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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GLOBAL
SOLUTIONS TO CHEMOREPULSION SYSTEMS WITH

NONLINEAR SENSITIVITY

YULIN LAI, YOUJUN XIAO

Abstract. This article concerns the chemorepulsion system with nonlinear

sensitivity and nonlinear secretion

ut = ∆u+∇ · (χum∇v), x ∈ Ω, t > 0,

0 = ∆v − v + uα, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions, where χ > 0, m > 0,

α > 0, Ω ⊂ Rn is a bounded domain with smooth boundary. The existence and
uniform boundedness of a classical global solutions are obtained. Furthermore,

it is shown that for any given u0, if α > m or α ≥ 1, the corresponding solution

(u, v) converges to (ū0, ūα0 ) as time goes to infinity, where ū0 := 1
|Ω|

R
Ω u0dx.

1. Introduction

Chemotaxis plays essential roles in various biological processes, which directs
the movement of cells or organisms in response to the chemical stimuli. The first
mathematical study of chemotaxis was the celebrated work by Keller and Segel in
the ’70s [11, 12] where they proposed the model

ut = ∆u−∇ · (χu∇v)
τvt = ∆v − v + u

(1.1)

to describe the aggregation of slime mold Dictyostelium discoideum and traveling
pulses of bacteria Escherichia coli, where u denotes the bacteria density, v repre-
sents the chemical concentration, respectively, and χ is the chemotactic coefficient.
The case that χ > 0 means that bacteria are attracted by the chemical stimuli
and the corresponding model is so called the chemoattractive model. The other
case that χ < 0 means that bacteria are repulsed by the chemical stimuli, and
the corresponding model is so called the chemorepulsive model. The main feature
of the chemoattractive models is the blow-up of solutions in finite time in space
dimension greater or equal to two; see for instance [3, 4, 5, 9, 10, 17, 25]. Since
the blow-up is unrealistic in the real biological processes, various mechanisms are
introduced into the chemoattractive models to prevent the blow-up of solutions,
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see [13, 18, 23, 19, 24], for instance. In particular, in [14], the authors used a non-
linear form denoted by a function f(u) to describe the production of the chemical
cue, i.e, the second equation in (1.1) was replaced by vt = ∆v − v + f(u), where
0 < f(u) < Kuα with some positive constant K and 0 < α < n

2 (where n de-
notes the space dimension), and obtained the global existence of classical solutions
under some regularity assumptions on the initial data. For the chemorepulsive
models, since bacteria are repulsed by the chemical stimuli which may prevent the
aggregation of bacteria, the blow-up of solutions is not expected to take place for
these models. Indeed, for the chemorepulsive model under homogeneous Neumann
boundary conditions for u and v in a bounded domain Ω ⊂ Rn with smooth bound-
ary, when τ = 0, it was shown in [15, 16] that there exist global in time solutions
which are uniformly bounded and converge to the steady state exponentially. When
τ = 1, for the space dimension n = 2, based on a Lyapunov functional approach,
it was proved in [6] that there exists a unique global smooth classical solution, and
global weak solutions were also obtained in space dimension n = 3, 4. Considering
the cross-diffusion term may be dependent on u nonlinearly, Tao in [20] studied the
chemorepulsive system

ut = ∆u+∇ · (f(u)∇v), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0

(1.2)

under homogeneous Neumann boundary conditions in a smooth bounded convex
domain Ω ⊂ Rn with n ≥ 3, where f(u) ≤ K(u + 1)m with 0 < m < 4

n+2 . Under
some assumptions on the initial data, the uniformly bounded global solutions are
obtained and the large time behavior of solutions is also given. However, the global
existence of this repulsive model with m ≥ 4

n+2 is still open.
The purpose of this article is to study a repulsive system with nonlinear sensi-

tivity which also involves nonlinear secretion:

ut = ∆u+ χ∇ · (um∇v), x ∈ Ω, t > 0,

0 = ∆v − v + uα, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary ∂Ω, ∂
∂ν de-

notes the derivative with respect to the outer normal of ∂Ω. We assume that the
chemotactic parameter χ is positive, which shows that the chemical signal with
concentration v = v(x, t) is repulsive. We remark that, in this model, the equation
of v is an elliptic equation rather than a parabolic equation. Therefore, the global
existence can be expected to obtain for more general m and α.

The main result of this article is as follows.

Theorem 1.1. Let χ > 0, m > 0, α > 0, Ω ⊂ Rn (n ≥ 2) be a bounded domain
with smooth boundary. Then for any nonnegative u0 ∈ C0(Ω̄) (u0 6≡ 0), problem
(1.3) possesses a global in time classical solution, which is nonnegative and bounded
in Ω× (0,∞). Furthermore, if α > m or α ≥ 1, then we have

u(·, t)→ ū0 and v(·, t)→ ūα0 in L∞(Ω) as t→∞, (1.4)
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where
ū0 :=

1
|Ω|

∫
Ω

u0dx. (1.5)

Remark 1.2. If m = 1 and α = 1, the results obtained in Theorem 1.1 are in
agreement with those in [15, 16].

As we know the proof in [20] heavily relies on 0 < m < 4
n+2 , however, we only

require m > 0 in this paper. Moreover, the convexity of domain is not required,
which is indispensable in [20].

The condition χ > 0 is crucial, otherwise, the system will become the chemoat-
tractive system, and then, the solutions may blow up in finite time.

This article is organized as follows. In Section 2, we state the local and global
existence, and then in Section 3, we deal with the large time behavior of solutions
to (1.3) and give the proof of Theorem 1.1.

2. Existence of local and global solutions

In this section, we first state the existence of classical local solutions to system
(1.3), then establish some a priori estimates which are the core of the argument
concerning the existence and boundedness of global solutions.

Lemma 2.1. Let χ > 0, m > 0, α > 0, Ω ⊂ Rn, n ≥ 2, be a bounded domain
with smooth boundary. Assume that the initial datum u0 ∈ C0(Ω̄) (u0 6≡ 0) is
nonnegative. Then there exist T ∗ ∈ (0,∞] and a pair of nonnegative functions
(u, v) ∈ C0(Ω̄× [0, T ∗)) ∩C2,1(Ω̄× (0, T ∗)) solving (1.3) classically in Ω× (0, T ∗).
Moreover, if T ∗ <∞, then

‖u(·, t)‖L∞(Ω) →∞ as t↗ T ∗. (2.1)

Proof. The existence of a local classical solutions is based on a fixed point theorem.
One can refer to [21, Lemma 2.1] for more details. Moreover, the nonnegativity of
u and of v follow from the maximum principle. �

The following L1 estimates can be easily checked.

Lemma 2.2. The solution (u, v) of (1.3) satisfies the mass conservation property

‖u(·, t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ [0, T ∗). (2.2)

Proof. Integrating the first equation of (1.3) with respect to space, we get
d

dt

∫
Ω

udx ≡ 0, for all t ∈ (0, T ∗),

which implies (2.2) directly. �

The following Lemma is the core of the argument concerning existence and
boundedness of global solutions.

Lemma 2.3. Let χ > 0, m > 0, α > 0. Ω ⊂ Rn, n ≥ 2, is a bounded domain with
smooth boundary. Then for any nonnegative u0 ∈ C0(Ω̄) (u0 6≡ 0), any k > 1, the
solution of (1.3) satisfies

‖u(·, t)‖Lk(Ω) ≤ ‖u0‖Lk(Ω) for all t ∈ (0, T ∗), (2.3)∫ t

0

∫
Ω

|∇u k2 |2dx ≤ k

4(k − 1)
‖u0‖kLk(Ω) for all t ∈ (0, T ∗). (2.4)
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Proof. Testing (1.3)1 against kuk−1, substituting (1.3)2 into the resulting equality,
and invoking Young’s inequality yields

d

dt

∫
Ω

ukdx+
4(k − 1)

k

∫
Ω

|∇u k2 |2dx

= −χk(k − 1)
∫

Ω

um+k−2∇u · ∇vdx

= − χk(k − 1)
m+ k − 1

∫
Ω

∇um+k−1 · ∇vdx

=
χk(k − 1)
m+ k − 1

∫
Ω

um+k−1∆vdx

=
χk(k − 1)
m+ k − 1

∫
Ω

um+k−1vdx− χk(k − 1)
m+ k − 1

∫
Ω

um+k+α−1dx

≤ − αχk(k − 1)
(m+ k − 1)(m+ k + α− 1)

∫
Ω

um+k+α−1dx

+
αχk(k − 1)

(m+ k − 1)(m+ k + α− 1)

∫
Ω

v
m+k+α−1

α dx

(2.5)

for all t ∈ (0, T ∗). Next multiplying the second equation of (1.3) by v
m+k−1

α ,
integrating by parts, and using Young’s inequality yields∫

Ω

v
m+k+α−1

α dx+
4α(m+ k − 1)

(m+ k + α− 1)2

∫
Ω

|∇v
m+k+α−1

2α |2dx

=
∫

Ω

uαv
m+k−1

α dx

≤ α

m+ k + α− 1

∫
Ω

um+k+α−1dx+
m+ k − 1

m+ k + α− 1

∫
Ω

v
m+k+α−1

α dx

for all t ∈ (0, T ∗). Thus, we have

α

m+ k + α− 1

∫
Ω

v
m+k+α−1

α dx+
4α(m+ k − 1)

(m+ k + α− 1)2

∫
Ω

|∇v
m+k+α−1

2α |2dx

≤ α

m+ k + α− 1

∫
Ω

um+k+α−1dx

(2.6)

for all t ∈ (0, T ∗). Combining (2.5) and (2.6), we have

d

dt

∫
Ω

ukdx+
4(k − 1)

k

∫
Ω

|∇u k2 |2dx+
4αχk(k − 1)

(m+ k + α− 1)2

∫
Ω

|∇v
m+k+α−1

2α |2dx ≤ 0

(2.7)
for all t ∈ (0, T ∗), which, integrating with respect to t over (0, t), immediately leads
to (2.3), (2.4). This completes the proof. �

We are now in a position to prove the boundedness result.

Lemma 2.4. Let χ > 0, m > 0, 0 < α ≤ 1. Ω ⊂ Rn, n ≥ 2, is a bounded domain
with smooth boundary. Then for any nonnegative u0 ∈ C0(Ω̄)( u0 6≡ 0 ), there
exists a positive constant C such that the solution of system (1.3) satisfies

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, T ∗), (2.8)

‖v(·, t)‖W 1,∞(Ω) ≤ C for all t ∈ (0, T ∗). (2.9)
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Proof. Integrating the second equation of (1.3) with respect to space, we get∫
Ω

vdx =
∫

Ω

uαdx.

By Hölder’s inequality and (2.2), if 0 < α ≤ 1, we have

‖v(·, t)‖L1(Ω) ≤ |Ω|1−α‖u0‖L1(Ω).

Invoking (2.3), if α > 1, we also have ‖v(·, t)‖L1(Ω) ≤ ‖u0‖αLα(Ω). That is, for any
α > 0, it holds that

‖v(·, t)‖L1(Ω) ≤ |Ω|1−min{1,α}‖u0‖max{α,1}
Lmax{α,1}(Ω)

for all t ∈ (0, T ∗).

Moreover, in view of (2.3) and (2.6), one may easily derive

‖v(·, t)‖
L
m+k+α−1

α (Ω)
≤ ‖u(·, t)‖αLm+k+α−1(Ω) ≤ ‖u0‖αLm+k+α−1(Ω)

for any k ≥ 2. By passing to the limit as k →∞, yields

‖v(·, t)‖L∞(Ω) ≤ ‖u(·, t)‖αL∞(Ω) ≤ ‖u0‖αL∞(Ω).

Furthermore, one may invoke the Agmon-Douglis-Nirenberg Lk estimates [1, 2] on
linear elliptic equations with the (zero) Neumann boundary condition to obtain

‖v(·, t)‖W 2,k(Ω) ≤ C1‖uα(·, t)‖Lk(Ω) ≤ C2 for all t ∈ (0,∞)

with some positive constants C1, C2. This, in conjunction with the Sobolev em-
bedding [7]: W 2,k(Ω) ↪→ C1

B(Ω) := {u ∈ C1(Ω)|Du ∈ L∞(Ω)} if k > n, yields

‖∇v(·, t)‖L∞(Ω) ≤ C for all t ∈ (0,∞).

We thus complete the proof of (2.8) and (2.9). �

Lemma 2.4 and the extensibility criterion (2.1) yields directly the existence a
global solution.

Corollary 2.5. Let χ > 0, m > 0, α > 0. Ω ⊂ Rn, n ≥ 2, is a bounded domain
with smooth boundary. Then for any nonnegative u0 ∈ C0(Ω̄) (u0 6≡ 0), there exists
a pair of nonnegative bounded functions (u, v) ∈ C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞))
solving (1.3) classically.

3. Large time behavior

In this section, we mainly focus on the large time behavior of the global classical
bounded solution of (1.3). We first note that ∇u and ∇v converge to zero in the
following sense:

Lemma 3.1. Under the same assumptions as Corollary 2.5, the solution of (1.3)
satisfies ∫ ∞

0

∫
Ω

|∇u|2 dx dt ≤ 1
2
‖u0‖2L2(Ω). (3.1)

If we further assume α > m or α ≥ 1, then we also have∫ ∞
0

∫
Ω

|∇v|2 dx dt ≤ 1
2
‖u0‖2L2(Ω). (3.2)
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Proof. Since T ∗ = ∞, (3.1) results from (2.4) with k = 2 directly. To establish
(3.2), we divide it into two steps.
Step 1. In the case α ≥ 1, we first test (1.3)2 against −∆v, then apply the
integration by parts and Young’s inequality to obtain∫

Ω

|∆v|2dx+
∫

Ω

|∇v|2dx =
∫

Ω

∇uα · ∇vdx

≤ 1
2

∫
Ω

|∇uα|2dx+
1
2

∫
Ω

|∇v|2dx

=
α2

2

∫
Ω

u2(α−1)|∇u|2dx+
1
2

∫
Ω

|∇v|2dx

Integrating with respect to t over (0,∞) and invoking (3.1) and (2.8), we deduce

2
∫ ∞

0

∫
Ω

|∆v|2 dx dt+
∫ ∞

0

∫
Ω

|∇v|2 dx dt ≤ α2‖u‖2(α−1)
L∞(Ω)

∫ ∞
0

∫
Ω

|∇u|2 dx dt

≤ α2

2
‖u0‖2(α−1)

L∞(Ω)‖u0‖2L2(Ω),

which implies (3.2).
Step 2. In the case of α > m, we can take k = 1 + α−m in (2.7), then integrate
with respect to t over (0,∞) to deduce

χ(1 + α−m)(α−m)
α

∫ ∞
0

∫
Ω

|∇v|2 dx dt ≤
∫

Ω

u1+α−m
0 ,

which also implies (3.2). We thus complete the proof. �

Inspired by an argument developed in [22], we next give a weak stabilization
property for u.

Lemma 3.2. Let the assumptions in Corollary 2.5 hold. Then the solution of (1.3)
satisfies ∫ ∞

0

‖u(·, t)− ū0‖2(Wn,2(Ω))∗dt ≤ C (3.3)

for some positive constant C, where ū0 is as defined in (1.5), (Wn,2(Ω))∗ is the
dual space of Wn,2(Ω).

Proof. We first assert that∫ ∞
0

‖u(·, t)− ū0‖2
L

n
n−1 (Ω)

dt ≤ C (3.4)

for some positive constant C, which along with the fact that L
n
n−1 (Ω) ↪→ (Wn,2(Ω))∗

yields (3.3). In fact, invoking Sobolev’s inequality and Poincaré’s inequality, we
have

‖u(·, t)− ū0‖L n
n−1 (Ω)

≤ C1‖∇u(·, t)‖L1(Ω) for all t > 0.

Integrating with respect to t over (0,∞) and invoking Hölder’s inequality and (3.1),
we have ∫ ∞

0

‖u(·, t)− ū0‖2
L

n
n−1 (Ω)

dt ≤ C2
1

∫ ∞
0

‖∇u(·, t)‖2L1(Ω)dt

≤ C2
1 |Ω|

∫ ∞
0

∫
Ω

|∇u(·, t)|2dt
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≤ 1
2
C2

1 |Ω|‖u0‖2L2(Ω),

which implies (3.4) with C := 1
2C

2
1 |Ω|‖u0‖2L2(Ω) > 0. This completes the proof. �

The following decay property of ut shows that ut decays at least in some weak
sense as the time goes to infinity, which will be used to improve the stabilization
property of u in the sequel.

Lemma 3.3. In addition to the assumptions in Corollary 2.5, we further assume
α > m or α ≥ 1, then the solution of (1.3) satisfies∫ ∞

0

‖ut(·, t)‖2(Wn,2(Ω))∗dt ≤ C (3.5)

for some positive constant C.

Proof. Take ϕ ∈Wn,2(Ω) and test (1.3)1 against ϕ to get∫
Ω

utϕdx =
∫

Ω

∆uϕdx+
∫

Ω

∇ · (χum∇v)ϕdx

= −
∫

Ω

∇u∇ϕdx−
∫

Ω

χum∇v · ∇ϕdx
(3.6)

for all t > 0. Next we will estimate each term on the right hand side. For the first
term, by Hölder’s inequality, we have∣∣− ∫

Ω

∇u∇ϕdx
∣∣ ≤ ‖∇u‖L2(Ω)‖∇ϕ‖L2(Ω) ≤ ‖∇u‖L2(Ω)‖∇ϕ‖Wn,2(Ω). (3.7)

For the second term, by Hölder’s inequality and (2.8), we have∣∣− ∫
Ω

χum∇v · ∇ϕdx
∣∣ ≤ χ‖u(·, t)‖mL∞(Ω)‖∇v‖L2(Ω)‖∇ϕ‖L2(Ω)

≤ C2‖∇v‖L2(Ω)‖∇ϕ‖Wn,2(Ω)

(3.8)

with C2 := χ‖u(·, t)‖mL∞(Ω) > 0. We thus obtain

‖ut(·, t)‖2(Wn,2(Ω))∗ = sup
ϕ∈Wn,2(Ω),‖ϕ‖Wn,2(Ω)≤1

∣∣∣ ∫
Ω

utϕdx
∣∣∣2

≤ 2‖∇u‖2L2(Ω) + 2C2
2‖∇v‖2L2(Ω)

(3.9)

for all t > 0. Then(3.5) may result from an integration (3.9) over t ∈ (0,∞) in
conjunction with (3.1) and (3.2) directly. �

We next state a regularity estimate of the solution.

Lemma 3.4. Let the assumptions in Corollary 2.5 hold, and further assume α > m
or α ≥ 1. Then there exist a positive constant C and γ ∈ (0, 1) such that the solution
of (1.3) satisfies

‖ut(·, t)‖Cγ(Ω̄) ≤ C for all t ≥ 1. (3.10)

Proof. The proof is similar to that of [20, Lemma 4.3]. We just outline the idea
here. We first invoke (2.8) and (2.9) to obtain

‖χum∇v‖L∞(Ω) ≤ C for all t > 0
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with some positive constant C. Then applying the operator Aθ with some θ ∈ (0, 1
2 )

to the Duhamel formula for u in the form

u(·, t) = et∆u0 +
∫ t

0

e(t−s)∆∇ · (χum∇v)(·, s)ds, t > 0,

where Aθ denotes the fractional power of the realization of −∆ + 1 in Lq(Ω) with
q > 1 large enough satisfying 2θ − n

q > 0 under homogeneous Neumann boundary
conditions, yields

‖Aθu(·, t)‖Lq(Ω) ≤ C for all t > 0 (3.11)

with a positive constant C. This, along with the fact that D(Aθ) ↪→ Cγ(Ω̄) for all
γ ∈ (0, 2θ − n

q ) [8], yields (3.10). �

Now we are ready to prove the stabilization property of u and also v.

Lemma 3.5. Let the assumptions in Corollary 2.5 hold, and further assume α > m
or α ≥ 1. Then the solution of (1.3) satisfies

‖u(·, t)− ū0‖L∞(Ω) → 0 as t→∞, (3.12)

‖v(·, t)− ūα0 ‖L∞(Ω) → 0 as t→∞, (3.13)

where ū0 is as defined in (1.5).

Proof. The proof of the stabilization property (3.12) of u is similar to that of [20,
Lemma 4.4], we omit it here. To achieve the stabilization property (3.13) of v, we
set w(x, t) := v(x, t)− ūα0 , then it satisfies

0 = ∆w − w + uα − ūα0 , x ∈ Ω, t > 0,
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0.

(3.14)

Applying the elliptic maximum principle [7] to (3.14), we obtain

‖v(·, t)− ū0‖L∞(Ω) = ‖w(·, t)‖L∞(Ω) ≤ ‖uα(·, t)− ūα0 ‖L∞(Ω) for all t > 0,

which in conjunction with (3.12) yields (3.13) directly. �

Now we can prove our main result by collecting what we have found so far.
Indeed, Theorem 1.1 follows from Corollary 2.5 and Lemma 3.5.
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system, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748-767.

Yulin Lai
Third People’s Hospital of Yibin City, Yibin 644000, China

E-mail address: 32212779@qq.com

Youjun Xiao (corresponding author)

College of Mathematic & Information, China West Normal University, Nanchong 637002,

China
E-mail address: mathxyj@126.com


	1. Introduction
	2. Existence of local and global solutions
	3. Large time behavior
	Acknowledgements

	References

