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DETERMINATION OF AN UNKNOWN SOURCE TERM
TEMPERATURE DISTRIBUTION FOR THE SUB-DIFFUSION

EQUATION AT THE INITIAL AND FINAL DATA

MOKHTAR KIRANE, BESSEM SAMET, BERIKBOL T. TOREBEK

Abstract. We consider a class of problems modeling the process of deter-

mining the temperature and density of nonlocal sub-diffusion sources given by

initial and finite temperature. Their mathematical statements involve inverse
problems for the fractional-time heat equation in which, solving the equation,

we have to find the an unknown right-hand side depending only on the space

variable. The results on existence and uniqueness of solutions of these prob-
lems are presented.

1. Introduction

Many instances are known in which the practical needs lead to the problems of
determining the coefficients or the right-hand-side of a differential equation from
some available data about the solution. These are called the inverse problems of
mathematical physics. Inverse problems arise in various areas of human activ-
ity such as seismology, mineral exploration, biology, medicine, quality control of
industrial goods, etc. All these circumstances place inverse problems among the
important problems of modern mathematics.

The purpose of this paper is to study inverse problems for the nonlocal heat
equation with involution of space variable x. We consider the heat equation with
variable coefficient

t−βDαt u(x, t)− uxx(x, t) + εuxx(a+ b− x, t) = f(x), (1.1)

for (x, t) ∈ Ω = {−∞ < a < x < b <∞, 0 < t < T <∞}, 0 < α < 1, β ≥ 0, where
Dαt is the Caputo derivative (see definition 1.3) and ε is a real number.

Differential equations with modified arguments are equations in which the un-
known function and its derivatives are evaluated with modifications of time or space
variables; such equations are called, in general, functional differential equations.
Among such equations, one can single out, equations with involutions [3].

Definition 1.1 ([1, 21]). A function ω(x) 6≡ x maps bijectively a set of real numbers
Γ, such that

ω(ω(x)) = x, or ω−1(x) = ω(x)
is called an involution on Γ.
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Equations containing involution are equations with an alternating deviation (at
x∗ < x being equations with advanced, and at x∗ > x being equations with delay,
where x∗ is a fixed point of the mapping ω(x)).

Furthermore, for the equations containing transformation of the spatial variable
in the diffusion term, we can cite Cabada and Tojo [4], where an example that
describes a concrete situation in physics is given: Consider a metal wire around a
thin sheet of insulating material in a way that some parts overlap some others as
shown in Figure 1.

Figure 1. An application of heat equation with involution

Assuming that the position y = 0 is the lowest of the wire, and the insulation
goes up to the left at −Y and to the right up to Y .

For the proximity of two sections of wires they added the third term with mod-
ifications on the spatial variable to the right-hand side of the heat equation with
respect to the wire:

∂T

∂t
(y, t) = α

∂2T

∂y2
(y, t) + β

∂2T

∂y2
(−y, t),

where T is the temperature at (y, t). Such equations have also a purely theoretical
value.

Concerning the inverse problems for local and nonlocal heat equations, some
recent works have been done by Kaliev [5], [6], Kirane [9, 10], Sadybekov [17, 18].

The heat equation also describes the diffusion process. So, the equation of the
form (1.1) with fractional derivatives with respect to the time variable is called
the sub-diffusion equation. This equation describes the slow diffusion [20]. When
α = 1

2 , ε = 0 the equation was interpreted by Nigmatullin [16] within a percolation
(pectinate) model. The solution (in an unbounded domain in the space variable)
was investigated by Mainardi [12] and others by means of integral transformations.

Now, for the formulation of the problems, we need to define the fractional dif-
ferentiation operator.

Definition 1.2 ([7]). The Riemann-Liouville fractional integral Iα of order α > 0
for an integrable function is defined by

Iα[f ](t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b],
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where Γ denotes the Euler gamma function.

Definition 1.3 ([7]). The Caputo fractional derivative of order 0 < α < 1 of a
differentiable function is defined by

Dα∗ [f ](t) = I1−α[
d

dt
f(t)], t ∈ [a, b].

2. Statement of problems

This article concerns two inverse problems of the time fractional heat equation
with involution type in the space variable.

Problem 2.1. Find a couple of functions (u(x, t), f(x)) satisfying equation (1.1),
under the conditions

u(x, 0) = ϕ(x), x ∈ [a, b], (2.1)

u(x, T ) = ψ(x), x ∈ [a, b], (2.2)

and the homogeneous Dirichlet boundary conditions

u(a, t) = u(b, t) = 0, t ∈ [0, T ], (2.3)

where ϕ(x) and ψ(x) are given sufficiently smooth functions.

Problem 2.2. Find the couple of functions (u(x, t), f(x)) in the domain Ω satisfy-
ing equation (1.1), conditions (2.1), (2.2) and the homogeneous Neumann boundary
conditions

ux(a, t) = ux(b, t) = 0, t ∈ [0, T ]. (2.4)

A regular solution of problems 2.1 and 2.2 is the pair of functions (u(x, t), f(x))
where u ∈ C2,1

x,t (Ω̄) (space of two times and one time continuously differentiable
functions on Ω̄ according to x and t respectively) and f ∈ C([a, b]).

Note that similar problems for the heat equation and their fractional analogues
have been considered in [2, 8, 15, 19].

3. Spectral properties of the Sturm-Liouville problem with
involution

Application of the Fourier method for solving problems 2.1 and 2.2 in the form
u(x, t) = τ(x)u(t) leads to the eigenvalue problem defined by the equation

τ ′′(x)− ετ ′′(a+ b− x) + λτ(x) = 0, a < x < b, (3.1)

and one of the following boundary conditions

τ(a) = 0, τ(b) = 0, (3.2)

τ ′(a) = 0, τ ′(b) = 0. (3.3)

It is easy to see that the Sturm-Liouville problem for equation (3.1) with one of
the boundary conditions (3.2), (3.3) is self-adjoint. It is known that the self-adjoint
problem has real eigenvalues and their eigenfunctions form a complete orthonormal
basis in L2([a, b]) [14]. To further investigate the problems under consideration, we
need to calculate the explicit form of the eigenvalues and eigenfunctions.

For |ε| < 1 problem (3.1), (3.2) has eigenvalues

λ2k =
(1 + ε)(2kπ)2

(b− a)2
, k ∈ N,
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λ2k+1 =
(1− ε)((2k + 1)π)2

(b− a)2
, k ∈ N0 = N ∪ [0]

and eigenfunctions

y2k =

√
2

b− a
sin

2kπ
b− a

(x− a), k ∈ N,

y2k+1 =

√
2

b− a
sin

(2k + 1)π
b− a

(x− a), k ∈ N0.

(3.4)

Similarly, problem (3.1), (3.3) has eigenvalues

µ2k+1 =
(1 + ε)((2k + 1)π)2

(b− a)2
, k ∈ N0,

µ2k =
(1− ε)(2kπ)2

(b− a)2
, k ∈ N0,

and corresponding eigenfunctions

z0 =
1√
b− a

,

z2k+1 =

√
2

b− a
cos

((2k + 1)π)
b− a

(x− a), k ∈ N0,

z2k =

√
2

b− a
cos

2kπ
b− a

(x− a), k ∈ N.

(3.5)

Lemma 3.1. The systems of functions (3.4), (3.5) are complete and orthonormal
in L2([a, b]).

Proof. We prove completeness. System (3.4) is complete in L2([a, b]) if the equalities∫ b

a

f(x) sin 2kπ
x− a
b− a

dx = 0, k ∈ N,∫ b

a

f(x) sin(2k + 1)π
x− a
b− a

dx = 0, k ∈ N0,

for f ∈ L2([a, b]) lead to f(x) = 0 in L2([a, b]).
Further, replacing π x−ab−a by ξ, we have:∫ π

0

f
(b− a

π
ξ + a

)
sin 2kξ dξ = 0, k ∈ N,∫ π

0

f
(b− a

π
ξ + a

)
sin(2k + 1)ξ dξ = 0, k ∈ N0.

From the second equation we obtain∫ π

0

f
(b− a

π
ξ + a

)
sin(2k + 1)ξ dξ

=
∫ π/2

0

f
(b− a

π
ξ + a

)
sin(2k + 1)ξ dξ +

∫ π

π
2

f
(b− a

π
ξ + a

)
sin(2k + 1)ξ dξ

=
∫ π/2

0

(
f
(b− a

π
ξ + a

)
− f

(
b− b− a

π
ξ
))

sin(2k + 1)ξ dξ = 0.
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Then by the completeness of the system {sin(2k + 1)ξ}k∈N0 in L2([0, π2 ]) [13], we
obtain f

(
b−a
π ξ + a

)
= f(b− b−a

π ξ), 0 < ξ < π
2 .

Similarly∫ π

0

f
(b− a

π
ξ + a

)
sin 2kξ dξ

=
∫ π/2

0

f
(b− a

π
ξ + a

)
sin 2kξ dξ +

∫ π

π
2

f
(b− a

π
ξ + a

)
sin 2kξ dξ

=
∫ π/2

0

(f
(b− a

π
ξ + a

)
+ f

(
b− b− a

π
ξ
)
) sin 2kξ dξ = 0.

Then by the completeness of the system {sin 2kξ}k∈N in L2([0, π2 ]) [13], we have

f
(b− a

π
ξ + a

)
= −f(b− b− a

π
ξ), 0 < ξ <

π

2
.

Whereupon, f
(
b−a
π ξ + a

)
= 0 in L2([0, π2 ]), and consequently f

(
b−a
π ξ + a

)
= 0 in

L2([0, π]). From this it follows that f(x) = 0 in L2([a, b]).
The completeness of the system (3.5) is proved similarly. �

4. Main results

For problems 2.1 and 2.2 the following theorems hold.

Theorem 4.1. Let |ε| < 1, ϕ,ψ ∈ C3([a, b]) and ϕ(i)(a) = ϕ(i)(b) = ψ(i)(a) =
ψ(i)(b) = 0, i = 0, 1, 2. Then the solution of the problem 2.1 exists, is unique and
it can be written in the form

u(x, t)

= ϕ(x) +
∞∑
k=0

(1− Eα+β,1,1−α(−λ2k+1t
α)) sin

√
λ2k+1
1−ε (x− a)

(1− Eα+β,1,1−α(−λ2k+1Tα))λ2k+1
1−ε

(ϕ(2)
2k+1,1 − ψ

(2)
2k+1,1)

+
∞∑
k=1

(1− Eα+β,1,1−α(−λ2kt
α)) sin

√
λ2k
1+ε (x− a)

(1− Eα+β,1,1−α(−λ2kTα)) λ2k
1+ε

(ϕ(2)
2k,1 − ψ

(2)
2k,1),

f(x) = −ϕ′′(x) + εϕ′′(a+ b− x)

+
∞∑
k=0

(1− ε)(ϕ(2)
2k+1,1 − ψ

(2)
2k+1,1)

(1− Eα+β,1,1−α(−λ2k+1Tα))
sin

√
λ2k+1

1− ε
(x− a)

+
∞∑
k=1

(1 + ε)(ϕ(2)
2k,1 − ψ

(2)
2k,1)

(1− Eα+β,1,1−α(−λ2kTα))
sin

√
λ2k

1 + ε
(x− a),

where ϕ
(2)
2k+1,1 = (ϕ′′(x), y2k+1), ϕ(2)

2k,1 = (ϕ′′(x), y2k), ψ(2)
2k+1,1 = (ψ′′(x), y2k+1),

ψ
(2)
2k,1 = (ψ′′(x), y2k), and Eα,l,m(z) is the Mittag-Leffler type function

Eα,l,m(z) =
∞∑
k=0

zk

C(α, l,m)
, C(α, l,m) =

k∏
p=0

Γ(αp+ l)
Γ(αp+m)

.
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Theorem 4.2. Let ϕ,ψ ∈ C3[a, b] and ϕ(i)(a) = ϕ(i)(b) = ψ(i)(a) = ψ(i)(b) =
0, i = 0, 1, 2. Then the solution of problem 2.2 exists, is unique and it can be
written in the form

u(x, t) = ϕ(x) +
t

T
(ψ0,2 − ϕ0,2)

+
∞∑
k=1

(1− Eα+β,1,1−α(−µ2kt
α)) cos

√
µ2k
1−ε (x− a)

(1− Eα+β,1,1−α(−µ2kTα)) µ2k
1−ε

(ψ(2)
2k,2 − ϕ

(2)
2k,2)

+
∞∑
k=0

(1− Eα+β,1,1−α(−µ2k+1t
α)) cos

√
µ2k+1
1+ε (x− a)

(1− Eα+β,1,1−α(−µ2k+1Tα))µ2k+1
1+ε

(ψ(2)
2k+1,2 − ϕ

(2)
2k+1,2),

f(x) = −ϕ′′(x) + εϕ′′(a+ b− x)

+
∞∑
k=1

(1− ε)(ϕ(2)
2k,2 − ψ

(2)
2k,2)

(1− Eα+β,1,1−α(−µ2kTα))
cos
√

µ2k

1− ε
(x− a)

+
∞∑
k=0

(1 + ε)(ϕ(2)
2k+1,2 − ψ

(2)
2k+1,2)

(1− Eα+β,1,1−α(−µ2k+1Tα))
cos
√
µ2k+1

1 + ε
(x− a),

where

ϕ0,2 = (ϕ(x), z0), ϕ
(2)
2k,2 = (ϕ′′(x), z2k), ϕ

(2)
2k+1,2 = (ϕ′′(x), z2k+1),

ψ0,2 = (ψ(x), z0), ψ
(2)
2k,2 = (ψ′′(x), z2k), ψ(2)

2k+1,2 = (ψ′′(x), z2k+1).

5. Proof of existence of the solution for problem 2.1

We give the full proof for problem 2.1. The existence of the solution of problem
2.2 is proved analogously.

As the eigenfunctions for system (3.4) of problem 2.1 form an orthonormal basis
in L2([a, b]) (this follows from the self-adjoint problem (3.1), (3.2)), the functions
u(x, t) and f(x) can be expanded as follows

u(x, t) =
∞∑
k=0

u2k+1,1(t) sin

√
λ2k+1

1− ε
(x− a) +

∞∑
k=1

u2k,1(t) sin

√
λ2k

1 + ε
(x− a), (5.1)

f(x) =
∞∑
k=0

f2k+1,1 sin

√
λ2k+1

1− ε
(x− a) +

∞∑
k=1

f2k,1 sin

√
λ2k

1 + ε
(x− a), (5.2)

where f2k+1,1, f2k,1, u2k+1,1(t), u2k,1(t) are unknown. Substituting (5.1) and (5.2)
into (1.1), we obtain the following equation for the functions u2k+1,1(t), u2k,1(t)
and the constants f2k+1,1, f2k,1:

t−βDαu2k+1,1(t) + λ2k+1u2k+1,1(t) = f2k+1,1,

t−βDαu2k,1(t) + λ2ku2k,1(t) = f2k,1.

Solving these equations [7], we obtain

u2k+1,1(t) =
f2k+1,1

λ2k+1
+ C2k+1Eα+β,1,1−α(−λ2k+1t

α),
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u2k,1(t) =
f2k,1
λ2k

+ C2kEα+β,1,1−α(−λ2kt
α),

where the constants C2k+1, C2k, f2k+1,1, f2k,1 are unknown. To find these con-
stants, we use conditions (2.1). Let ϕ2k+1,1, ϕ2k,1, ψ2k+1,1, ψ2k,1 be the coefficients
of the expansions of ϕ(x) and ψ(x)

ϕ2k+1,1 =

√
2

b− a

∫ b

a

ϕ(x) sin

√
λ2k+1

1− ε
(x− a)dx,

ϕ2k,1 =

√
2

b− a

∫ b

a

ϕ(x) sin

√
λ2k

1 + ε
(x− a)dx,

ψ2k+1,1 =

√
2

b− a

∫ b

a

ψ(x) sin

√
λ2k+1

1− ε
(x− a)dx,

ψ2k,1 =

√
2

b− a

∫ b

a

ψ(x) sin

√
λ2k

1 + ε
(x− a)dx.

We first find C2k+1.

u2k+1,1(0) =
f2k+1,1

λ2k+1,1
+ C2k+1 = ϕ2k+1,1,

uk(T ) =
f2k+1,1

λ2k+1
+ C2k+1Eα+β,1,1−α(−λ2k+1T

α) = ψ2k+1,1,

ϕ2k+1,1 − C2k+1 + C2k+1Eα+β,1,1−α(−λ2k+1T
α) = ψ2k+1,1.

Then
C2k+1 =

ϕ2k+1,1 − ψ2k+1,1

1− Eα+β,1,1−α(−λ2k+1Tα)
.

The constant f2k+1,1 is represented as

f2k+1,1 = λ2k+1(ϕ2k+1,1 − C2k+1).

Now we find C2k.

u2k,1(0) =
f2k,1
λ2k

+ C2k = ϕ2k,1,

u2k,1(T ) =
f2k,1
λ2k

+ C2kEα+β,1,1−α(−λ2kT
α) = ψ2k,1,

ϕ2k,1 − C2k + C2kEα+β,1,1−α(−λ2kT
α) = ψ2k,1.

Then we obtain
C2k =

ϕ2k,1 − ψ2k,1

1− Eα+β,1,1−α(−λ2kTα)
.

For the constant f2k,1, we found

f2k,1 = λ2k(ϕ2k,1 − C2k).

Substituting u2k+1,1(t), u2k,1(t), f2k+1,1, f2k,1 into (5.1) and (5.2), we find

u(x, t) = ϕ(x) +
∞∑
k=0

C2k+1(Eα+β,1,1−α(−λ2k+1t
α)− 1) sin

√
λ2k+1

1− ε
(x− a)

+
∞∑
k=1

C2k(Eα+β,1,1−α(−λ2kt
α)− 1) sin

√
λ2k

1 + ε
(x− a).
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Suppose that

ϕ(i)(a) = 0, ϕ(i)(b) = 0, i = 0, 1, 2;

ψ(i)(a) = 0, ψ(i)(b) = 0, i = 0, 1, 2.

we have

C2k+1 =
ϕ2k+1,1 − ψ2k+1,1

1− Eα+β,1,1−α(−λ2k+1Tα)

= −
ϕ

(2)
2k+1,1 − ψ

(2)
2k+1,1

(1− Eα+β,1,1−α(−λ2k+1Tα))λ2k+1
1−ε

.

Similarly, for C2k we obtain

C2k = −
ϕ

(2)
2k,1 − ψ

(2)
2k,1

(1− Eα+β,1,1−α(−λ2kTα)) λ2k
1+ε

.

Then

u(x, t)

= ϕ(x) +
∞∑
k=0

(1− Eα+β,1,1−α(−λ2k+1t
α)) sin

√
λ2k+1
1−ε (x− a)

(1− Eα+β,1,1−α(−λ2k+1Tα))λ2k+1
1−ε

(ϕ(2)
2k+1,1 − ψ

(2)
2k+1,1)

+
∞∑
k=1

(1− Eα+β,1,1−α(−λ2kt
α)) sin

√
λ2k
1+ε (x− a)

(1− Eα+β,1,1−α(−λ2kTα)) λ2k
1+ε

(ϕ(2)
2k,1 − ψ

(2)
2k,1).

Similarly,

f(x) = −ϕ′′(x) + εϕ′′(a+ b− x)

+
∞∑
k=0

(1− ε)(ϕ(2)
2k+1,1 − ψ

(2)
2k+1,1)

(1− Eα+β,1,1−α(−λ2k+1Tα))
sin

√
λ2k+1

1− ε
(x− a)

+
∞∑
k=1

(1 + ε)(ϕ(2)
2k,1 − ψ

(2)
2k,1)

(1− Eα+β,1,1−α(−λ2kTα))
sin

√
λ2k

1 + ε
(x− a).

Now for the convergence of the series, we have the estimate

|u(x, t)| ≤ C|ϕ(x)|+ C

∞∑
k=0

|ϕ(2)
2k+1,1|+ |ψ

(2)
2k+1,|

(1− Eα+β,1,1−α(−λ2k+1Tα))λ2k+1
1−ε

+ C

∞∑
k=1

|ϕ(2)
2k,1|+ |ψ

(2)
2k,1|

(1− Eα+β,1,1−α(−λ2kTα)) λ2k
1+ε

,

(5.3)

where C is a constant. Similarly for f(x) we obtain the estimate

|f(x)| ≤ C|ϕ(x)|+ C|ϕ(a+ b− x)|

+ C

∞∑
k=0

|ϕ(2)
2k,1|+ |ψ

(2)
2k,1|

(1− Eα+β,1,1−α(−λ2k+1Tα))

+ C

∞∑
k=1

|ϕ(2)
2k,1|+ |ψ

(2)
2k,1|

(1− Eα+β,1,1−α(−λ2kTα))

(5.4)
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where C is a constant.
Since by hypotheses of Theorem 4.1, the functions ϕ(2), ψ(2) are continuous on

[0, π], then by the Bessel inequality for the trigonometric series the following series
converge:

∞∑
k=0

|ϕ(2)
2k+1,1|

2 ≤C‖ϕ(2)(x)‖2L2(a,b)
, (5.5)

∞∑
k=1

|ϕ(2)
2k,1|

2 ≤C‖ϕ(2)(x)‖2L2(a,b)
, (5.6)

∞∑
k=0

|ψ(2)
2k+1,1|

2 ≤C‖ψ(2)(x)‖2L2(a,b)
, (5.7)

∞∑
k=1

|ψ(2)
2k,1|

2 ≤C‖ψ(2)(x)‖2L2(a,b)
, (5.8)

which implies the boundedness of the set{
ϕ

(2)
2k+1,1, ψ

(2)
2k+1,1, ϕ

(2)
2k,1, ψ

(2)
2k,1

}
.

Therefore, by the Weierstrass M-test (see[11]), series (5.3) and (5.4) converge ab-
solutely and uniformly in the region Ω̄.

Now we show the possibility of termwise differentiation of the series (5.3) twice
in the variable x and once in the variable t. For this purpose, we prove that
the obtained term by term differentiation of the series converge absolutely and
uniformly in the domain Ω̄. Given the estimates (5.5) and (5.7) we have

|uxx(x, t)| ≤ C|ϕ′′(x)|+ C

∞∑
k=0

|ϕ(2)
2k+1,1|+ |ψ

(2)
2k+1,1|

(1− Eα+β,1,1−α(−λ2k+1Tα))

+ C

∞∑
k=1

|ϕ(2)
2k+1,1|+ |ψ

(2)
2k+1,1|

(1− Eα+β,1,1−α(−λ2kTα))
<∞,

|Dαt u(x, t)| ≤ C
∞∑
k=0

|ϕ(2)
2k+1,1|+ |ψ

(2)
2k+1,1|

(1− Eα+β,1,1−α(−λ2k+1Tα))

+
∞∑
k=1

|ϕ(2)
2k+1,1|+ |ψ

(2)
2k+1,1|

(1− Eα+β,1,1−α(−λ2kTα))
<∞.

Hence the obtained solution satisfies (1.1) point-wise; by construction, it satisfies
the conditions (2.1)-(2.3).

6. Proof of uniqueness for the solution of problem 2.2

Suppose that there are two solutions {u1(x, t), f1(x)} and {u2(x, t), f2(x)} of
problem 2.2. Denote

u(x, t) = u1(x, t)− u2(x, t),

f(x) = f1(x)− f2(x).



10 M. KIRANE, B. SAMET, B. T. TOREBEK EJDE-2017/257

Then the functions u(x, t) and f(x) satisfy (1.1) and the homogeneous conditions
(2.1) and (2.3). Let

u0,2(t) =
1√
b− a

∫ b

a

u(x, t)dx, (6.1)

u2k+1,2(t) =

√
2

b− a

∫ b

a

u(x, t) cos
√
µ2k+1

1 + ε
(x− a)dx, k ∈ N, (6.2)

u2k,2(t) =

√
2

b− a

∫ b

a

u(x, t) cos
√

µ2k

1− ε
(x− a)dx, k ∈ N, (6.3)

f0,2 =
1√
b− a

∫ b

a

f(x)dx, (6.4)

f2k+1,2 =

√
2

b− a

∫ b

a

f(x) cos
√
µ2k+1

1 + ε
(x− a)dx, k ∈ N, (6.5)

f2k,2 =

√
2

b− a

∫ b

a

f(x) sin
√

µ2k

1− ε
(x− a)dx, k ∈ N. (6.6)

Applying the operator Dα to the equation (6.1) we have

Dαu0,2(t) =
1√
b− a

∫ b

a

Dαt u(x, t)dx

=
1√
b− a

∫ b

a

(uxx(x, t)− εuxx(a+ b− x, t))dx+ f0,2.

Integrating by parts and taking into account the homogeneous conditions (2.1)
and (2.2), we obtain

Dαu0,2(t) = f0,2, u0,2(0) = 0, u0,2(T ) = 0.

Consequently, f0,2 ≡ 0, u0,2(t) ≡ 0.
In a similar way for the functions (6.2), (6.3), (6.4), (6.5), (6.6) one can prove

that
f2k+1,2 = 0, f2k,2 = 0, u2k+1,2(t) ≡ 0, u2k,2(t) ≡ 0.

Further, by the completeness of the system (3.5) in L2([a, b]) we obtain

f(t) ≡ 0, u(x, t) ≡ 0, 0 ≤ t ≤ T, a ≤ x ≤ b.
Uniqueness of the solution of the problem 2.2 is proved.

Uniqueness of the solution of problem 2.1 can be proved similarly.

6.1. Analytical and numerical examples. As an illustration, we present here
a simple example solution for the inverse problem 2.1 with a = 0, b = π. For this
purpose, we consider the following choice of conditions (2.1):

u(x, 0) = 0, u(x, T ) = sinx, x ∈ [0, π],

i.e., we have
ϕ(x) = 0 and ψ(x) = sinx.

Calculating the coefficients of the series solutions as given in Theorem 4.1, we obtain

u(x, t) =
1− Eα+β,1,1−α(−(1− ε)tα)
1− Eα+β,1,1−α(−(1− ε)Tα)

sinx,

f(x) =
1− ε

1− Eα+β,1,1−α(−(1− ε)Tα)
sinx.
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If α = 1/2 and β = 0, then

E1/2,1,1/2(−(1− ε)tα)

= exp(−(1− ε)2x)− t−1/2 exp(−(1− ε)2t)(−1 + erfc(−(1− ε)
√
t))

These solutions are illustrated in Figures 2, 3, 4.

Figure 2. Graphs of u(x, t) and f(x) (right) for ε = 0.6 and T = 5.

Figure 3. Graphs of u(x, t) and f(x) (right) for ε = 0.9 and for
T = 2.
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Figure 4. Graphs of u(x, t) and f(x) (right) for ε = 0.8 and T = 2.
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