Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 251, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTIONS TO SUPERLINEAR P-LAPLACE EQUATIONS WITHOUT AMBROSETTI-RABINOWIZT CONDITION

DUONG MINH DUC

Abstract. We study the existence of non-trivial weak solutions in $W_{0}^{1, p}(\Omega)$ of the super-linear Dirichlet problem

$$
\begin{gathered}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

where f satisfies the condition

$$
|f(x, t)| \leq|\omega(x) t|^{r-1}+b(x) \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

where $r \in\left(p, \frac{N p}{N-p}\right), b \in L^{\frac{r}{r-1}}(\Omega)$ and $|\omega|^{r-1}$ may be non-integrable on Ω.

1. Introduction

Let N be an integer $\geq 3, \Omega$ be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega, p$ be in $[1, N)$ and $p^{*}=\frac{N p}{N-p}$. Let $W_{0}^{1, p}(\Omega)$ be the usual Sobolev space with the following norm

$$
\|u\|_{1, p}=\left\{\int_{\Omega}|\nabla u|^{p} d x\right\}^{1 / p} \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

We consider the Dirichlet problem

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where f is a real Carathéodory function on $\Omega \times \mathbb{R}$ and satisfies the following conditions
(A1) there exist $r \in\left(p, p^{*}\right), \omega \in \mathcal{K}_{p, r}$ (see Definition 2.1) and $b \in L^{\frac{r}{r-1}}(\Omega)$ such that

$$
|f(x, t)| \leq|\omega(x) t|^{r-1}+b(x) \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

(A2) there exist $C \in[0, \infty)$ and $d \in L^{1}(\Omega)$ such that $|f(x, t)| \leq d(x)$ for every x in Ω and $|t| \leq C$,
(A3) there is d_{1} in $L^{\frac{N}{p}}(\Omega)$ such that $d_{1}(x) \leq \frac{f(x, t)}{\mid t t^{p-2} t}$ for every $(x, t) \in \Omega \times \mathbb{R}$,
(A4) $f(x, 0)=0$ for every x in Ω and $\lim _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=0$ a.e. in Ω, and

[^0](A5) $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}=\infty$ a.e. in Ω.
The integrability of $|\omega|^{r-1}$ is essential in [1, 5, 7, 11, 12, 13, 14, 16, 17, because these papers have used the differentiability of Nemytskii from $L^{q_{1}}(\Omega)$ into $L^{q_{2}}(\Omega)$ (see [5, 4]) and the Sobolev embedding from $W_{0}^{p}(\Omega)$ into $L^{q_{1}}(\Omega)$. In the present paper, using weighted Sobolev embeddings in 6, 10, 9, 15, 18 instead of classical one in [3], we can study the problem (1.1) with non-integrable functions $|\omega|^{r-1}$ in (A1).

In many applications, $\frac{f(x, t)}{|t|^{p-2} t}$ is non-negative for $t \neq 0$ and $|f(x, t)|$ is wellcontrolled when $|t|$ is sufficiently small. This observation is the motivation of (A2) and (A3). Here we consider the case, in which the positivity of $\frac{f(x, t)}{|t|^{p-2} t}$ can be disturbed by a function $d_{1} \in L^{\frac{N}{p}}(\Omega)$.

In (A4) and (A5), we do not need the uniform convergence as in [1, 5, 7, 11, 12, 13, 14, 16, 17. We study the problem (1.1) without Ambrosetti-Rabinowizt condition. Our main result is the following theorems under the assumption
(A6) $\frac{f(x, t)}{|t|^{p-2} t}$ is increasing in $t \geq C$ and decreasing in $t \leq-C$ for every x in Ω.
Theorem 1.1. Assume f satisfies (A1)-(A6). Then there is a non-trivial weak solution in $W_{0}^{1, p}(\Omega)$ of the problem (1.1).

Remark 1.2. If f is continuous on $\bar{\Omega} \times \mathbb{R}$ and satisfies the following conditions
(A1') There exist $r \in\left(p, p^{*}-1\right)$ and a positive real number α such that

$$
|f(x, t)| \leq \alpha\left(1+|t|^{r-1}\right) \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

(A4') $f(x, 0)=0$ for every x in Ω and $\lim _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=0$ uniformly in Ω.
(A5') $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}=\infty$ uniformly in Ω.
Then f satisfies (A1)-(A5). Therefore our theorem improves the corresponding results in [14, 16.

We study a method for constructing weight functions in weighted Sobolev embeddings and the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see Theorems 2.8 and 2.9 . We apply these results to prove the existence of non-trivial solutions of a class of super-linear p-Laplacian problem in the last section.

2. Nemytskii operators

Definition 2.1. Let σ be a measurable function on Ω. We put

$$
T_{\sigma} u=\sigma u \quad h \forall u \in W_{0}^{1, p}(\Omega)
$$

We say that
(i) σ is of class $\mathcal{C}_{p, s}$, if T_{σ} is a continuous mapping from $W_{0}^{1, p}(\Omega)$ into $L^{s}(\Omega)$,
(ii) σ is of class $\mathcal{K}_{p, s}$, if T_{σ} is a compact mapping from $W_{0}^{1, p}(\Omega)$ into $L^{s}(\Omega)$.

We have following results.
Theorem 2.2. Let α_{1} and α_{2} be in $[1, \infty)$ such that $\alpha_{1}<\alpha_{2}$. Let $\omega_{1} \in \mathcal{C}_{p, \alpha_{1}}$, $\omega_{2} \in \mathcal{C}_{p, \alpha_{2}}$ such that ω_{1} and ω_{2} are non-negative. Let $\beta \in\left(\alpha_{1}, \alpha_{2}\right)$ and $\omega=$ $\omega_{1}^{\frac{\alpha_{1}\left(\alpha_{2}-\beta\right)}{\beta\left(\alpha_{2}-\alpha_{1}\right)}} \omega_{2}^{\frac{\alpha_{2}\left(\beta-\alpha_{1}\right)}{\beta\left(\alpha_{2}-\alpha_{1}\right)}}$. Then $w \in \mathcal{C}_{p, \beta}$.

Proof. There is a positive real number C_{1} such that

$$
\begin{equation*}
\left\{\int_{\Omega} \omega_{i}^{\alpha_{i}}|u|^{\alpha_{i}} d x\right\}^{1 / \alpha_{i}} \leq C_{1}\|u\|_{1, p} \quad h \forall u \in W_{0}^{1, p}(\Omega), i=1,2 \tag{2.1}
\end{equation*}
$$

Since $\beta=\frac{\alpha_{2}-\beta}{\alpha_{2}-\alpha_{1}} \alpha_{1}+\frac{\beta-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \alpha_{2}$, by Hölder's inequality and 2.1), we get

$$
\begin{aligned}
& \left\{\int_{\Omega} \omega^{\beta}|u|^{\beta} d x\right\}^{1 / \beta} \\
& =\left\{\int_{\Omega} \omega_{1}^{\frac{\alpha_{2}-\beta}{\alpha_{2}-\alpha_{1}} \alpha_{1}}|u|^{\frac{\alpha_{2}-\beta}{\alpha_{2}-\alpha_{1}} \alpha_{1}} \omega_{2}^{\frac{\beta-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \alpha_{2}}|u|^{\frac{\beta-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \alpha_{2}} d x\right\}^{1 / \beta} \\
& \leq\left\{\left\{\int_{\Omega} \omega_{1}^{\alpha_{1}}|u|^{\alpha_{1}} d x\right\}^{\frac{\alpha_{2}-\beta}{\alpha_{2}-\alpha_{2}}}\left\{\int_{\Omega} \omega_{2}^{\alpha_{2}}|u|^{\alpha_{2}} d x\right\}^{\frac{\beta-\alpha_{1}}{\alpha_{2}-\alpha_{1}}}\right\}^{1 / \beta} \\
& \leq\left\{\left\{\int_{\Omega} \omega_{1}^{\alpha_{1}}|u|^{\alpha_{1}} d x\right\}^{\frac{1}{\alpha_{1}} \frac{\alpha_{2}-\beta}{\alpha_{2}-\alpha_{2}} \alpha_{1}}\left\{\int_{\Omega} \omega_{2}^{\alpha_{2}}|u|^{\alpha_{2}} d x\right\}^{\frac{1}{\alpha_{2}} \frac{\beta-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \alpha_{2}}\right\}^{1 / \beta} \\
& \leq C_{1}\|u\|_{1, p} \quad \forall u \in W_{0}^{1, p}(\Omega)
\end{aligned}
$$

Theorem 2.3. Let s be in $\left[1, \frac{N p}{N-p}\right)$, α be in $(0,1), \omega \in \mathcal{C}_{p, s}$ and θ be measurable functions on Ω such that $\omega \geq 0$ and $|\theta| \leq \omega^{\alpha}$. Then θ is of class $\mathcal{K}_{p, s}$.
Proof. Since T_{ω} is in $\mathcal{C}_{p, s}, T_{\omega}$ is continuous from $W_{0}^{1, p}(\Omega)$ into $L^{s}(\Omega)$ and there is a positive real number C_{2} such that

$$
\begin{equation*}
\left\{\int_{\Omega}|u|^{s} \omega^{s} d x\right\}^{1 / s} \leq C_{2}\|u\|_{1, p} \quad \forall u \in W_{0}^{1, p}(\Omega) \tag{2.2}
\end{equation*}
$$

Since $\omega^{\alpha}(x) \leq 1+\omega(x)$ for every x in Ω and 1 and ω are in $\mathcal{C}_{p, s}, \omega^{\alpha}$ belongs to $\mathcal{C}_{p, s}$. Thus T_{θ} is in $\mathcal{C}_{p, s}$. Let M be a positive real number and $\left\{u_{n}\right\}$ be a sequence in $W_{0}^{1, p}(\Omega)$, such that $\left\|u_{n}\right\|_{1, p} \leq M$ for any n. By Rellich-Kondrachov's theorem [3, Theorem 9.16], $\left\{u_{n}\right\}$ has a subsequence $\left\{u_{n_{k}}\right\}$ converging to u in $L^{s}(\Omega)$ and $\left\{u_{n_{k}}\right\}$ converging weakly to u in $W_{0}^{1, p}(\Omega)$, therefore $\|u\|_{1, p} \leq \liminf _{k \rightarrow \infty}\left\|u_{n_{k}}\right\|_{1, p} \leq M$. We shall prove $\left\{T_{\theta}\left(u_{n_{k}}\right)\right\}$ converges to $T_{\theta}(u)$ in $L^{s}(\Omega)$.

Let ε be a positive real number. Choose a positive real number δ such that

$$
\begin{equation*}
\left(2 C_{2} M\right)^{s} \delta^{(\alpha-1) s}<\frac{\varepsilon^{s}}{2} \tag{2.3}
\end{equation*}
$$

Put $\Omega^{\prime}=\{x \in \Omega: \omega(x)>\delta\}$. By 2.2 and 2.3, we have

$$
\begin{aligned}
& \int_{\Omega}\left|\theta\left(u_{n_{k}}-u\right)\right|^{s} d x \\
& =\int_{\Omega}\left|u_{n_{k}}-u\right|^{s}|\theta|^{s} d x \\
& \leq \int_{\Omega^{\prime}}\left|u_{n_{k}}-u\right|^{s} \omega^{\alpha s} d x+\int_{\Omega \backslash \Omega^{\prime}}\left|u_{n_{k}}-u\right|^{s} \omega^{\alpha s} d x \\
& \leq \delta^{(\alpha-1) s} \int_{\Omega^{\prime}}\left|u_{n_{k}}-u\right|^{s} \omega^{s} d x+\delta^{\alpha s} \int_{\Omega \backslash \Omega^{\prime}}\left|u_{n_{k}}-u\right|^{s} d x \\
& \leq \delta^{(\alpha-1) s} \int_{\Omega}\left|u_{n_{k}}-u\right|^{s} \omega^{s} d x+\delta^{\alpha s} \int_{\Omega}\left|u_{n_{k}}-u\right|^{s} d x
\end{aligned}
$$

$$
\begin{align*}
& \leq \delta^{(\alpha-1) s}\left(C_{2}\left\|u_{n_{k}}-u\right\|_{1, p}\right)^{s}+\delta^{\alpha s} \int_{\Omega}\left|u_{n_{k}}-u\right|^{s} d x \\
& \leq \delta^{(\alpha-1) s}\left(2 C_{2} M\right)^{s}+\delta^{\alpha s} \int_{\Omega}\left|u_{n_{k}}-u\right|^{s} d x \\
& \leq \frac{\varepsilon^{s}}{2}+\delta^{\alpha s} \int_{\Omega}\left|u_{n_{k}}-u\right|^{s} d x \tag{2.4}
\end{align*}
$$

Since $\left\{u_{n_{k}}\right\}$ converges in $L^{s}(\Omega)$, there is an integer k_{0} such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{n_{k}}-u\right|^{s} d x \leq \delta^{-\alpha s} \frac{\varepsilon^{s}}{2} \quad h \forall k \geq k_{0} \tag{2.5}
\end{equation*}
$$

Combining 2.4 and 2.5, we complete the proof.
Corollary 2.4. Let $p \in[1, N), s \in\left(1, \frac{N p}{N-p}\right), \eta \in\left(\frac{s N p}{N p-s(N-p)}, \infty\right)$ and $\theta \in L^{\eta}(\Omega)$. Then θ is in $\mathcal{K}_{p, s}$.
Proof. Let $\beta \in(0,1)$ such that $\beta \eta=\frac{s N p}{N p-s(N-p)}$ and $\omega=|\theta|^{1 / \beta}$. Then ω is in $L^{\frac{s N p}{N p-s(N-p)}}(\Omega)$. Since $\frac{N p-s(N-p)}{N p}+\frac{s(N-p)}{N p}=1$, by Hölder's inequality, we have
which implies that T_{ω} is continuous at 0 in $W_{\rho}^{1, p}(\Omega)$. Thus T_{ω} is a linear continuous map from $W_{0}^{1, p}(\Omega)$ into $L^{s}(\Omega)$. By Theorem 2.3 is of class $\mathcal{K}_{p, r}$.

Example 2.5. Let $N=5, p=3, s=4$ and $\Omega=\left\{x \in \mathbb{R}^{5}:|x|<1\right\}$. Then $\frac{s N p}{N p-s(N-p)}=\frac{4.5 .3}{5.3-4(5-3)}=\frac{60}{7}<10$. Put $\omega_{0}=|x|^{-\frac{1}{30}} \cos (16|x|)$, then ω_{0} is in $L^{10}(\Omega)$. Thus by Corollary 2.4 ω_{0} is of class $\mathcal{K}_{p, s}$.

Corollary 2.6. Let $p \in[1, N), s \in\left(1, \frac{N p}{N-p}\right), \alpha$ be in $(0,1)$ and $\eta \in \mathcal{C}_{p, p}$. Then $\theta=\eta^{\alpha \frac{p\left(p^{*}-s\right)}{s\left(p^{*}-p\right)}}$ is of class $\mathcal{K}_{p, s}$.
Proof. Put $\omega_{1}=\eta, \omega_{2}=1, \alpha_{1}=p, \alpha_{2}=p^{*}, \beta=s$. By the Embedding theorem of Sobolev, $\omega_{2} \in \mathcal{C}_{p, p^{*}}$. By Theorem 2.2, we see that $\eta^{\frac{p\left(p^{*}-s\right)}{s\left(p^{*}-p\right)}} \in \mathcal{C}_{p, s}$. Thus by Theorem 2.3. $\eta^{\alpha \frac{p\left(p^{*}-s\right)}{s\left(p^{*}-p\right)}}$ is of class $\mathcal{K}_{p, s}$.
Example 2.7. Let $\Omega=\left\{x \in \mathbb{R}^{5}:\|x\|<1\right\}, p=3, s=4, \alpha=\frac{3}{4}$ and $\eta(x)=(1-$ $\left.\|x\|^{2}\right)^{-1}$ for every x in Ω. By [9, Theorem 8.4], $\eta \in \mathcal{C}_{p, p}$. Note that $p^{*}=\frac{N p}{N-p}=\frac{15}{2}$ and

$$
\alpha \frac{p\left(p^{*}-s\right)}{s\left(p^{*}-p\right)}=\frac{3}{4} \frac{3}{4} \frac{7}{9}=\frac{7}{16} .
$$

Put $\theta(x)=\left(1-\|x\|^{2}\right)^{-\frac{7}{16}}$ for every x in Ω. Then $\theta \in \mathcal{K}_{3,4}$.
Theorem 2.8. Let s be in $\left(1, p^{*}\right)$, ω be in $\mathcal{K}_{p, s}, b$ be in $L^{\frac{s}{s-1}}(\Omega)$ and g be a Caratheodory function from $\Omega \times \mathbb{R}$ into \mathbb{R}. Assume

$$
\begin{equation*}
|g(x, z)| \leq|\omega(x)|^{s-1}|z|^{s-1}+b(x) \quad h \forall(x, z) \in \Omega \times \mathbb{R} . \tag{2.6}
\end{equation*}
$$

Put $N_{g}(v)(x)=g(x, v(x))$ for $v \in W_{0}^{1, p}(\Omega), x \in \Omega$. We have
(i) N_{g} is a continuous mapping from $W_{0}^{1, p}(\Omega)$ into $L^{\frac{s}{s-1}}(\Omega)$.
(ii) If A is a bounded subset in $W_{0}^{1, p}(\Omega)$, then $\overline{N_{g}(A)}$ is compact in $L^{\frac{s}{s-1}}(\Omega)$.

Proof. (i) Put $\mu=s, q=s /(s-1)$ and

$$
g_{1}(x, \zeta)=g\left(x, \omega(x)^{-1} \zeta\right) \quad \forall(x, \zeta) \in \Omega \times \mathbb{R}
$$

By (2.6), we have

$$
\left|g_{1}(x, \zeta)\right| \leq|\zeta|^{s-1}+b(x) \quad h \forall(x, \zeta) \in \Omega \times \mathbb{R}
$$

On the other hand

$$
N_{g}(v)=N_{g_{1}} \circ T_{|\omega|}(v) \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

Since $w \in \mathcal{K}_{p, s}$, applying [4, Theorem 2.3], we complete the proof.
Theorem 2.9. Let $s \in\left(1, p^{*}\right)$, ω be in $\mathcal{K}_{p, s}$, a function $b \in L^{\frac{s}{s-1}}(\Omega)$ and g be a Caratheodory function from $\Omega \times \mathbb{R}$ into \mathbb{R}. Assume

$$
|g(x, z)| \leq|\omega(x)|^{s-1}|z|^{s-1}+b(x) \quad \forall(x, z) \in \Omega \times \mathbb{R}
$$

Put

$$
\begin{gathered}
G(x, t)=\int_{0}^{t} g(x, \xi) d \xi \quad \forall(x, t) \in \Omega \\
\Psi_{g}(u)=\int_{\Omega} G(x, t) d x \quad h \forall u \in W_{0}^{1, p}(\Omega) .
\end{gathered}
$$

We have
(i) $\left\{N_{G}\left(w_{n}\right)\right\}$ converges to $N_{G}(w)$ in $L^{1}(\Omega)$ when $\left\{w_{n}\right\}$ weakly converges to w in $W_{0}^{1, p}(\Omega)$.
(ii) Ψ_{g} is continuously Fréchet differentiable mapping from $W_{0}^{1, p}(\Omega)$ into \mathbb{R} and

$$
D \Psi_{g}(u)(\phi)=\int_{\Omega} g(x, \xi) \phi d x \quad h \forall u, \phi \in W_{0}^{1, p}(\Omega)
$$

(iii) If A is a bounded subset in $W_{0}^{1, p}(\Omega)$, then there is a positive real number M such that

$$
\left|\Psi_{g}(v)\right|+\left\|D \Psi_{g}(v)\right\| \leq M \quad h \forall v \in A
$$

Proof. Let $\mu=s, q=\frac{s}{s-1}$ and g_{1} be as in the proof of Theorem 2.8. Put

$$
\begin{gathered}
G_{1}(x, t)=\int_{0}^{t} g(x, \xi) d \xi \quad \forall(x, t) \in \Omega \\
\Psi_{g_{1}}(u)=\int_{\Omega} \int_{0}^{u(x)} g_{1}(x, \xi) d \xi d x \quad \forall u \in L^{p}(\Omega) .
\end{gathered}
$$

By [4, Theorem 2.8], $N_{G_{1}}$ is continuous from $L^{\frac{s}{s-1}}(\Omega)$ to $L^{1}(\Omega)$ and $\Psi_{g_{1}}$ is continuously Fréchet differentiable mapping from $L^{\frac{s}{s-1}}(\Omega)$ to \mathbb{R}. We see that $N_{G}=N_{G_{1}} \circ T_{\omega}$ and $\Psi_{g}=\Psi_{g_{1}} \circ T_{\omega}$. By Theorem 2.3. we complete the proof.

For $\omega=1$, Theorems 2.8 and 2.9 have been proved in 2, 4, 8.
Example 2.10. Let $\Omega=\left\{x \in \mathbb{R}^{5}:\|x\|<1\right\}, p=3, s=4, \alpha=\frac{3}{4}$ and $\rho(x)=$ $\left(\frac{1}{2}-\|x\|^{2}\right)^{2}\left(1-\|x\|^{2}\right)^{-\frac{7}{16}}$ for every x in Ω. By Example 2.7, $\rho \in \mathcal{K}_{3,4}$. Put $a(x)=\rho(x)^{s-1}=\left(\frac{1}{2}-\|x\|^{2}\right)^{6}\left(1-\|x\|^{2}\right)^{-\frac{21}{16}}$ for every x in Ω. Thus a is not integrable on Ω and Theorem 2.9 improves corresponding results in [2, 4, 8].

3. Proof of main theorems

Put

$$
\begin{equation*}
J(u)=\frac{1}{p}\|u\|_{1, p}^{p}-\int_{\Omega} F(x, u) d x \quad \forall u \in W_{0}^{1, p}(\Omega) \tag{3.1}
\end{equation*}
$$

By [5, Theorem 9], Theorem 2.9 and (A1), J is continuously Fréchet differentiable on $W_{0}^{1, p}(\Omega)$ and

$$
\begin{equation*}
D J(u)(v)=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x-\int_{\Omega} f(x, u) \cdot v d x \forall u, v \in W_{0}^{1, p}(\Omega) \tag{3.2}
\end{equation*}
$$

To prove the theorems, we need following lemmas.
Lemma 3.1. Under conditions (A3) and (A4), there exists positive numbers ρ and η such that $J(u) \geq \eta$ for all u in $W_{0}^{1, p}(\Omega)$ with $\|u\|=\rho$.

Proof. Suppose by contradiction that

$$
\inf \left\{J(u): u \in W_{0}^{1, p}(\Omega),\|u\|_{1, p}=\frac{1}{n}\right\} \leq 0 \quad \forall n \in \mathbb{N}
$$

Then there is a sequence $\left\{u_{n}\right\}$ in $W_{0}^{1, p}(\Omega)$ such that $\left\|u_{n}\right\|_{1, p}=\frac{1}{n}$ and $J\left(u_{n}\right)<\frac{1}{n^{p+1}}$. By replacing $\left\{u_{n}\right\}$ by its subsequence, by [3, Theorem 4.9], we can suppose that $\lim _{n \rightarrow \infty} u_{n}(x)=0$ for every x in $\Omega,\left\{\frac{u_{n}}{\left\|u_{n}\right\|_{1, p}}\right\}$ strongly (resp. pointwisely) converges to w in $L^{p}(\Omega)$ (resp. on Ω) and

$$
\begin{aligned}
\frac{1}{n} & >\frac{J\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p}} \\
& =\frac{1}{p}-\int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, p}^{p}} d x \\
& =\frac{1}{p}-\int_{\Omega} \int_{0}^{1} f\left(x, s u_{n}(x)\right) \frac{u_{n}(x)}{\left\|u_{n}\right\|_{1, p}^{p}} d s d x \\
& =\frac{1}{p}-\int_{\Omega} \int_{0}^{1} \frac{f\left(x, s u_{n}(x)\right)}{\left(s u_{n}(x)\right)^{p-2} s u_{n}(x)} s^{p-1} \frac{\left|u_{n}(x)\right|^{p}}{\left\|u_{n}\right\|_{1, p}^{p}} d s d x .
\end{aligned}
$$

Hence by the generalized Fatou Lemma, (A3) and (A4)

$$
\begin{aligned}
0 & =\liminf _{n \rightarrow \infty} \frac{1}{n} \\
& =\frac{1}{p}-\limsup _{n \rightarrow \infty} \int_{\Omega} \int_{0}^{1} \frac{f\left(x, s u_{n}(x)\right)}{\left(s u_{n}(x)\right)^{p-2} s u_{n}(x)} s^{p-1} \frac{\left|u_{n}(x)\right|^{p}}{\left\|u_{n}\right\|_{1, p}^{p}} d s d x \\
& \geq \frac{1}{p}-\int_{\Omega} \int_{0}^{1} \limsup _{n \rightarrow \infty}\left[\frac{f\left(x, s u_{n}(x)\right)}{\left(s u_{n}(x)\right)^{p-2} s u_{n}(x)} s^{p-1} \frac{\left|u_{n}(x)\right|^{p}}{\left\|u_{n}\right\|_{1, p}^{p}}\right] d s d x=\frac{1}{p} .
\end{aligned}
$$

This contradiction completes the proof.
Lemma 3.2. Let ρ be as in Lemma 3.1. Under conditions (A3) and (A5), there is e in $W_{0}^{1, p}(\Omega) \backslash B(0, \rho)$ such that $J(e)<0$.

Proof. Let $u \in W_{0}^{1, p}(\Omega)$ such that $\|u\|_{1, p}=1$ and $u>0$ on Ω. By (3.1), we have

$$
J(n u)=\frac{n^{p}}{p}-\int_{\Omega} \int_{0}^{n u(x)} f(x, s) d s d x
$$

$$
\begin{aligned}
& =\frac{n^{p}}{p}-\int_{\Omega} \int_{0}^{1} f(x, \xi n u(x)) n u(x) d \xi d x \\
& =\frac{n^{p}}{p}\left[1-p \int_{\Omega} \int_{0}^{1} \frac{f(x, \xi n u(x))}{(\xi n u(x))^{p-1}} \xi^{p-1} u(x)^{p} d \xi d x\right]
\end{aligned}
$$

By Sobolev's embedding theorem, u belongs to $L^{\frac{N p}{N-p}}(\Omega)$. By (A3), $d|u|^{p}$ is integrable and $\frac{f(x, \xi n u(x))}{|\xi n u(x)|^{p-2} \xi n u(x)}|u(x)|^{p} \geq d(x)|u(x)|^{p}$ for every integer $n, x \in \Omega$ and $\xi \in(0,1)$. Hence, by the generalized Fatou lemma, (A3) and (A5), we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left[1-p \int_{\Omega} \int_{0}^{1} \frac{f(x, \xi n u(x))}{|\xi n u(x)|^{p-2} \xi n u(x)} \xi^{p-1}|u(x)|^{p} d \xi d x\right] \\
& =1-\liminf _{n \rightarrow \infty}\left[p \int_{\Omega} \int_{0}^{1} \frac{f(x, \xi n u(x))}{|\xi n u(x)|^{p-2} \xi n u(x)} \xi^{p-1}|u(x)|^{p} d \xi d x\right] \\
& \leq 1-p \int_{\Omega} \int_{0}^{1} \liminf _{n \rightarrow \infty}\left[\frac{f(x, \xi n u(x))}{|\xi n u(x)|^{p-2} \xi n u(x)} \xi^{p-1}|u(x)|^{p}\right] d \xi d x=-\infty
\end{aligned}
$$

which implies $\lim _{n \rightarrow \infty} J(n u)=-\infty$.
Lemma 3.3. Under conditions (A2) and (A6), there is a positive real number C_{1} such that

$$
f(x, s) s-p F(x, s) \leq f(x, t) t-p F(x, t)+C_{1} d(x) \quad \forall x \in \Omega,|s| \leq|t|
$$

Proof. By the proof of [14, Lemma 2.3], (A2) and (A6), we have

$$
f(x, s) s-p F(x, s) \leq f(x, t) t-p F(x, t) \quad \forall x \in \Omega, C \leq s \leq t
$$

Let $x \in \Omega$ and $\xi \in[-C, C]$. By (A2), we have

$$
|f(x, \xi) \xi| \leq C d(x), \quad|F(x, \xi)| \leq \int_{0}^{\xi} d(x) d y \leq C d(x)
$$

Hence

$$
\begin{aligned}
f(x, s) s-p F(x, s) & \leq f(x, t) t-p F(x, t)+2(1+p) C d(x) \quad \forall x \in \Omega, 0 \leq s \leq t \leq C \\
f(x, s) s-p F(x, s) & \leq f(x, C) C-p F(x, C)+2(1+p) C d(x) \\
& \leq f(x, t) t-p F(x, t)+2(1+p) C d(x) \quad \forall x \in \Omega, 0 \leq s \leq C \leq t
\end{aligned}
$$

Thus we get the lemma when $0 \leq s \leq t$. Similarly we obtain it if $t \leq s \leq 0$.
Lemma 3.4. Assume (A1)-(A3), (A5), (A6) hold. Let $\left\{u_{n}\right\}$ be a sequence in $W_{0}^{1, p}(\Omega)$ such that $\left\{J\left(u_{n}\right)\right\}$ is bounded and $\lim _{n \rightarrow \infty}\left(1+\left\|u_{n}\right\|_{1, p}\right)\left\|D J\left(u_{n}\right)\right\|=0$. Then $\left\{u_{n}\right\}$ has a subsequence converging in $W_{0}^{1, p}(\Omega)$.

Proof. We shall use the technique in [14, 16]. If $\left\{u_{n}\right\}$ is unbounded, up to a subsequence we may assume that for some c in \mathbb{R} such that $\lim _{n}\|u\|_{1, p}=\infty$, $\lim _{n} J(u)=c$ and $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{1, p}\left\|D J\left(u_{n}\right)\right\|=0$. Thus

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\Omega}\left(\frac{1}{p} f\left(x, u_{n}(x)\right) u_{n}(x)-F\left(x, u_{n}(x)\right)\right) d x \tag{3.3}\\
& =\lim _{n \rightarrow \infty}\left(J\left(u_{n}\right)-\frac{1}{p}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right)=c
\end{align*}
$$

Put $w_{n}=\left\|u_{n}\right\|_{1, p}^{-1} u_{n}$ for every n in \mathbb{N}. Since $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$, by replacing $\left\{u_{n}\right\}$ by its subsequence, we can suppose $\left\{w_{n}\right\}$ converges weakly to w in $W_{0}^{1, p}(\Omega)$ (resp. strongly in $L^{p}(\Omega)$, pointwisely in Ω).

Consider the case $w=0$. By the continuity of J, there is t_{n} in $[0,1]$ such that $J\left(t_{n} u_{n}\right)=\max \left\{J\left(s u_{n}\right): s \in[0,1]\right\}$ for every positive integer n. Fix a positive integer m and put $v_{n}=(2 p m)^{1 / p} w_{n}$ for every positive integer n. Then $\left\{v_{n}\right\}$ converges weakly to 0 in $W_{0}^{1, p}(\Omega)$ (resp. strongly in $L^{p}(\Omega)$, pointwisely in Ω). Therefore, by Theorem 2.9. $\left\{N_{F}\left(\left(v_{n}\right)\right\}\right.$ converges to $N_{F}(0)=0$ in $L^{1}(\Omega)$. Thus

$$
\lim _{n \rightarrow \infty} \int_{\Omega} F\left(x, v_{n}(x)\right) d x=0
$$

Since $\lim _{n \rightarrow \infty}(2 p m)^{1 / p}\left\|u_{n}\right\|_{1, p}^{-1}=0$, there is an integer N_{m} such that $t_{n} \in[0,1]$ and

$$
J\left(t_{n} u_{n}\right) \geq J\left(v_{m}\right)=2 m-\int_{\Omega} F\left(x, v_{m}\right) \geq m \quad \forall n \geq N_{m}
$$

that is, $\lim _{n \rightarrow \infty} J\left(t_{n} u_{n}\right)=\infty$. Since $J(0)=0$ and $\lim _{n \rightarrow \infty} J\left(u_{n}\right)=c$, it implies $t_{n} \in(0,1)$ for any sufficiently large n and

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(t_{n} u_{n}\right)\right|^{p}-\int_{\Omega} f\left(x, t_{n} u_{n}\right) t_{n} u_{n} d x & =\left\langle J^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle \\
& =\left.t_{n} \frac{d}{d t}\right|_{t=t_{n}} J\left(t, u_{n}\right)=0
\end{aligned}
$$

Therefore, by Lemma 3.3, we get

$$
\begin{aligned}
& \int_{\Omega}\left(\frac{1}{p} f\left(x, u_{n}(x)\right) u_{n}(x)-F\left(x, u_{n}(x)\right)\right) d x \\
& \geq \int_{\Omega}\left(\frac{1}{p} f\left(x, t_{n} u_{n}(x)\right) t_{n} u_{n}(x)-F\left(x, t_{n} u_{n}(x)\right)\right) d x-C_{1}\|d\|_{L^{1}(\Omega)} \\
& =\int_{\Omega}\left(\frac{1}{p}\left|\nabla t_{n} u_{n}(x)\right|^{p}-F\left(x, t_{n} u_{n}(x)\right)\right) d x-C_{1}\|d\|_{L^{1}(\Omega)} \\
& =J\left(t_{n} u_{n}\right)-C_{1}\|d\|_{L^{1}(\Omega)} \rightarrow \infty,
\end{aligned}
$$

which contradicts (3.3).
If $w \neq 0$, the Lebesgue measure of the set $\Theta=\{x \in \Omega: w(x) \neq 0\}$ is positive. We have $\lim _{n \rightarrow \infty}\left|u_{n}(x)\right|=\infty$ for every x in Θ. Thus, By the generalized Fatou lemma, (A3) and (A5), we have

$$
\begin{aligned}
0= & \liminf _{n \rightarrow \infty}\left[\frac{1}{p}-\frac{J\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}}\right]=\liminf _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, p}^{p}} d x \\
\geq & \liminf _{n \rightarrow \infty}\left[\int_{\Theta} \int_{0}^{1} \frac{f\left(x, \xi u_{n}(x)\right)}{\left|\xi u_{n}(x)\right|^{p-2} \xi u_{n}(x)}\left|\xi w_{n}(x)\right|^{p} d \xi d x\right. \\
& \left.+\int_{\Omega \backslash \Theta} \int_{0}^{1} d_{1}\left|\xi w_{n}(x)\right|^{p} d \xi d x\right] \\
\geq & \int_{\Theta} \int_{0}^{1} \liminf _{n \rightarrow \infty} \frac{f\left(x, \xi u_{n}(x)\right)}{\left(\left|\xi u_{n}(x)\right|^{p-2} \xi u_{n}(x)\right.}\left|\xi w_{n}(x)\right|^{p} d \xi d x \\
& -\left\|d_{1}\right\|_{L^{\frac{n}{p}}(\Omega)}\left\|w_{n}\right\|_{L^{\frac{N p}{N-p}}(\Omega)}=\infty
\end{aligned}
$$

which is impossible. In any case, we obtain a contradiction. Therefore $\left\{u_{n}\right\}$ is bounded. By Theorem 2.8, there is a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that $\left\{u_{n_{k}}\right\}$
weakly converges to u in $W_{0}^{1, p}(\Omega)$ and $\left\{N_{f}\left(u_{n_{k}}\right)\right\}$ weakly converges to $N_{f}(u)$ in $L^{\frac{p}{p-1}}(\Omega)$. Arguing as in the proof of [4, Lemma 6.2], we see that $\left\{u_{n_{k}}\right\}$ converges to u in $W_{0}^{1, p}(\Omega)$.

Proof of theorem 1.1. Using the Mountain-pas theorem with the Cerami condition, by Lemmas $3.1,3.2$ and 3.4 , we obtain a non-trivial weak solution for the problem (1.1).

Example 3.5. Let $N=5, p=3, r=4, \alpha>0, \Omega=\left\{x \in \mathbb{R}^{5}:\|x\|<1\right\}$,

$$
\begin{aligned}
& \omega_{0}(x)=|x|^{-1 / 30} \cos (16|x|) \quad \forall x \in \Omega, \\
& \omega_{1}(x)=\left(\frac{1}{2}-\|x\|^{2}\right)^{2}\left(1-\|x\|^{2}\right)^{-7 / 6} \quad \forall x \in \Omega, \\
& \varphi_{0}(t)= \begin{cases}|t|^{r-2} t(1-|t|) & \text { if }|t| \leq 1, \\
0 & \text { if }|t| \in \mathbb{R} \backslash[-1,1],\end{cases} \\
& \varphi_{1}(t)=|t|^{p-2} t \varphi_{1}(t) \log (1+|t|) \quad h \forall t \in \mathbb{R}, \\
& f(x, t)=\omega_{0}(x)^{r-1} \varphi_{0}(t)+\omega_{1}(x)^{r-1} \varphi_{1}(t) \quad \forall(x, t) \in \Omega \times \mathbb{R} .
\end{aligned}
$$

Let $\omega=\left|\omega_{0}\right|+\omega_{1}, C=1, d(x)=|x|^{-\frac{1}{30}}, d_{1}(x)=-d(x)$ and $d_{2}(x)=|x|^{-\frac{1}{30}}$ for every x in Ω. We see that $d \in L^{1}(\Omega), d_{1} \in L^{\frac{N}{p}}(\Omega)$ and $d_{2} \in L^{1}(\Omega)$. By Examples 2.5 and 2.7, ω is in $\mathcal{K}_{p, r}$. Thus f satisfies conditions (A1)-(A5). Since $\lim _{|x| \rightarrow 0} \omega_{0}(x)=\infty$ and $\lim _{|x| \rightarrow \frac{1}{2}} \omega_{1}(x)=0$, the convergence in (A4) and (A5) are not uniform on Ω.

We have $\frac{f(x, t)}{|t|^{p-2} t}=\omega_{1}(x)(|t|-1) \log (1+|t|)$ for every $t \in[-2,2] \backslash[-1,1]$ and $\frac{f(x, t)}{|t|^{p-2} t}=\omega_{1}(x) \log (1+|t|)$ for every $t \in \mathbb{R} \backslash[-2,2]$. Thus f satisfies (A6). Therefore we can apply Theorem 1.1 to f with $C=1$ respectively. Since $\omega^{r-1}(x) \geq(1-$ $\left.\|x\|^{2}\right)^{-\frac{21}{16}}$ for every x in Ω, ω^{r-1} is not integrable on Ω. Therefore the results in [1, 5, 7, 11, 12, 13, 14, 16, 17] can not be applied to solve (1.1) in these cases.

Acknowledgements. This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.04.

References

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[2] J. Appell, P. Zabreiko; Nonlinear superposition operators. Cambridge University Press, 2008.
[3] H. Brezis; Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.
[4] D. G. De Figueiredo; Lectures on the Ekeland variational principle with applications and detours, Tata Institute of Foundational research, Bombay, 1989.
[5] G. Dinca, P. Jebelean, J. Mawhin; Variational and topological methods for Dirichlet problems with p-Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.
[6] D. M. Duc.; Nonlinear singular elliptic equations, J. London Math. Soc. (2) 40 (1989), 420440.
[7] D. M. Duc, N. T. Vu; Non-uniformly elliptic equations of p-Laplacian type. Nonlinear Analysis, 61 (2005), 1483-1495.
[8] M. A. Kranosel'skii; Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964.
[9] A. Kufner; Weighted Sobolev spaces, Wiley, New York, 1985.
[10] A. Kufner, O. John, S. Fucik; Function spaces, Noordhoff, Leyden 1977.
[11] G. Li, C. Wang; The existence of a non-trivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Annales Acad. Scientiarum Fenn. Math., 36 (2011), 461-480.
[12] S. Li, S. P. Wu, H. S. Zhou; Solutions to semilinear elliptic problems with combined nonlinearities, Journal of Differential Equations, 185 (2002), 200-224.
[13] S. B. Liu; Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations, 66 (2001), 1-6.
[14] S. Liu; On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
[15] V. G. Mazja; Sobolev spaces, Springer, Berlin, 1985.
[16] O. Miyagaki, M. Souto; Super-linear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), 3628-3638.
[17] P. De Nápoli, M. C. Mariani; Mountain pass solutions to equations of p-Laplacian type, Nonlinear Anal., 54 (2003), 1205-1219.
[18] B. Opic, A. Kufner; Remark on compactness of imbeddings in weighted spaces, Math. Nachr., 133 (1987), 63-70.

Duong Minh Duc
University of Sciences, Vietnam National University, 227 Nguyen Van Cu Q5, Hochiminh City, Vietnam

E-mail address: dmduc@hcmus.edu.vn

[^0]: 2010 Mathematics Subject Classification. 46E35, 35J20.
 Key words and phrases. Nemytskii operators; p-Laplacian; multiplicity of solutions; mountain-pass theorem.
 (C)2017 Texas State University.

 Submitted May 8, 2017. Published October 10, 2017.

