
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 251, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTIONS TO SUPERLINEAR P-LAPLACE
EQUATIONS WITHOUT AMBROSETTI-RABINOWIZT

CONDITION

DUONG MINH DUC

Abstract. We study the existence of non-trivial weak solutions in W 1,p
0 (Ω)

of the super-linear Dirichlet problem

− div(|∇u|p−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,

where f satisfies the condition

|f(x, t)| ≤ |ω(x)t|r−1 + b(x) ∀(x, t) ∈ Ω× R,

where r ∈ (p, Np
N−p

), b ∈ L
r
r−1 (Ω) and |ω|r−1 may be non-integrable on Ω.

1. Introduction

Let N be an integer ≥ 3, Ω be a bounded domain in RN with smooth boundary
∂Ω, p be in [1, N) and p∗ = Np

N−p . Let W 1,p
0 (Ω) be the usual Sobolev space with

the following norm

‖u‖1,p =
{∫

Ω

|∇u|pdx
}1/p

∀u ∈W 1,p
0 (Ω).

We consider the Dirichlet problem

−div(|∇u|p−2∇u) = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.1)

where f is a real Carathéodory function on Ω × R and satisfies the following con-
ditions

(A1) there exist r ∈ (p, p∗), ω ∈ Kp,r (see Definition 2.1) and b ∈ L
r
r−1 (Ω) such

that
|f(x, t)| ≤ |ω(x)t|r−1 + b(x) ∀(x, t) ∈ Ω× R,

(A2) there exist C ∈ [0,∞) and d ∈ L1(Ω) such that |f(x, t)| ≤ d(x) for every x
in Ω and |t| ≤ C,

(A3) there is d1 in L
N
p (Ω) such that d1(x) ≤ f(x,t)

|t|p−2t for every (x, t) ∈ Ω× R,

(A4) f(x, 0) = 0 for every x in Ω and limt→0
f(x,t)
|t|p−2t = 0 a.e. in Ω, and
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(A5) lim|t|→∞
f(x,t)
|t|p−2t =∞ a.e. in Ω.

The integrability of |ω|r−1 is essential in [1, 5, 7, 11, 12, 13, 14, 16, 17], because
these papers have used the differentiability of Nemytskii from Lq1(Ω) into Lq2(Ω)
(see [5, 4]) and the Sobolev embedding from W p

0 (Ω) into Lq1(Ω). In the present
paper, using weighted Sobolev embeddings in [6, 10, 9, 15, 18] instead of classical
one in [3], we can study the problem (1.1) with non-integrable functions |ω|r−1 in
(A1).

In many applications, f(x,t)
|t|p−2t is non-negative for t 6= 0 and |f(x, t)| is well-

controlled when |t| is sufficiently small. This observation is the motivation of (A2)
and (A3). Here we consider the case, in which the positivity of f(x,t)

|t|p−2t can be

disturbed by a function d1 ∈ L
N
p (Ω).

In (A4) and (A5), we do not need the uniform convergence as in [1, 5, 7, 11,
12, 13, 14, 16, 17]. We study the problem (1.1) without Ambrosetti-Rabinowizt
condition. Our main result is the following theorems under the assumption

(A6) f(x,t)
|t|p−2t is increasing in t ≥ C and decreasing in t ≤ −C for every x in Ω.

Theorem 1.1. Assume f satisfies (A1)-(A6). Then there is a non-trivial weak
solution in W 1,p

0 (Ω) of the problem (1.1).

Remark 1.2. If f is continuous on Ω× R and satisfies the following conditions
(A1’) There exist r ∈ (p, p∗ − 1) and a positive real number α such that

|f(x, t)| ≤ α(1 + |t|r−1) ∀(x, t) ∈ Ω× R.

(A4’) f(x, 0) = 0 for every x in Ω and limt→0
f(x,t)
|t|p−2t = 0 uniformly in Ω.

(A5’) lim|t|→∞
f(x,t)
|t|p−2t =∞ uniformly in Ω.

Then f satisfies (A1)–(A5). Therefore our theorem improves the corresponding
results in [14, 16].

We study a method for constructing weight functions in weighted Sobolev em-
beddings and the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see
Theorems 2.8 and 2.9). We apply these results to prove the existence of non-trivial
solutions of a class of super-linear p-Laplacian problem in the last section.

2. Nemytskii operators

Definition 2.1. Let σ be a measurable function on Ω. We put

Tσu = σu h∀u ∈W 1,p
0 (Ω).

We say that

(i) σ is of class Cp,s, if Tσ is a continuous mapping from W 1,p
0 (Ω) into Ls(Ω),

(ii) σ is of class Kp,s, if Tσ is a compact mapping from W 1,p
0 (Ω) into Ls(Ω).

We have following results.

Theorem 2.2. Let α1 and α2 be in [1,∞) such that α1 < α2. Let ω1 ∈ Cp,α1 ,
ω2 ∈ Cp,α2 such that ω1 and ω2 are non-negative. Let β ∈ (α1, α2) and ω =

ω
α1(α2−β)
β(α2−α1)

1 ω
α2(β−α1)
β(α2−α1)

2 . Then w ∈ Cp,β.
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Proof. There is a positive real number C1 such that{∫
Ω

ωαii |u|
αidx

}1/αi
≤ C1‖u‖1,p h∀u ∈W 1,p

0 (Ω), i = 1, 2. (2.1)

Since β = α2−β
α2−α1

α1 + β−α1
α2−α1

α2, by Hölder’s inequality and (2.1), we get{∫
Ω

ωβ |u|βdx
}1/β

=
{∫

Ω

ω
α2−β
α2−α1

α1

1 |u|
α2−β
α2−α1

α1ω
β−α1
α2−α1

α2

2 |u|
β−α1
α2−α1

α2dx
}1/β

≤
{{∫

Ω

ωα1
1 |u|α1dx

} α2−β
α2−α2

{∫
Ω

ωα2
2 |u|α2dx

} β−α1
α2−α1

}1/β

≤
{{∫

Ω

ωα1
1 |u|α1dx

} 1
α1

α2−β
α2−α2

α1
{∫

Ω

ωα2
2 |u|α2dx

} 1
α2

β−α1
α2−α1

α2
}1/β

≤ C1‖u‖1,p ∀u ∈W 1,p
0 (Ω).

�

Theorem 2.3. Let s be in [1, Np
N−p ), α be in (0, 1), ω ∈ Cp,s and θ be measurable

functions on Ω such that ω ≥ 0 and |θ| ≤ ωα. Then θ is of class Kp,s.

Proof. Since Tω is in Cp,s, Tω is continuous from W 1,p
0 (Ω) into Ls(Ω) and there is

a positive real number C2 such that{∫
Ω

|u|sωsdx
}1/s

≤ C2‖u‖1,p ∀u ∈W 1,p
0 (Ω). (2.2)

Since ωα(x) ≤ 1+ω(x) for every x in Ω and 1 and ω are in Cp,s, ωα belongs to Cp,s.
Thus Tθ is in Cp,s. Let M be a positive real number and {un} be a sequence in
W 1,p

0 (Ω), such that ‖un‖1,p ≤ M for any n. By Rellich-Kondrachov’s theorem [3,
Theorem 9.16], {un} has a subsequence {unk} converging to u in Ls(Ω) and {unk}
converging weakly to u in W 1,p

0 (Ω), therefore ‖u‖1,p ≤ lim infk→∞ ‖unk‖1,p ≤ M .
We shall prove {Tθ(unk)} converges to Tθ(u) in Ls(Ω).

Let ε be a positive real number. Choose a positive real number δ such that

(2C2M)sδ(α−1)s <
εs

2
. (2.3)

Put Ω′ = {x ∈ Ω : ω(x) > δ}. By (2.2) and (2.3), we have∫
Ω

|θ(unk − u)|sdx

=
∫

Ω

|unk − u|s|θ|sdx

≤
∫

Ω′
|unk − u|sωαsdx+

∫
Ω\Ω′

|unk − u|sωαsdx

≤ δ(α−1)s

∫
Ω′
|unk − u|sωsdx+ δαs

∫
Ω\Ω′

|unk − u|sdx

≤ δ(α−1)s

∫
Ω

|unk − u|sωsdx+ δαs
∫

Ω

|unk − u|sdx
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≤ δ(α−1)s (C2‖unk − u‖1,p)
s + δαs

∫
Ω

|unk − u|sdx

≤ δ(α−1)s(2C2M)s + δαs
∫

Ω

|unk − u|sdx

≤ εs

2
+ δαs

∫
Ω

|unk − u|sdx. (2.4)

Since {unk} converges in Ls(Ω), there is an integer k0 such that∫
Ω

|unk − u|sdx ≤ δ−αs
εs

2
h∀k ≥ k0. (2.5)

Combining (2.4) and (2.5), we complete the proof. �

Corollary 2.4. Let p ∈ [1, N), s ∈ (1, Np
N−p ), η ∈ ( sNp

Np−s(N−p) ,∞) and θ ∈ Lη(Ω).
Then θ is in Kp,s.

Proof. Let β ∈ (0, 1) such that βη = sNp
Np−s(N−p) and ω = |θ|1/β . Then ω is in

L
sNp

Np−s(N−p) (Ω). Since Np−s(N−p)
Np + s(N−p)

Np = 1, by Hölder’s inequality, we have∫
Ω

|ωu|sdx ≤
∫

Ω

(|ω|
sNp

Np−s(N−p) )
Np−s(N−p)

Np

(∫
Ω

|u|
Np
N−p

) s(N−p)
Np ∀u ∈W 1,p

0 (Ω),

which implies that Tω is continuous at 0 in W 1,p
0 (Ω). Thus Tω is a linear continuous

map from W 1,p
0 (Ω) into Ls(Ω). By Theorem 2.3, is of class Kp,r. �

Example 2.5. Let N = 5, p = 3, s = 4 and Ω = {x ∈ R5 : |x| < 1}. Then
sNp

Np−s(N−p) = 4.5.3
5.3−4(5−3) = 60

7 < 10. Put ω0 = |x|− 1
30 cos(16|x|), then ω0 is in

L10(Ω). Thus by Corollary 2.4, ω0 is of class Kp,s.

Corollary 2.6. Let p ∈ [1, N), s ∈ (1, Np
N−p ), α be in (0, 1) and η ∈ Cp,p. Then

θ = ηα
p(p∗−s)
s(p∗−p) is of class Kp,s.

Proof. Put ω1 = η, ω2 = 1, α1 = p, α2 = p∗, β = s. By the Embedding theorem

of Sobolev, ω2 ∈ Cp,p∗ . By Theorem 2.2, we see that η
p(p∗−s)
s(p∗−p) ∈ Cp,s. Thus by

Theorem 2.3, ηα
p(p∗−s)
s(p∗−p) is of class Kp,s. �

Example 2.7. Let Ω = {x ∈ R5 : ‖x‖ < 1}, p = 3, s = 4, α = 3
4 and η(x) = (1−

‖x‖2)−1 for every x in Ω. By [9, Theorem 8.4], η ∈ Cp,p. Note that p∗ = Np
N−p = 15

2

and

α
p(p∗ − s)
s(p∗ − p)

=
3
4

3
4

7
9

=
7
16
.

Put θ(x) = (1− ‖x‖2)−
7
16 for every x in Ω. Then θ ∈ K3,4.

Theorem 2.8. Let s be in (1, p∗), ω be in Kp,s, b be in L
s
s−1 (Ω) and g be a

Caratheodory function from Ω× R into R. Assume

|g(x, z)| ≤ |ω(x)|s−1|z|s−1 + b(x) h∀(x, z) ∈ Ω× R. (2.6)

Put Ng(v)(x) = g(x, v(x)) for v ∈W 1,p
0 (Ω), x ∈ Ω. We have

(i) Ng is a continuous mapping from W 1,p
0 (Ω) into L

s
s−1 (Ω).

(ii) If A is a bounded subset in W 1,p
0 (Ω), then Ng(A) is compact in L

s
s−1 (Ω).
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Proof. (i) Put µ = s, q = s/(s− 1) and

g1(x, ζ) = g(x, ω(x)−1ζ) ∀(x, ζ) ∈ Ω× R,

By (2.6), we have

|g1(x, ζ)| ≤ |ζ|s−1 + b(x) h∀(x, ζ) ∈ Ω× R.

On the other hand

Ng(v) = Ng1 ◦ T|ω|(v) ∀v ∈W 1,p
0 (Ω).

Since w ∈ Kp,s, applying [4, Theorem 2.3], we complete the proof. �

Theorem 2.9. Let s ∈ (1, p∗), ω be in Kp,s, a function b ∈ L
s
s−1 (Ω) and g be a

Caratheodory function from Ω× R into R. Assume

|g(x, z)| ≤ |ω(x)|s−1|z|s−1 + b(x) ∀(x, z) ∈ Ω× R.

Put

G(x, t) =
∫ t

0

g(x, ξ)dξ ∀(x, t) ∈ Ω,

Ψg(u) =
∫

Ω

G(x, t)dx h∀u ∈W 1,p
0 (Ω).

We have
(i) {NG(wn)} converges to NG(w) in L1(Ω) when {wn} weakly converges to w

in W 1,p
0 (Ω).

(ii) Ψg is continuously Fréchet differentiable mapping from W 1,p
0 (Ω) into R and

DΨg(u)(φ) =
∫

Ω

g(x, ξ)φdx h∀u, φ ∈W 1,p
0 (Ω).

(iii) If A is a bounded subset in W 1,p
0 (Ω), then there is a positive real number

M such that

|Ψg(v)|+ ‖DΨg(v)‖ ≤M h∀v ∈ A.

Proof. Let µ = s, q = s
s−1 and g1 be as in the proof of Theorem 2.8. Put

G1(x, t) =
∫ t

0

g(x, ξ)dξ ∀(x, t) ∈ Ω,

Ψg1(u) =
∫

Ω

∫ u(x)

0

g1(x, ξ)dξdx ∀u ∈ Lp(Ω).

By [4, Theorem 2.8], NG1 is continuous from L
s
s−1 (Ω) to L1(Ω) and Ψg1 is continu-

ously Fréchet differentiable mapping from L
s
s−1 (Ω) to R. We see thatNG = NG1◦Tω

and Ψg = Ψg1 ◦ Tω. By Theorem 2.3, we complete the proof. �

For ω = 1, Theorems 2.8 and 2.9 have been proved in [2, 4, 8].

Example 2.10. Let Ω = {x ∈ R5 : ‖x‖ < 1}, p = 3, s = 4, α = 3
4 and ρ(x) =

( 1
2 − ‖x‖

2)2(1 − ‖x‖2)−
7
16 for every x in Ω. By Example 2.7, ρ ∈ K3,4. Put

a(x) = ρ(x)s−1 = (1
2 − ‖x‖

2)6(1 − ‖x‖2)−
21
16 for every x in Ω. Thus a is not

integrable on Ω and Theorem 2.9 improves corresponding results in [2, 4, 8].
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3. Proof of main theorems

Put

J(u) =
1
p
‖u‖p1,p −

∫
Ω

F (x, u)dx ∀u ∈W 1,p
0 (Ω). (3.1)

By [5, Theorem 9], Theorem 2.9 and (A1), J is continuously Fréchet differentiable
on W 1,p

0 (Ω) and

DJ(u)(v) =
∫

Ω

|∇u|p−2∇u.∇vdx−
∫

Ω

f(x, u).vdx ∀u, v ∈W 1,p
0 (Ω) (3.2)

To prove the theorems, we need following lemmas.

Lemma 3.1. Under conditions (A3) and (A4), there exists positive numbers ρ and
η such that J(u) ≥ η for all u in W 1,p

0 (Ω) with ‖u‖ = ρ.

Proof. Suppose by contradiction that

inf{J(u) : u ∈W 1,p
0 (Ω), ‖u‖1,p =

1
n
} ≤ 0 ∀n ∈ N.

Then there is a sequence {un} in W 1,p
0 (Ω) such that ‖un‖1,p = 1

n and J(un) < 1
np+1 .

By replacing {un} by its subsequence, by [3, Theorem 4.9], we can suppose that
limn→∞ un(x) = 0 for every x in Ω, { un

‖un‖1,p } strongly (resp. pointwisely) converges
to w in Lp(Ω) (resp. on Ω) and

1
n
>

J(un)
‖un‖p1,p

=
1
p
−
∫

Ω

F (x, un(x))
‖un‖p1,p

dx

=
1
p
−
∫

Ω

∫ 1

0

f(x, sun(x))
un(x)
‖un‖p1,p

ds dx

=
1
p
−
∫

Ω

∫ 1

0

f(x, sun(x))
(sun(x))p−2sun(x)

sp−1 |un(x)|p

‖un‖p1,p
ds dx.

Hence by the generalized Fatou Lemma, (A3) and (A4)

0 = lim inf
n→∞

1
n

=
1
p
− lim sup

n→∞

∫
Ω

∫ 1

0

f(x, sun(x))
(sun(x))p−2sun(x)

sp−1 |un(x)|p

‖un‖p1,p
ds dx

≥ 1
p
−
∫

Ω

∫ 1

0

lim sup
n→∞

[
f(x, sun(x))

(sun(x))p−2sun(x)
sp−1 |un(x)|p

‖un‖p1,p
] ds dx =

1
p
.

This contradiction completes the proof. �

Lemma 3.2. Let ρ be as in Lemma 3.1. Under conditions (A3) and (A5), there is
e in W 1,p

0 (Ω) \B(0, ρ) such that J(e) < 0.

Proof. Let u ∈W 1,p
0 (Ω) such that ‖u‖1,p = 1 and u > 0 on Ω. By (3.1), we have

J(nu) =
np

p
−
∫

Ω

∫ nu(x)

0

f(x, s) ds dx
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=
np

p
−
∫

Ω

∫ 1

0

f(x, ξnu(x))nu(x)dξdx

=
np

p
[1− p

∫
Ω

∫ 1

0

f(x, ξnu(x))
(ξnu(x))p−1

ξp−1u(x)pdξdx].

By Sobolev’s embedding theorem, u belongs to L
Np
N−p (Ω). By (A3), d|u|p is in-

tegrable and f(x,ξnu(x))
|ξnu(x)|p−2ξnu(x) |u(x)|p ≥ d(x)|u(x)|p for every integer n, x ∈ Ω and

ξ ∈ (0, 1). Hence, by the generalized Fatou lemma, (A3) and (A5), we have

lim sup
n→∞

[1− p
∫

Ω

∫ 1

0

f(x, ξnu(x))
|ξnu(x)|p−2ξnu(x)

ξp−1|u(x)|pdξdx]

= 1− lim inf
n→∞

[p
∫

Ω

∫ 1

0

f(x, ξnu(x))
|ξnu(x)|p−2ξnu(x)

ξp−1|u(x)|pdξdx]

≤ 1− p
∫

Ω

∫ 1

0

lim inf
n→∞

[
f(x, ξnu(x))

|ξnu(x)|p−2ξnu(x)
ξp−1|u(x)|p]dξdx = −∞,

which implies limn→∞ J(nu) = −∞. �

Lemma 3.3. Under conditions (A2) and (A6), there is a positive real number C1

such that

f(x, s)s− pF (x, s) ≤ f(x, t)t− pF (x, t) + C1d(x) ∀x ∈ Ω, |s| ≤ |t|.

Proof. By the proof of [14, Lemma 2.3], (A2) and (A6), we have

f(x, s)s− pF (x, s) ≤ f(x, t)t− pF (x, t) ∀x ∈ Ω, C ≤ s ≤ t.

Let x ∈ Ω and ξ ∈ [−C,C]. By (A2), we have

|f(x, ξ)ξ| ≤ Cd(x), |F (x, ξ)| ≤
∫ ξ

0

d(x)dy ≤ Cd(x).

Hence

f(x, s)s− pF (x, s) ≤ f(x, t)t− pF (x, t) + 2(1 + p)Cd(x) ∀x ∈ Ω, 0 ≤ s ≤ t ≤ C,
f(x, s)s− pF (x, s) ≤ f(x,C)C − pF (x,C) + 2(1 + p)Cd(x)

≤ f(x, t)t− pF (x, t) + 2(1 + p)Cd(x) ∀x ∈ Ω, 0 ≤ s ≤ C ≤ t.

Thus we get the lemma when 0 ≤ s ≤ t. Similarly we obtain it if t ≤ s ≤ 0. �

Lemma 3.4. Assume (A1)–(A3), (A5), (A6) hold. Let {un} be a sequence in
W 1,p

0 (Ω) such that {J(un)} is bounded and limn→∞(1 + ‖un‖1,p)‖DJ(un)‖ = 0.
Then {un} has a subsequence converging in W 1,p

0 (Ω).

Proof. We shall use the technique in [14, 16]. If {un} is unbounded, up to a
subsequence we may assume that for some c in R such that limn ‖u‖1,p = ∞,
limn J(u) = c and limn→∞ ‖un‖1,p‖DJ(un)‖ = 0. Thus

lim
n→∞

∫
Ω

(
1
p
f(x, un(x))un(x)− F (x, un(x)))dx

= lim
n→∞

(J(un)− 1
p
〈J ′(un), un〉) = c.

(3.3)
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Put wn = ‖un‖−1
1,pun for every n in N. Since {un} is bounded in W 1,p

0 (Ω), by
replacing {un} by its subsequence, we can suppose {wn} converges weakly to w in
W 1,p

0 (Ω) (resp. strongly in Lp(Ω), pointwisely in Ω).
Consider the case w = 0. By the continuity of J , there is tn in [0, 1] such that

J(tnun) = max{J(sun) : s ∈ [0, 1]} for every positive integer n. Fix a positive
integer m and put vn = (2pm)1/pwn for every positive integer n. Then {vn}
converges weakly to 0 in W 1,p

0 (Ω) (resp. strongly in Lp(Ω), pointwisely in Ω).
Therefore, by Theorem 2.9, {NF ((vn)} converges to NF (0) = 0 in L1(Ω). Thus

lim
n→∞

∫
Ω

F (x, vn(x))dx = 0.

Since limn→∞(2pm)1/p‖un‖−1
1,p = 0, there is an integer Nm such that tn ∈ [0, 1] and

J(tnun) ≥ J(vm) = 2m−
∫

Ω

F (x, vm) ≥ m ∀n ≥ Nm,

that is, limn→∞ J(tnun) = ∞. Since J(0) = 0 and limn→∞ J(un) = c, it implies
tn ∈ (0, 1) for any sufficiently large n and∫

Ω

|∇(tnun)|p −
∫

Ω

f(x, tnun)tnundx = 〈J ′(tnun), tnun〉

= tn
d

dt
|t=tnJ(t, un) = 0.

Therefore, by Lemma 3.3, we get∫
Ω

(
1
p
f(x, un(x))un(x)− F (x, un(x)))dx

≥
∫

Ω

(
1
p
f(x, tnun(x))tnun(x)− F (x, tnun(x)))dx− C1‖d‖L1(Ω)

=
∫

Ω

(
1
p
|∇tnun(x)|p − F (x, tnun(x)))dx− C1‖d‖L1(Ω)

= J(tnun)− C1‖d‖L1(Ω) →∞,

which contradicts (3.3).
If w 6= 0, the Lebesgue measure of the set Θ = {x ∈ Ω : w(x) 6= 0} is positive.

We have limn→∞ |un(x)| = ∞ for every x in Θ. Thus, By the generalized Fatou
lemma, (A3) and (A5), we have

0 = lim inf
n→∞

[
1
p
− J(un)
‖un‖1,p

] = lim inf
n→∞

∫
Ω

F (x, un(x))
‖un‖p1,p

dx

≥ lim inf
n→∞

[ ∫
Θ

∫ 1

0

f(x, ξun(x))
|ξun(x)|p−2ξun(x)

|ξwn(x)|p dξ dx

+
∫

Ω\Θ

∫ 1

0

d1|ξwn(x)|pdξdx
]

≥
∫

Θ

∫ 1

0

lim inf
n→∞

f(x, ξun(x))
(|ξun(x)|p−2ξun(x)

|ξwn(x)|p dξ dx

− ‖d1‖
L
n
p (Ω)
‖wn‖

L
Np
N−p (Ω)

=∞,

which is impossible. In any case, we obtain a contradiction. Therefore {un} is
bounded. By Theorem 2.8, there is a subsequence {unk} of {un} such that {unk}
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weakly converges to u in W 1,p
0 (Ω) and {Nf (unk)} weakly converges to Nf (u) in

L
p
p−1 (Ω). Arguing as in the proof of [4, Lemma 6.2], we see that {unk} converges

to u in W 1,p
0 (Ω). �

Proof of theorem 1.1. Using the Mountain-pas theorem with the Cerami condition,
by Lemmas 3.1, 3.2 and 3.4, we obtain a non-trivial weak solution for the problem
(1.1). �

Example 3.5. Let N = 5, p = 3, r = 4, α > 0, Ω = {x ∈ R5 : ‖x‖ < 1},

ω0(x) = |x|−1/30 cos(16|x|) ∀x ∈ Ω,

ω1(x) = (
1
2
− ‖x‖2)2(1− ‖x‖2)−7/6 ∀x ∈ Ω,

ϕ0(t) =

{
|t|r−2t(1− |t|) if |t| ≤ 1,
0 if |t| ∈ R \ [−1, 1],

ϕ1(t) = |t|p−2tϕ1(t) log(1 + |t|) h∀t ∈ R,
f(x, t) = ω0(x)r−1ϕ0(t) + ω1(x)r−1ϕ1(t) ∀(x, t) ∈ Ω× R.

Let ω = |ω0| + ω1, C = 1, d(x) = |x|− 1
30 , d1(x) = −d(x) and d2(x) = |x|− 1

30

for every x in Ω. We see that d ∈ L1(Ω), d1 ∈ L
N
p (Ω) and d2 ∈ L1(Ω). By

Examples 2.5 and 2.7, ω is in Kp,r. Thus f satisfies conditions (A1)–(A5). Since
lim|x|→0 ω0(x) =∞ and lim|x|→ 1

2
ω1(x) = 0, the convergence in (A4) and (A5) are

not uniform on Ω.
We have f(x,t)

|t|p−2t = ω1(x)(|t| − 1) log(1 + |t|) for every t ∈ [−2, 2] \ [−1, 1] and
f(x,t)
|t|p−2t = ω1(x) log(1 + |t|) for every t ∈ R\ [−2, 2]. Thus f satisfies (A6). Therefore
we can apply Theorem 1.1 to f with C = 1 respectively. Since ωr−1(x) ≥ (1 −
‖x‖2)−

21
16 for every x in Ω, ωr−1 is not integrable on Ω. Therefore the results in

[1, 5, 7, 11, 12, 13, 14, 16, 17] can not be applied to solve (1.1) in these cases.
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