — 1) R?6?

N (m—l)(mn+n—2)+4m£2_ (m+1)(n —2) GVG|¢'|
2(m —1)2(n — 1) v (n—1)(m—1) ROVvO
2(m+1) m—20+1 m -1

+[(m—l)(n—l)+ m—1 JX

G

m—1

2 -1 =1
—2(n —1)KG — =0|Vo||VA|(Z—v) 7"
v m

20\ m—1 1=t V/G|O|  2A?
e ()

m

m—1
n—1 m RVv0 n—1 m

Applying the inequality az? + bx > —% with a > 0, we have

m—1 2116
( v) v

Aoom—1 2110 20\ m—1 1= /G|Y
I L)

( — m—1
n—1 m

v n-—1 m Tm
G(QI)Q

~(n—1)R262’
AMoom—1 22216 2

-1’ _ “ m—1 7£;—11
n—l( - v) ” U<p|V11||V)\|( - 11)
VI
2—(n—1)| )\2| G.

By the Cauchy inequality, it follows that

GVG|#| G?*  G(#)?

[ Sl i B O

ROVUO — 2080 2R202°
Substituting (3.3) and (3.4)) into (3.2), we obtain

0"  (n—1)(1+VKR)¢ 3n—2 (0)?
02 g + OR? e~ 2(n— 1) 262
mm+1) G?> (m+1)(n—2) G(¢)?
(m—12n—1)v0 2(m—1)(n—1) R262
—9n— DKG - (n—1) |V/\/;|2G
2(m+1) m—20+1
o dmon T o M

G

(3.2)



8 W. WANG, H. ZHOU, X. ZHANG EJDE-2017/258

From (3.1) and |[VA|? < 7)2%, we have

Cy  (n—1)(1+VKR)C, m(m+1) G2
0>~z + NG }G+(m—1)2(n—1)ﬁ

2m n C?
- - LG on-1)KG—(n—1
[m—l (m—l)(n—l)}RwG (n = DEG —(n-1)rG
— — -1
+[ 2(m+1) m 21+1}>\(m 1v)m€
(m—-1)(n—1) m—1 m v (3.6)
~D(1+ VK 1 2 '
2 [Gay oD VERIC G min1) G2
2 VOR? (m—1)2(n—1) v
2m  C?
[ 2(m+1) m721+1}>\(m71v)7zn:11§.
(m—1)(n—-1) m—1 m v
Multiply by v6 to both side of (3.6]), and using 0 < 6 < 1 we obtain for [ > 1
m(m+ 1) 9 2m  C%
> _ 1
0z om0 “moim S e
C - 1)(1 KR)C
_ [ﬁi*’m ) ng ) 1}0 sup v
EEME (3.7
- {2(71 -1K+(n— 1)T]G sup v
zeEM™
2(m+1) m—20+1 m—1 -1
— )\ m—1 .
ey oy R wa e et AN
Meanwhile, for [ < 1 we obtain
m(m+1) 9 2m  C?
> _ 1
0 - o Y
C —1)(1 KR)C
_{?34_(" X ]—;\F ) I}G sup v
zeM™ (3.8)
- [2(n — 1)K + (n— I)T]G sup v
reM
2(m + 1) m—20+1 m—1 . T
Bl P T R — H’\|( m mg}\gn”) ¢

‘We observe that

G (n—1)(1+ \/?R)Cl}
R? R2

C
sup v < —2(1 +VKR) sup v, (3.9)
zeM™ R rzeM™
for some constant C's depending only on n.

On the other hand, for the equation Az? — Bz < 0 with A > 0, B > 0, we have

z < 8. By utilize the equation to (3.7) and (3.8), and noting (3.9) we obtain at
the the maximum point xo for [ > 1

sup w(z) < pw(xg) = G(xo)
By (R)
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2(m—1)(n—1)C? (m—1)2(n—1) C3
et AN et " I+ VK
SRt ey Lt VER) swp

(m = 1)2(n — 1)?

(2K +7) sup v

m(m+ 1) zeMn
(m—1)(n—1) 2(m+1) m—1 T
=20+ 1) A
e g o FDIN(,— s o)™
and for [ < 1,
sup w(z) < pw(xo) = G(xo)
By (R)

2(m —1)(n—1) C} (m—1)2n-1)Cs
< = — (1 KR
ST BT gy m( VR mp

(m—1)%*(n—1)*
2K
m(m+ 1) ( +7) xseuji?nv
(m—1)(n—1) 2(m+1) m—1 . =
=20+ 1) |\ f .
mmt 1) o1 Tmo 2Dl ( inf )
The proof is complete. O

The proof of Theorem[1.J} Simple calculations show that (mz_(%?rnlll) +m=2l >

asA>0and!l < % or A\<0and! > % Hence, dropping the last

term in (3.6) which is nonnegative, we have

C; (n—1)(1+vVER)C m(m+1) G2

02|55+ JIR? 1}G+(m71)2(n71)w
—27”"‘0—126:—( ~1)©2K +1)G
m—_1Rr2- " et

Multiplying by v8 on both sides, and using 0 < 6 < 1, we obtain

m(m + 1) 9 2m C}

. _ .
R T y s 2 A
-1+ VK
_ @_,_ (n-1A+ R>CI}G sup v — (n—1)(2K + 7)G sup v.
R2 R? zeEM™ zeM

Therefore, at the the maximum point zg we obtain

sup w(z) < pw(xo) = G(xo)
B, (R)
2(m—1)(n—1)C? (m—=1)>%*n—-1)Cy

— 1 KR
S vt ey gLt VER) swp

(m—1)%*(n—1)?
2K +7) sup v,
m(m+ 1) ( )mel\}[)

where we used (3.9)). The proof is complete. O
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The proof of Theorem[1.6 1t is not difficult to find that (m{(?{;—&lll) +m2LEL >

for 1 <1< %ﬁ)ﬂ) Then we have form (3.6)),

m(m+1) 5 2m C%

> — —1
02 -0 o SR
C - 1)(1+VKR)C
- [%Jr (n = 1)( +2\F ) 1}6‘ sup v
R R weM™n (3.10)
—[2(n—1)K + (n—1)7]G sup v
zeM™
2(m +1) m—2l+17 /m—1 =
{(mfl)(nfl) e Ll G xilﬁ’n”) G

By (3.10), and (3.9) we obtain at the the maximum point zg,
sup w(z) < pw(xg) = G(xo)

By (R)
2(m —1)(n—1) C} (m—1)2(n-1)Cs
<M AT M WMz D204 VK
- m+1 R2 zsel}l\}[)n vt m(m+1) R? (1+ \FR) ZSE%\}[)” v
2(m —1)%(n —1)?
T RSV
(m—1)(n—1) 2(m+1) =

—|—(m—21—|—1)]/\(m7

m—1
 m(m+1) [n—l m xeMn) '

Letting R — oo, we infer as

2(m —1)(n - 1)K (m -1 Tfm—_ll( sup v)%
= 2(::1) +(m—-204+1)" m zeM™ ’
and
2 C1V2( _ 1)2
|Vl < 2(m—1)*(n—1) K sup v
v m(m + 1) ceM™
(m—=1)(n—-1) 2(m+1) m—1 T
- 2041 )\( )
m(m + 1) [ n—1 +(m +1)] m xsel}l\?nv
On the other hand, as
2(m—1)(n - 1)K (m — 1) fnill( sup v)%'f«f:i
= 2(:7_431) +(m—-204+1)" m zeEM™ ’
we derive that v must be constant. ([l

Proof of Corollary[1.3 Let minimal geodesic v(s) : [0,1] — M™, so that v(0) =y,
(1) = x, then

o) [rdn@il) [ Ve

~ o [o(v(s))]
S?‘(m,y)/l \/O(manJaKv(SaTasupmGM" v)dS
0

infzeMn (%
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C(m,n,l,K,6,T,supyc s v)

=r(z,y)

ianEM" v
]
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