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Abstract. In this article we study a nonlinear elliptic equation by using the
maximum principle and cutoff functions, We establish related gradient esti-

mates, the Liouville theorem, and the Harnack inequality.

1. Introduction and statement of main results

In 1981, Gidas-Spruck [3] derived the following result.

Theorem 1.1. Let Mn be a complete manifold with nonnegative Ricci curvature.
Assume that h(x) ∈ C2(Mn) and α > 0 satisfy the following conditions:

(1) h(x) ≥ 0 on Mn;
(2) ∆h(x) ≥ 0 on Mn;
(3) for r(x) large, |∇ log h(x)| ≤ C/r(x) and if n ≥ 4, h(x) ≥ C(r(x))σ with

σ ≥ − 2
n−3 , where r(x) is the geodesic distance between x and some fixed

point p;
(4) 1 ≤ α ≤ n+2

n−2 .

If u(x) is a nonnegative solution of

∆u+ huα = 0,

then u(x) ≡ 0.

For α = 1, Li-Yau [9] demonstrated the same result under the condition that
|∇h(x)| = o(r(x)) as r(x)→∞. Later, Li [6] proved that as 1 ≤ α ≤ n

n−2 (n ≥ 4),
the condition (3) of Theorem 1.1 is unnecessary. On these conditions were further
weakened, see [1, 5, 7]. In 2010, Yang [11] studied the equation

∆u+ cu−α = 0

on a noncompact complete Riemannian manifold, where α > 0 and c are two real
constants. The corresponding gradient estimates and Liouville type theorem are
also derived.
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Recently, Wang [10] deduced gradient estimates and Liouville type theorem for
positive solutions to the equation

∆fu
m + cu = 0

on smooth measure space with m-Bakry-Émery curvature bounded by Ricf,m ≥
−(m− 1)K, where K ≥ 0.

Inspired by the works [3, 8, 10, 11], we investigate the nonlinear elliptic equation

∆um + λ(x)ul = 0, m > 1 (1.1)

on a complete Riemannian manifold with Ricci curvature bounded below, where
m > 1 and l are real numbers, and λ(x) ∈ C2(Mn). If Mn = Ω is a bounded
smooth domain in Rn and λ(x) ≤ 0 is a constant, the equation (1.1) is regarded
as the thin film equation, which depict a steady state of the thin film. Concrete
content can be seen [4]. Our main results reads as follows.

Theorem 1.2. Let (Mn, g) be a complete Riemannian manifold without boundary.
Suppose that B2R is a geodesic ball of radius 2R around p ∈M and Ric(B2R) ≥ −K
with K ≥ 0. Also suppose that there exist two positive numbers δ and τ such that
|λ(x, t)| ≤ δ and |∇λ|2 ≤ τ |λ|2. Let u(x) is a positive solution to the equation (1.1)
and v = m

m−1u
m−1.

(a) Assume that l ≥ 1, then

sup
Bp(R)

|∇v|2

v
≤ C4(m− 1)

m+ 1
[

1
R2

(1 +
√
KR) + 2K + τ ] sup

x∈Mn

v +H1. (1.2)

(b) Assume that l < 1, then

sup
Bp(R)

|∇v|2

v
≤ C4(m− 1)

m+ 1
[

1
R2

(1 +
√
KR) + 2K + τ ] sup

x∈Mn

v +H2. (1.3)

Where C4 is a constant depending only on n, and

H1 =
(m− 1)(n− 1)
m(m+ 1)

|2(m+ 1)
n− 1

+ (m− 2l + 1)|δ
(m− 1

m
sup
x∈Mn

v
) l−1

m−1
,

H2 =
(m− 1)(n− 1)
m(m+ 1)

|2(m+ 1)
n− 1

+ (m− 2l + 1)|δ
(m− 1

m
inf

x∈Mn
v
) l−1

m−1
.

Moreover, if (Mn, g) has nonnegative Ricci curvature, letting R → ∞, we have
following estimate for l ≥ 1,

|∇v|2

v
≤ C(m,n, l,K, δ, τ, sup

x∈Mn

v), (1.4)

and for l < 1,
|∇v|2

v
≤ C(m,n, l,K, δ, τ, sup

x∈Mn

v). (1.5)

Where

C(m,n, l,K, δ, τ, sup
x∈Mn

v) =
C4(m− 1)
m+ 1

(2K + τ) sup
x∈Mn

v +H1,

C ′(m,n, l,K, δ, τ, sup
x∈Mn

v, inf
x∈Mn

v) =
C4(m− 1)
m+ 1

(2K + τ) sup
x∈Mn

v +H2.

By using (1.4) and (1.5), we derive the related Harnack inequalities.
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Corollary 1.3. Let (Mn, g) be a noncompact complete Riemannian manifold with-
out boundary. Suppose that Ric(Mn) ≥ 0. Let u(x) is a positive solution of the
equation (1.1), and v = m

m−1u
m−1.

If l ≥ 1, then

v(x) ≤ v(y) exp
[
r(x, y)

√
C(m,n, l,K, δ, τ, supx∈Mn v)

infx∈Mn v

]
. (1.6)

If l < 1, then

v(x) ≤ v(y) exp
[
r(x, y)

√
C ′(m,n, l,K, δ, τ, supx∈Mn v, infx∈Mn v)

infx∈Mn v

]
. (1.7)

Theorem 1.4. Let (Mn, g) be a complete Riemannian manifold without boundary.
Suppose that B2R is a geodesic ball of radius 2R around p ∈M and Ric(B2R) ≥ −K
with K ≥ 0. Let u(x) is a positive solution of the equation (1.1). Let v = m

m−1u
m−1

and |∇λ|2 ≤ τ |λ|2 for some positive constant τ . If λ ≥ 0 and l ≤ (n+1)(m+1)
2(n−1) or

λ ≤ 0 and l ≥ (n+1)(m+1)
2(n−1) , then we have

sup
Bp(R)

|∇v|2

v
≤ C4

[ 1
R2

(1 +
√
KR) + 2K + τ

]
sup
x∈Mn

v, (1.8)

where C4 is a constant depending only on n.
Letting R→∞ , then we infer on a complete noncompact Riemannian manifold,

|∇v|2

v
≤ C4(2K + τ) sup

x∈Mn

v. (1.9)

Applying (1.9), we can derive the following Liouville type theorem as λ(x) is a
constant.

Corollary 1.5. Let (Mn, g) be a noncompact complete Riemannian manifold with-
out boundary. Suppose that Ric(Mn) ≥ 0 and u(x) is a positive solution of the
equation (1.1), where λ(x) is a constant. If λ ≥ 0 and l ≤ (n+1)(m+1)

2(n−1) or λ ≤ 0 and

l ≥ (n+1)(m+1)
2(n−1) , then u is a constant.

Theorem 1.6. Let (Mn, g) be a complete noncompact Riemannian manifold with
Ric(Mn) ≥ −K with K ≥ 0. Let u(x) is a positive solution to the equation

∆um + λul = 0, (1.10)

where λ > 0 is a constant. Let v = m
m−1u

m−1 and 1 ≤ l ≤ (n+1)(m+1)
2(n−1) . If

λ ≤ 2(m− 1)(n− 1)K
2(m+1)
n−1 + (m− 2l + 1)

(m− 1
m

) l−1
m−1

(
sup
x∈Mn

v
)m−l

m−1 , (1.11)

then for any x ∈Mn,

|∇v|2

v
≤ 2(m− 1)2(n− 1)2

m(m+ 1)
K sup

x∈Mn

v

− (m− 1)(n− 1)
m(m+ 1)

[2(m+ 1)
n− 1

+ (m− 2l + 1)
]
λ
(m− 1

m
sup
x∈Mn

v
) l−1

m−1 .



4 W. WANG, H. ZHOU, X. ZHANG EJDE-2017/258

If

λ ≥ 2(m− 1)(n− 1)K
2(m+1)
n−1 + (m− 2l + 1)

(m− 1
m

) l−1
m−1

(
sup
x∈Mn

v
)m−l

m−1 ,

then v must be a constant.

Note that by taking l = 1 in Theorem 1.6, our result partially generalize Wang’s
result in [10]. By (1.11), we can find the lower bound estimate as m ≥ l, and the
upper bound estimate as m ≤ l for positive solutions of (1.10).

2. Preliminaries

To prove our main results, we need the lemma below. Let v = m
m−1u

m−1, then

(m− 1)v∆v + |∇v|2 = −λ(m− 1)
(m− 1

m

) l−1
m−1 v1+ l−1

m−1 . (2.1)

Lemma 2.1. Let (Mn, g) be a complete Riemannian manifold without boundary.
Suppose that B2R is a geodesic ball of radius 2R around p ∈M and Ricci(B2R) ≥
−K with K ≥ 0. Let u(x) is a positive solution to the equation (1.1) and v =
m
m−1u

m−1. Let w = |∇v|2
v and G = ϕw, where ϕ(x) is a smooth cutoff function

(see the proof of Theorem 1.2). Suppose that G(x) reaches the maximum value at
x0 and ϕ(x0) > 0. Then at x0,

ϕ∆w ≥
[ n

2(n− 1)
+

2m
(n− 1)(m− 1)2

+
1

m− 1
]G2

vϕ

+
[ 2m
m− 1

− n

n− 1
− 2

(n− 1)(m− 1)
]∇v∇ϕ

vϕ
G+

n

2(n− 1)
|∇ϕ|2

ϕ2
G

+
[ 2(m+ 1)
(n− 1)(m− 1)

+
m− 2l + 1
m− 1

]
λ
(m− 1

m
v
) l−1

m−1
G

v
− 2(n− 1)KG

− 2
v
ϕ|∇v||∇λ|

(m− 1
m

v
) l−1

m−1 − 2
n− 1

λ
(m− 1

m
v
) l−1

m−1
∇v∇ϕ
v

+
2

n− 1
λ2
(m− 1

m
v
)2 l−1

m−1
ϕ

v
.

(2.2)

Proof. After calculations we obtain that

∆w = ∆
( |∇v|2

v

)
=

∆|∇v|2

v
− 2∇|∇v|2∆v

v2
− |∇v|

2∆v
v2

+
2|∇v|4

v3

=
2
v

[
|Hess v|2 +∇v · ∇∆v + Ric((∇v,∇v))

]
− 2∇|∇v|2 · ∇v

v2
− |∇v|

2∆v
v2

+
2|∇v|4

v3
.

(2.3)

Since G reaches at the maximum at x0, so we have ∇G = 0. Then at x0,

∇w = −G∇ϕ
ϕ2

, (2.4)

∇|∇v|2 = −vG
ϕ2
∇ϕ+

G

ϕ
∇v. (2.5)
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Choose an orthonormal frame {e1, e2, · · · , en} around x0, such that |∇v|e1 = ∇v.
Then

|∇|∇v|2|2

4|∇v|2
=

n∑
j=1

v2
1j , (2.6)

∇v · ∇|∇v|2

2|∇v|2
= v11. (2.7)

On the other hand, we have

|Hess v|2 ≥ v2
11 + 2

n∑
α=2

v2
1α +

n∑
α=2

v2
αα

≥ v2
11 + 2

n∑
α=2

v2
1α +

1
n− 1

( n∑
α=2

vαα

)2

= v2
11 + 2

n∑
α=2

v2
1α +

1
n− 1

(∆v − v11)2

=
n

n− 1
v2
11 + 2

n∑
α=2

v2
1α −

2
n− 1

∆vv11 +
1

n− 1
(∆v)2

=
n

n− 1
v2
11 + 2

n∑
α=2

v2
1α +

2v11
n− 1

[
1

m− 1
w + λ

(m− 1
m

v
) l−1

m−1

]

+
1

n− 1

[
1

m− 1
w + λ

(m− 1
m

v
) l−1

m−1

]2
.

(2.8)

Putting (2.6) and (2.7) into (2.8), and using (2.5), we have

|Hess v|2 + Ric(∇v,∇v)

≥ n

n− 1
v2
11 + 2

n∑
α=2

v2
1α +

2v11
n− 1

[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]

+
1

n− 1
[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]2 − (n− 1)K|∇v|2

≥ n

n− 1

n∑
j=1

v2
1j +

2v11
n− 1

[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]

+
1

n− 1
[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]2 − (n− 1)K|∇v|2

=
n

n− 1
|∇|∇v|2|2

4|∇v|2
+

1
n− 1

· ∇v · ∇|∇v|
2

|∇v|2
[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]

+
1

n− 1
[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]2 − (n− 1)K|∇v|2

=
n

4(n− 1)|∇v|2
[G
ϕ
∇v − vG

ϕ2
∇ϕ
]2 +

1
n− 1

[ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]2

+
1

(n− 1)|∇v|2
[G
ϕ
|∇v|2 − vG

ϕ2
∇v∇ϕ

][ 1
m− 1

w + λ
(m− 1

m
v
) l−1

m−1
]

− (n− 1)K|∇v|2
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=
n

4(n− 1)
(G
ϕ

)2 +
nv2

4(n− 1)|∇v|2
G2

ϕ4
|∇ϕ|2 − n

2(n− 1)|∇v|2
· vG

2∇v∇ϕ
ϕ3

+
w2

(n− 1)(m− 1)2
+

2w
(n− 1)(m− 1)

λ
( m

m− 1
v
) l−1

m−1

+
1

n− 1
λ2
(m− 1

m
v
)2 l−1

m−1 +
1

(n− 1)(m− 1)
G

ϕ
w +

1
n− 1

G

ϕ
λ
(m− 1

m
v
) l−1

m−1

− 1
(n− 1)|∇v|2

vG

ϕ2
∇v∇ϕ w

m− 1
− 1

(n− 1)|∇v|2
vG

ϕ2
∇v∇ϕλ

(m− 1
m

v
) l−1

m−1

− (n− 1)K|∇v|2

=
n

4(n− 1)
(G
ϕ

)2 +
nv

4(n− 1)
|∇ϕ|2

ϕ2

G

ϕ
− n

2(n− 1)
G

ϕ

∇v∇ϕ
ϕ

+
1

(n− 1)(m− 1)2
(G
ϕ

)2 +
2λ

(n− 1)(m− 1)
(m− 1

m
v
) l−1

m−1
G

ϕ

+
λ2

n− 1
(m− 1

m
v
)2 l−1

m−1 +
1

(n− 1)(m− 1)
(G
ϕ

)2
+

1
n− 1

λ
(m− 1

m
v
) l−1

m−1
G

ϕ
− 1

(n− 1)(m− 1)
G

ϕ

∇v∇ϕ
ϕ

− 1
n− 1

λ
( m

m− 1
v
) l−1

m−1
∇v∇ϕ
ϕ

− (n− 1)K|∇v|2

=
[ n

4(n− 1)
+

m

(n− 1)(m− 1)2
]G2

ϕ2
−
[ n

2(n− 1)
+

1
(n− 1)(m− 1)

] G
ϕ2
∇v∇ϕ

+
n

4(n− 1)
|∇ϕ|2

ϕ3
vG+

m+ 1
(n− 1)(m− 1)

λ
(m− 1

m
v
) l−1

m−1
G

ϕ

− 1
n− 1

λ
(m− 1

m
v
) l−1

m−1
∇v∇ϕ
ϕ

+
λ2

n− 1
(m− 1

m
v
)2 l−1

m−1

= −(n− 1)K|∇v|2.

Noting that v > 0 when m > 1. Using the above inequality in (2.3) and applying
(2.1) and (2.5), then (2.2) can be inferred. �

3. The proof of main results

Proof of Theorem 1.2. Construct a smooth function θ(t) : [0,+∞)→ [0, 1]

θ(t) =

{
1, 0 ≤ t ≤ 1
0, t > 2

such that
− C1

√
θ ≤ θ′ ≤ 0, |θ′′| ≤ C2θ. (3.1)

Define the smooth cutoff function ϕ : M → R by ϕ(x) = θ( r(x)R ). We suppose that

G = ϕw = ϕ |∇v|
2

v attains its maximal value at x0 ∈ B2R. We can suppose that
G(x0) > 0, because otherwise the proof is trivial. Then at x0, we have

∆G = ∆ϕ · w + 2∇ϕ∇w + ϕ∆w

= ∆ϕ · w − 2G
|∇ϕ|2

ϕ2
+ ϕ∆w
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=
∆ϕ
ϕ
G− 2G

|∇ϕ|2

ϕ2
+ ϕ∆w.

Note that

∇ϕ =
θ′∇r
R

,

∆ϕ =
θ′′

R2
+
θ′∆r
R
≥ θ′′

R2
+

(n− 1)(1 +
√
KR)θ′

R2
.

Since ∆G ≤ 0 is valid at x0, we have

0 ≥
[ θ′′
θR2

+
(n− 1)(1 +

√
KR)θ′

θR2

]
G− 3n− 4

2(n− 1)
(θ′)2

R2θ2
G

+
(m− 1)(mn+ n− 2) + 4m

2(m− 1)2(n− 1)
G2

vθ
− (m+ 1)(n− 2)

(n− 1)(m− 1)
G
√
G|θ′|

Rθ
√
vθ

+
[ 2(m+ 1)
(m− 1)(n− 1)

+
m− 2l + 1
m− 1

]
λ
( m

m− 1
v
) l−1

m−1
G

v

− 2(n− 1)KG− 2
v
θ|∇v||∇λ|

(m− 1
m

v
) l−1

m−1

− 2|λ|
n− 1

(m− 1
m

v
) l−1

m−1

√
G|θ′|

R
√
vθ

+
2λ2

n− 1
(m− 1

m
v
)2 l−1

m−1
θ

v
.

(3.2)

Applying the inequality ax2 + bx ≥ − b2

4a with a > 0, we have

λ2

n− 1
(m− 1

m
v
)2 l−1

m−1
θ

v
− 2|λ|
n− 1

(m− 1
m

v
) l−1

m−1

√
G|θ′|

R
√
vθ

≥ − G(θ′)2

(n− 1)R2θ2
,

λ2

n− 1
(m− 1

m
v
)2 l−1

m−1
θ

v
− 2
v
ϕ|∇v||∇λ|

(m− 1
m

v
) l−1

m−1

≥ −(n− 1)
|∇λ|2

λ2
G.

(3.3)

By the Cauchy inequality, it follows that

− G
√
G|θ′|

Rθ
√
vθ
≥ − G

2

2vθ
− G(θ′)2

2R2θ2
. (3.4)

Substituting (3.3) and (3.4) into (3.2), we obtain

0 ≥
[ θ′′
θR2

+
(n− 1)(1 +

√
KR)θ′

θR2

]
G− 3n− 2

2(n− 1)
(θ′)2

R2θ2
G

+
m(m+ 1)

(m− 1)2(n− 1)
G2

vθ
− (m+ 1)(n− 2)

2(m− 1)(n− 1)
G(θ′)2

R2θ2

− 2(n− 1)KG− (n− 1)
|∇λ|2

λ2
G

+
[ 2(m+ 1)
(m− 1)(n− 1)

+
m− 2l + 1
m− 1

]
λ
(m− 1

m
v
) l−1

m−1
G

v
.

(3.5)
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From (3.1) and |∇λ|2 ≤ τλ2, we have

0 ≥ −
[C2

R2
+

(n− 1)(1 +
√
KR)C1√

θR2

]
G+

m(m+ 1)
(m− 1)2(n− 1)

G2

vθ

−
[ 2m
m− 1

− n

(m− 1)(n− 1)

] C2
1

R2θ
G− 2(n− 1)KG− (n− 1)τG

+
[ 2(m+ 1)

(m− 1)(n− 1)
+
m− 2l + 1
m− 1

]
λ
(m− 1

m
v
) l−1

m−1
G

v

≥ −
[C2

R2
+

(n− 1)(1 +
√
KR)C1√

θR2

]
G+

m(m+ 1)
(m− 1)2(n− 1)

G2

vθ

− 2m
m− 1

C2
1

R2θ
G− 2(n− 1)KG− (n− 1)τG

+
[ 2(m+ 1)

(m− 1)(n− 1)
+
m− 2l + 1
m− 1

]
λ
(m− 1

m
v
) l−1

m−1
G

v
.

(3.6)

Multiply by vθ to both side of (3.6), and using 0 ≤ θ ≤ 1 we obtain for l ≥ 1

0 ≥ m(m+ 1)
(m− 1)2(n− 1)

G2 − 2m
m− 1

C2
1

R2
sup
x∈Mn

vG

−
[C2

R2
+

(n− 1)(1 +
√
KR)C1

R2

]
G sup
x∈Mn

v

−
[
2(n− 1)K + (n− 1)τ

]
G sup
x∈Mn

v

− | 2(m+ 1)
(m− 1)(n− 1)

+
m− 2l + 1
m− 1

||λ|
(m− 1

m
sup
x∈Mn

v
) l−1

m−1G.

(3.7)

Meanwhile, for l < 1 we obtain

0 ≥ m(m+ 1)
(m− 1)2(n− 1)

G2 − 2m
m− 1

C2
1

R2
G sup
x∈Mn

v

−
[C2

R2
+

(n− 1)(1 +
√
KR)C1

R2

]
G sup
x∈Mn

v

−
[
2(n− 1)K + (n− 1)τ

]
G sup
x∈M

v

− | 2(m+ 1)
(m− 1)(n− 1)

+
m− 2l + 1
m− 1

| |λ|
(m− 1

m
inf

x∈Mn
v
) l−1

m−1
G.

(3.8)

We observe that[C2

R2
+

(n− 1)(1 +
√
KR)C1

R2

]
sup
x∈Mn

v ≤ C3

R2
(1 +

√
KR) sup

x∈Mn

v, (3.9)

for some constant C3 depending only on n.
On the other hand, for the equation Ax2 −Bx ≤ 0 with A > 0, B > 0, we have

x ≤ B
A . By utilize the equation to (3.7) and (3.8), and noting (3.9) we obtain at

the the maximum point x0 for l ≥ 1

sup
Bp(R)

w(x) ≤ ϕw(x0) = G(x0)
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≤ 2(m− 1)(n− 1)
m+ 1

C2
1

R2
sup
x∈Mn

v +
(m− 1)2(n− 1)

m(m+ 1)
C3

R2
(1 +

√
KR) sup

x∈Mn

v

+
(m− 1)2(n− 1)2

m(m+ 1)
(2K + τ) sup

x∈Mn

v

+
(m− 1)(n− 1)
m(m+ 1)

|2(m+ 1)
n− 1

+ (m− 2l + 1)| |λ|
(m− 1

m
sup
x∈Mn

v
) l−1

m−1
,

and for l < 1,

sup
Bp(R)

w(x) ≤ ϕw(x0) = G(x0)

≤ 2(m− 1)(n− 1)
m+ 1

C2
1

R2
sup
x∈Mn

v +
(m− 1)2(n− 1)

m(m+ 1)
C3

R2
(1 +

√
KR) sup

x∈Mn

v

+
(m− 1)2(n− 1)2

m(m+ 1)
(2K + τ) sup

x∈Mn

v

+
(m− 1)(n− 1)
m(m+ 1)

|2(m+ 1)
n− 1

+ (m− 2l + 1)| |λ|
(m− 1

m
inf

x∈Mn
v
) l−1

m−1
.

The proof is complete. �

The proof of Theorem 1.4. Simple calculations show that 2(m+1)
(m−1)(n−1) + m−2l+1

m−1 ≥ 0

as λ ≥ 0 and l ≤ (n+1)(m+1)
2(n−1) or λ ≤ 0 and l ≥ (n+1)(m+1)

2(n−1) . Hence, dropping the last
term in (3.6) which is nonnegative, we have

0 ≥ −
[C2

R2
+

(n− 1)(1 +
√
KR)C1√

θR2

]
G+

m(m+ 1)
(m− 1)2(n− 1)

G2

vθ

− 2m
m− 1

C2
1

R2θ
G− (n− 1)(2K + τ)G.

Multiplying by vθ on both sides, and using 0 ≤ θ ≤ 1, we obtain

0 ≥ m(m+ 1)
(m− 1)2(n− 1)

G2 − 2m
m− 1

C2
1

R2
G sup
x∈Mn

v

−
[C2

R2
+

(n− 1)(1 +
√
KR)C1

R2

]
G sup
x∈Mn

v − (n− 1)(2K + τ)G sup
x∈M

v.

Therefore, at the the maximum point x0 we obtain

sup
Bp(R)

w(x) ≤ ϕw(x0) = G(x0)

≤ 2(m− 1)(n− 1)
m+ 1)

C2
1

R2
sup
x∈Mn

v +
(m− 1)2(n− 1)

m(m+ 1)
C3

R2
(1 +

√
KR) sup

x∈Mn

v

+
(m− 1)2(n− 1)2

m(m+ 1)
(2K + τ) sup

x∈Mn

v,

where we used (3.9). The proof is complete. �
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The proof of Theorem 1.6. It is not difficult to find that 2(m+1)
(m−1)(n−1) + m−2l+1

m−1 ≥ 0

for 1 ≤ l ≤ (n+1)(m+1)
2(n−1) . Then we have form (3.6),

0 ≥ m(m+ 1)
(m− 1)2(n− 1)

G2 − 2m
m− 1

C2
1

R2
sup
x∈Mn

vG

−
[C2

R2
+

(n− 1)(1 +
√
KR)C1

R2

]
G sup
x∈Mn

v

−
[
2(n− 1)K + (n− 1)τ

]
G sup
x∈Mn

v

+
[ 2(m+ 1)

(m− 1)(n− 1)
+
m− 2l + 1
m− 1

]
λ
(m− 1

m
sup
x∈Mn

v
) l−1

m−1
G.

(3.10)

By (3.10), and (3.9) we obtain at the the maximum point x0,

sup
Bp(R)

w(x) ≤ ϕw(x0) = G(x0)

≤ 2(m− 1)(n− 1)
m+ 1

C2
1

R2
sup
x∈Mn

v +
(m− 1)2(n− 1)

m(m+ 1)
C3

R2
(1 +

√
KR) sup

x∈Mn

v

+
2(m− 1)2(n− 1)2

m(m+ 1)
K sup

x∈Mn

v

− (m− 1)(n− 1)
m(m+ 1)

[2(m+ 1)
n− 1

+ (m− 2l + 1)
]
λ
(m− 1

m
sup
x∈Mn

v
) l−1

m−1
.

Letting R→∞, we infer as

λ ≤ 2(m− 1)(n− 1)K
2(m+1)
n−1 + (m− 2l + 1)

(m− 1
m

) l−1
m−1 ( sup

x∈Mn

v)
m−l
m−1 ,

and
|∇v|2

v
≤ 2(m− 1)2(n− 1)2

m(m+ 1)
K sup

x∈Mn

v

− (m− 1)(n− 1)
m(m+ 1)

[2(m+ 1)
n− 1

+ (m− 2l + 1)
]
λ
(m− 1

m
sup
x∈Mn

v
) l−1

m−1
.

On the other hand, as

λ ≥ 2(m− 1)(n− 1)K
2(m+1)
n−1 + (m− 2l + 1)

(m− 1
m

) l−1
m−1 ( sup

x∈Mn

v)
m−l
m−1 ,

we derive that v must be constant. �

Proof of Corollary 1.3. Let minimal geodesic γ(s) : [0, 1]→Mn, so that γ(0) = y,
γ(1) = x, then

ln
v(x)
v(y)

=
∫ 1

0

d ln(v(γ(s)))
ds

=
∫ 1

0

∇v · γ′

v(γ(s))
ds

≤
∫ 1

0

|∇v| · |γ′|
|v(γ(s))|

ds = r(x, y)
∫ 1

0

|∇v|
|v(γ(s))|

ds

≤ r(x, y)
∫ 1

0

√
C(m,n, l,K, δ, τ, supx∈Mn v)

infx∈Mn v
ds
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= r(x, y)

√
C(m,n, l,K, δ, τ, supx∈M v)

infx∈Mn v
.
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