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Abstract. This article concerns the fourth-order elliptic equation

∆2u−∆u+ λV (x)u = f(x, u) + µξ(x)|u|p−2u, x ∈ RN ,

u ∈ H2(RN ),

where λ > 0 is a parameter, V ∈ C(RN ,R) and V −1(0) has nonempty interior.

Under some mild assumptions, we establish the existence of two nontrivial

solutions. Moreover, the concentration of these solutions is explored on the
set V −1(0) as λ → ∞. As an application, we give the similar results and

concentration phenomenona for the above problem with concave and convex

nonlinearities.

1. Introduction

This article concerns the fourth-order elliptic equation

∆2u−∆u+ λV (x)u = f(x, u) + µξ(x)|u|p−2u, x ∈ RN ,

u ∈ H2(RN ),
(1.1)

where ∆2 := ∆(∆) is the biharmonic operator, V ∈ C(RN ), f ∈ C(RN × R),
ξ ∈ L

2
2−p (RN ,R+), λ > 0, µ > 0 and 1 < p < 2.

Problem (1.1) arises in the study of travelling waves in suspension bridge and the
study of the static deflection of an elastic plate in a fluid, see [8, 10, 13]. There are
many results for fourth-order elliptic equations, but most of them are focused on
bounded domains, see [2, 3, 4, 5, 14, 18, 19, 20, 31, 30] and the references therein.
Recently, the case of the whole space RN was also considered in some works, see
[11, 21, 22, 23, 24, 25, 26, 28, 29]. For the whole space RN case, the main difficulty of
this problem is the lack of compactness for Sobolev embedding theorem. In order
to overcome this difficulty, some authors assumed that the potential V satisfies
certain coercive condition; that is,

(A1) V (x) ∈ C(RN ,R) and infx∈RN V (x) ≥ a > 0, where a is a positive constant;
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(A2) for any b > 0,meas(Vb) < +∞, where meas denotes the Lebesgue measure
and Vb := {x ∈ RN |V (x) ≤ b}.

The authors in [21, 22, 25, 26] established the existence of infinitely many solutions
under various hypotheses on the nonlinearity. Zhang et al. [28] studied the sign-
changing solutions of problem (1.1) with Kirchhoff-type. When replacing (A2) by
a more general assumption:

(A3) there is b > 0 such that meas(Vb) < +∞,

the compactness of the embedding fails and this situation becomes more delicate.
Recently, the authors in [11, 23] considered the following equation with a parameter
under condition (A3),

∆2u−∆u+ λV (x)u = f(x, u), x ∈ RN ,

u ∈ H2(RN ).

With the aid of a parameter, they proved that the energy functional possess the
property of being locally compact. Moreover, the authors of these article proved
the existence of infinitely many high energy solutions for superlinear case. For
somewhat related sublinear case and the existence of infinitely many small negative-
energy solutions, see also [22, 23, 24]. For the singularly perturbed problem

ε4∆2u+ V (x)u = f(u), x ∈ RN ,

u ∈ H2(RN ),
(1.2)

the authors [15, 16] considered when the potential V is positive and has global
minimum. They obtained the existence of semi-classical solutions. Moreover, they
also shown the concentration phenomenon of semi-classical solutions around global
minimum of the potential V as ε→ 0.

Motivated by the above papers, we will consider problem (1.1) with steep well
potential, and study the existence of nontrivial solution and concentration results
(as λ→∞). To deduce our statements, we need to make the following assumptions
on potential V :

(A4) V (x) ∈ C(RN ,R) and V (x) ≥ 0 on RN ;
(A5) Ω = intV −1(0) is nonempty and has smooth boundary with Ω̄ = V −1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [6] (see also [7])
in the study of a nonlinear Schrödinger equation and the potential λV (x) with V
satisfying (A3)–(A5) is referred as the steep well potential. It is worth mention-
ing that the above papers always assumed the potential V is positive (V > 0).
Compared with the case V > 0, our assumptions on V are rather weak, and per-
haps more important. Generally speaking, there may exist some behaviours and
phenomenons for the solutions of problem (1.1) under condition (A5), such as the
concentration phenomenon of solutions. Very recently, in [27], the authors consid-
ered this case, and proved the existence and concentration of solutions when the
nonlinearity is only sublinear. Besides, we are also interested in the case that the
nonlinearity is a more general mixed nonlinearity involving a combination of su-
perlinear (f(x, u)) and sublinear (ξ(x)|u|p−2u, ξ ∈ L

2
2−p (RN ,R+) and 1 < p < 2)

terms. To the best of our knowledge, few works concerning on this case up to now.
Based on the above facts, the main purpose of this paper is to prove the existence of
nontrivial solutions and to investigate the concentration phenomenon of solutions
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on the set V −1(0) as λ → ∞. In order to state our results, we need the following
assumptions for superlinear term f(x, u):

(A6) f ∈ C(RN × R) and |f(x, u)| ≤ c
(
1 + |u|q−1

)
for some q ∈ (2, 2∗), where

2∗ = 2N
N−4 if N > 4, 2∗ =∞ if N ≤ 4;

(A7) f(x, u) = o(|u|) as |u| → 0 uniformly for x ∈ RN ;
(A8) there exists θ > 2 such that 0 < θF (x, u) ≤ uf(x, u) for every x ∈ RN and

u 6= 0, where F (x, u) =
∫ u

0
f(x, t)dt.

On the existence of solutions we have the following result.

Theorem 1.1. Assume that the conditions (A3)–(A8) hold, and ξ ∈ L
2

2−p (RN ,R+)
(1 < p < 2), then there exist two positive constants Λ0 and µ0 such that for every
λ > Λ0 and 0 < µ < µ0, problem (1.1) has at least two nontrivial solutions uiλ
(i = 1, 2).

On the concentration of solutions we have the following result.

Theorem 1.2. Let uiλ, (i = 1, 2) be the solutions of problem (1.1) obtained in
Theorem 1.1 and µ ∈ (0, µ0), then uiλ → ui0 in H2(RN ) as λ → ∞, where ui0 ∈
H2(Ω) ∩H1

0 (Ω) are nontrivial solutions of the equation

∆2u−∆u = f(x, u) + µξ(x)|u|p−2u, in Ω,
u = ∆u = 0, on ∂Ω.

(1.3)

A model of nonlinearity is

g(x, u) := |u|q−2u+ µξ(x)|u|p−2u (1.4)

with 1 < p < 2 < q < 2∗ and ξ ∈ L
2

2−p (RN ,R+). Clearly, g(x, u) satisfies (A6)–
(A8). Following [1], the nonlinear term g(x, u) is called concave and convex nonlin-
ear term. Therefore, our results can be applied to the concave and convex nonlinear
term case. As a consequence, we have

Corollary 1.3. Assume that the conditions (A3)–(A5) are satisfied and let the
nonlinearity be of the form (1.4), then there exist two positive constants Λ0 and
µ0 such that for every λ > Λ0 and 0 < µ < µ0, problem (1.1) has at least two
nontrivial solutions uiλ (i = 1, 2).

Corollary 1.4. Let uiλ, (i = 1, 2) be the solutions of problem (1.1) obtained in
Corollary 1.3 and µ ∈ (0, µ0), then uiλ → ui0 in H2(RN ) as λ → ∞, where ui0 ∈
H2(Ω) ∩H1

0 (Ω) are nontrivial solutions of the equation

∆2u−∆u = |u|q−2u+ µξ(x)|u|p−2u, in Ω,
u = ∆u = 0, on ∂Ω.

(1.5)

Remark 1.5. Compared with the previous works, our results seem more general
and complete, which is reflected in the following aspects. On the one hand, our
assumptions on V are much weaker, and the existence and multiplicity of nontrivial
solutions are obtained without any symmetric assumption. On the other hand, more
importantly, we also explore the phenomenon of concentrations of these solutions
as λ→∞, which seems to be rarely concerned in the previous studies.

The rest of this article is organized as follows. In Section 2, we establish the
variational framework associated with problem (1.1), and we also give the proof
of Theorem 1.1. In Section 3, we study the concentration of solutions and prove
Theorem 1.2.
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2. Variational setting and proof of Theorem 1.1

Below by ‖ · ‖s we denote the usual Ls-norm for 2 ≤ s ≤ 2∗, ci, C, Ci stand for
different positive constants. Now, we establish the variational setting of problem
(1.1). Let

E =
{
u ∈ H2(RN ) :

∫
RN

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx < +∞

}
be equipped with the inner product

(u, v) =
∫

RN
(∆u∆v +∇u · ∇v + V (x)uv) dx, u, v ∈ E,

and the norm

‖u‖ =
(∫

RN
(|∆u|2 + |∇u|2 + V (x)u2)dx

)1/2

, u ∈ E.

For λ > 0, we also need the inner product

(u, v)λ =
∫

RN
(∆u∆v +∇u · ∇v + λV (x)uv) dx, u, v ∈ E,

and the corresponding norm ‖u‖2λ = (u, u)λ. It is clear that ‖u‖ ≤ ‖u‖λ, for λ ≥ 1.
Set Eλ = (E, ‖·‖λ), then Eλ is a Hilbert space. By (A3)-(A4) and the statement

of proof of [23, Lemma 2.1], we can demonstrate that there exists a positive constant
γ0 (independent of λ) such that

‖u‖H2(RN ) ≤ γ0‖u‖λ, for all u ∈ Eλ.

Furthermore, the embedding Eλ ↪→ Ls(RN ) is continuous for s ∈ [2, 2∗], and Eλ ↪→
Lsloc(RN ) is compact for s ∈ [2, 2∗), i.e., there are constants γs, γ0 > 0 such that

‖u‖s ≤ γs‖u‖H2(RN ) ≤ γsγ0‖u‖λ, for all u ∈ Eλ, 2 ≤ s ≤ 2∗. (2.1)

Let

Φλ(u) =
1
2

∫
RN

(
|∆u|2 + |∇u|2 + λV (x)u2

)
dx−Ψ(u), (2.2)

where

Ψ(u) =
∫

RN
F (x, u)dx+

µ

p

∫
RN

ξ(x)|u|pdx.

By a standard argument and Hölder inequality, it is easy to verify that Φλ ∈
C1(Eλ,R) and

〈Φ′λ(u), v〉 =
∫

RN
[∆u∆v +∇u · ∇v + λV (x)uv] dx− 〈Ψ′(u), v〉, (2.3)

for all u, v ∈ Eλ, where

〈Ψ′(u), v〉 =
∫

RN
f(x, u)vdx+ µ

∫
RN

ξ(x)|u|p−2uvdx.

We say that I ∈ C1(X,R) satisfies (PS) condition if any sequence {un} such
that I(un)→ d, I ′(un)→ 0 has a convergent subsequence. To prove our result, we
need the following Mountain Pass Theorem.

Theorem 2.1 ([17, Theorem 2.2]). Let X be a real Banach space and I ∈ C1(X,R)
satisfying (PS) condition. Suppose I(0) = 0 and

(1) there are constants ρ, η > 0 such that I∂Bρ(0) ≥ η,
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(2) there is an constant e ∈ X \ B̄ρ(0) such that I(e) ≤ 0, then I possesses a
critical value β ≥ η.

Lemma 2.2. Assume that (A6), (A7) are satisfied, and ξ ∈ L
2

2−p (RN ,R+). Then
there exist three positive constants µ0, ρ and η such that Φλ(u)|‖u‖λ=ρ ≥ η > 0 for
all µ ∈ (0, µ0).

Proof. For any ε > 0, it follows from conditions (A6) and (A7) that there exist
Cε > 0 such that

F (x, u) ≤ ε

2
|u|2 +

Cε
q
|u|q, for all u ∈ Eλ. (2.4)

Thus, from (2.1), (2.4) and the Sobolev inequality, we have that for all u ∈ Eλ,∫
RN

F (x, u)dx ≤ ε

2

∫
RN

u2dx+
Cε
q

∫
RN
|u|qdx ≤ γ2

2γ
2
0ε

2
‖u‖2λ +

Cεγ
q
qγ

q
0

q
‖u‖qλ,

which implies that

Φλ(u) =
1
2
‖u‖2λ −

∫
RN

F (x, u)dx− µ

p

∫
RN

ξ(x)|u|pdx

≥ 1
2
‖u‖2λ −

γ2
2γ

2
0ε

2
‖u‖2λ −

Cεγ
q
qγ

q
0

q
‖u‖qλ −

µγp2γ
p
0

p
‖ξ‖ 2

2−p
‖u‖pλ

= ‖u‖pλ
[1

2
(
1− γ2

2γ
2
0ε
)
‖u‖2−pλ −

Cεγ
q
qγ

q
0

q
‖u‖q−pλ − µγp2γ

p
0

p
‖ξ‖ 2

2−p

]
.

(2.5)

Take ε = 1
2γ2

2γ
2
0

and define

g(t) =
1
4
t2−p −

Cεγ
q
qγ

q
0

q
tq−p, for t ≥ 0.

It is easy to prove that there exists ρ > 0 such that

max
t≥0

g(t) = g(ρ) =
q − 2

4(q − p)

[
(2− p)q

4Cεγ
q
qγ

q
0(q − p)

] 2−p
q−2

.

Then it follows from (2.5) that there exist positive constants µ0 and η such that
Φλ(u)|‖u‖λ=ρ ≥ η for all µ ∈ (0, µ0). �

Lemma 2.3. Assume that (A6)–(A8) are satisfied, and ξ ∈ L
2

2−p (RN ,R+). Let ρ
be as in Lemma 2.2. Then there exists e ∈ Eλ with ‖e‖λ > ρ such that Φλ(e) < 0
for all µ ≥ 0.

Proof. By (2.4) and (A8), there exists c > 0 such that

F (x, u) ≥ c
(
|u|θ − |u|2

)
, ∀(x, u) ∈ RN × R.

Thus, for t > 0, u ∈ Eλ, we have

Φλ(tu) =
t2

2
‖u‖2λ −

∫
RN

F (x, tu)dx− µ

p

∫
RN

ξ(x)|tu|pdx

≤ t2

2
‖u‖2λ − ctθ

∫
RN
|u|θdx+ ct2

∫
RN
|u|2dx− µ

p
tp
∫

RN
ξ(x)|u|pdx,

which implies that Φλ(tu) → −∞ as t → ∞. Therefore, there exist t0 > 0 and
e := t0u with ‖e‖λ > ρ such that Φλ(e) < 0. This completes the proof. �
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To find the critical points of Φλ, we shall show that Φλ satisfies the (PS) condi-
tion, i.e. any (PS) sequence {un} has a convergent subsequence in Eλ. Since there
is no compactness of the Sobolev embedding, the situation is more difficult. To
overcome this difficulty, we need the following convergence results.

Lemma 2.4. Suppose that un ⇀ u0 in Eλ. Then, passing to a subsequence

Φλ(un) = Φλ(un − u0) + Φλ(u0) + o(1), (2.6)

Φ′λ(un) = Φ′λ(un − u0) + Φ′λ(u0) + o(1) as n→∞. (2.7)

Particularly, if {un} is a (PS) sequence such that Φλ(un) → d for some d ∈ R,
then

Φλ(un − u0)→ d− Φλ(u0) and Φ′λ(un − u0)→ 0 (2.8)
after passing to a subsequence.

Proof. Since un ⇀ u0 in Eλ, we have

(un, u0)λ → (u0, u0)λ, as n→∞.
which yields

‖un‖2λ = (un − u0, un − u0)λ + (u0, un)λ + (un − u0, u0)λ

= ‖un − u0‖2λ + ‖u0‖2λ + o(1).

It is clear that

(un, φ)λ = (un − u0, φ)λ + (u0, φ)λ for all φ ∈ Eλ.
Hence, to obtain (2.6) and (2.7), it sufficient to check that∫

RN
[F (x, un)− F (x, un − u0)− F (x, u0)] dx = o(1), (2.9)∫
RN

ξ(x) [|un|p − |un − u0|p − |u0|p] dx = o(1), (2.10)∫
RN

(f(x, un)− f(x, un − u0)− f(x, u0))φdx = o(1) ∀φ ∈ Eλ, (2.11)∫
RN

ξ(x)
(
|un|p−2un − |un − u0|p−2(un − u0)− |u0|p−2u0

)
φdx = o(1)

for all φ ∈ Eλ. (2.12)

Here, we only prove (2.9)and(2.10), the verification of (2.11) and (2.12) is similar.
Take ωn := un − u0, we have ωn ⇀ 0 in Eλ and ωn(x)→ 0 a.e. x ∈ RN . It follows
from (A6) and (A7) that

|f(x, u)| ≤ ε|u|+ Cε|u|q−1 ∀(x, u) ∈ RN × R, (2.13)

|F (x, u)| ≤
∫ 1

0

|f(x, tu)||u|dt ≤ ε|u|2 + Cε|u|q, ∀(x, u) ∈ RN × R. (2.14)

Then

|F (x, ωn + u0)− F (x, ωn)| ≤
∫ 1

0

|f(x, ωn + ζu0)||u0|dζ

≤
∫ 1

0

(
ε|ωn + ζu0||u0|+ Cε|ωn + ζu0|q−1|u0|

)
dζ

≤ c1
(
ε|ωn||u0|+ ε|u0|2 + Cε|ωn|q−1|u0|+ Cε|u0|q

)
.
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By Young’s inequality, we have

|F (x, ωn + u0)− F (x, ωn)| ≤ c2
(
ε|ωn|2 + ε|u0|2 + ε|ωn|q + Cε|u0|q

)
,

so that, using (2.14), we obtain

|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| ≤ c3
(
ε|ωn|2 + ε|u0|2 + ε|ωn|q + Cε|u0|q

)
,

for n ∈ N. Let

Hn(x) := max
{
|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| − c3ε

(
|ωn|2 + |ωn|q

)
, 0
}
.

It follows that

0 ≤ Hn(x) ≤ c3
(
ε|u0|2 + Cε|u0|q

)
∈ L1(RN ).

Thus, using Lebesgue dominated convergence theorem,∫
RN

Hn(x)dx→ 0, as n→∞. (2.15)

From the definition of Hn(x), we have

|F (x, ωn + u0)− F (x, ωn)− F (x, u0)| ≤ c3ε
(
|ωn|2 + |ωn|q

)
+Hn(x),

for all n ∈ N. which, together with (2.15) and (2.1), we obtain∫
RN
|F (x, ωn + u0)− F (x, ωn)− F (x, u0)|dx ≤ c3ε

(
‖ωn‖22 + ‖ωn‖qq

)
+ ε ≤ c4ε,

for n sufficiently large, hence∫
RN

[F (x, un)− F (x, un − u0)− F (x, u0)] dx = o(1)

that is, (2.9) holds.
Observe that ξ ∈ L

2
2−p (RN ,R+), thus, for any ε > 0 we can choose Rε > 0 such

that (∫
RN\BRε

|ξ(x)|
2

2−p dx
) 2−p

2
< ε. (2.16)

By Sobolev’s embedding theorem, un ⇀ u0 in Eλ implies un → u0 in L2
loc(RN ),

and hence,

lim
n→∞

∫
BRε

|un − u0|2dx = 0. (2.17)

By (2.17), there exists N0 ∈ N such that∫
BRε

|un − u0|2dx < ε2, for n ≥ N0. (2.18)

Hence, by (2.1), (2.18) and the Hölder inequality, for any n ≥ N0, we have

µ

p

∫
BRε

ξ(x)|un − u0|pdx

≤ µ

p

(∫
BRε

|ξ(x)|
2

2−p dx
) 2−p

2
(∫

BRε

|un − u0|2dx
)p/2

≤ µ

p
εp‖ξ(x)‖ 2

2−p
.

(2.19)
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On the other hand, by (2.1) and (2.16), we have
µ

p

∫
RN\BRε

ξ(x)|un − u0|pdx

≤ µ

p

(∫
RN\BRε

|ξ(x)|
2

2−p dx
) 2−p

2
(∫

RN\BRε
|un − u0|2dx

)p/2
≤ µ

p
ε (‖un‖p2 + ‖u0‖p2)

≤ µ

p
εγp2γ

p
0 (‖un‖pλ + ‖u0‖pλ)

≤ µ

p
εγp2γ

p
0 (cp5 + ‖u0‖pλ) .

(2.20)

Since ε is arbitrary, combining (2.19) with (2.20), we have
µ

p

∫
RN

ξ(x)|un − u0|pdx = o(1), (2.21)

µ

p

∫
RN

ξ(x) (|un|p − |u0|p) dx ≤
µ

p

∫
RN

ξ(x)|un − u0|pdx.

Therefore
µ

p

∫
RN

ξ(x) (|un|p − |un − u0|p − |u0|p) = o(1),

that is, (2.10) holds.
Now, we consider the case {un} is a (PS) sequence such that Φλ(un) → d and

Φ′λ(un)→ 0. It follows from (2.6) and (2.7) that

Φλ(un − u0) = d− Φλ(u0) + o(1), Φ′λ(un − u0) = −Φ′λ(u0) + o(1), (2.22)

we show that Φ′λ(u0) = 0. For every ψ ∈ C∞0 (RN ), it follows from (2.13) and the
fact that un → u0 in Lsloc(RN ) that∫

RN
(f(x, un)− f(x, u0))ψdx =

∫
suppψ

(f(x, un)− f(x, u0))ψdx = o(1)

and

µ

∫
RN

ξ(x)
(
|un|p−2un − |u0|p−2u0

)
ψdx

= µ

∫
suppψ

ξ(x)
(
|un|p−2un − |u0|p−2u0

)
ψdx = o(1)

which implies
〈Φ′λ(u0), ψ〉 = lim

n→∞
〈Φ′λ(un), ψ〉 = 0.

Hence, Φ′λ(u0) = 0, which together with the second equation of (2.22) shows that
Φ′λ(un − u0)→ 0 as n→∞. Consequently, (2.8) holds and the proof is complete.

�

Lemma 2.5. Let (A3)–(A5), (A6)–(A8) be satisfied, there exists Λ0 > 0, any (PS)
sequence of Φλ has a convergent subsequence for all λ ≥ Λ0.

Proof. We adapt an argument in [9]. Let {un} be a sequence such that Φλ(un)→ d
and Φ′λ(un)→ 0 for some d ∈ R; thus

1 + d+ ‖un‖λ ≥ Φλ(un)− 1
θ
〈Φ′λ(un), un〉
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= (
1
2
− 1
θ

)‖un‖2λ +
∫

RN

[1
θ
unf(x, un)− F (x, un)

]
dx

+
∫

RN
(
1
θ
− 1
p

)µξ(x)|un|pdx,

hence

1 + d+ ‖un‖λ + (
1
p
− 1
θ

)µ
∫

RN
ξ(x)|un|pdx

≥ (
1
2
− 1
θ

)‖un‖2λ +
∫

RN

[
1
θ
unf(x, un)− F (x, un)

]
dx.

Since

(
1
p
− 1
θ

)µ
∫

RN
ξ(x)|un|pdx ≤ (

1
p
− 1
θ

)µ
(∫

RN
|ξ(x)|

2
2−p dx

) 2−p
2
(∫

RN
|un|2dx

)p/2
= (

1
p
− 1
θ

)µ‖ξ‖ 2
2−p
‖un‖p2

≤ (
1
p
− 1
θ

)µγp2γ
p
0‖ξ‖ 2

2−p
‖un‖pλ.

Hence,

1 + d+ ‖un‖λ + (
1
p
− 1
θ

)µγp2γ
p
0‖ξ‖ 2

2−p
‖un‖pλ

≥ (
1
2
− 1
θ

)‖un‖2λ +
∫

RN

[1
θ
unf(x, un)− F (x, un)

]
dx

≥ (
1
2
− 1
θ

)‖un‖2λ.

This proves that {un} is bounded in Eλ. Then, passing to a subsequence, we may
assume that un ⇀ u0 in Eλ. Taking ωn := un − u0, we have

‖ωn‖22 ≤
1
λb

∫
{x∈RN :V (x)>b}

λV (x)ω2
ndx+

∫
Vb

ω2
ndx

≤ 1
λb
‖ωn‖2λ + o(1),

(2.23)

since ωn ⇀ 0 in Eλ and V (x) < b on a set of finite measure. Combining this with
(2.1) and the Hölder inequality, we obtain for 2 < σ < q < 2∗

‖ωn‖σσ ≤ ‖ωn‖
2(q−σ)
q−2

2 ‖ωn‖
q(σ−2)
q−2

q

≤
( 1
λb

) q−σ
q−2 ‖ωn‖

2(q−σ)
q−2

λ (γqγ0‖ωn‖λ)
q(σ−2)
q−2 + o(1)

≤ (γqγ0)
q(σ−2)
q−2

( 1
λb

) q−σ
q−2 ‖ωn‖σλ + o(1).

(2.24)

For convenience, let F(x, u) = 1
2f(x, u)u−F (x, u). It follows from Lemma 2.4 and

(2.21) that∫
RN
F(x, ωn)dx

= Φλ(ωn)− 1
2
〈Φ′λ(ωn), ωn〉 −

(1
2
− 1
p

)
µ

∫
RN

ξ(x)|ωn|pdx→ d− Φλ(u0).
(2.25)
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Therefore, there exists M > 0 such that∣∣ ∫
RN
F(x, ωn)dx

∣∣ ≤M. (2.26)

Now we note that q
q−2 > max{1, N4 } because q ∈ (2, 2∗). Fix τ ∈

(
max{1, N4 },

q
q−2

)
,

from (2.13), we know if |u| ≥ 1, then |f(x, u)| ≤ c6|u|q−1. Choose R1 so large that
1
θ ≤

1
2 −

cτ−1
6

|u|q−(q−2)τ , whenever |u| ≥ R1. Then, for |u| large enough, we have

0 ≤ F (x, u) ≤ 1
θ
uf(x, u) ≤

[1
2
− cτ−1

6

|u|q−(q−2)τ

]
uf(x, u)

≤
[1
2
− |f(x, u)|τ−1

|u|τ+1

]
uf(x, u),

which implies that, for |u| sufficiently large

|f(x, u)|τ

|u|τ
≤ 1

2
uf(x, u)− F (x, u) = F(x, u). (2.27)

Combining this with (2.24), (2.26) with σ = 2τ
τ−1 ∈ (2, 2∗) and the Hölder inequality,

we obtain for large n,∫
|ωn|≥R1

f(x, ωn)ωndx

≤
(∫
|ωn|≥R1

∣∣f(x, ωn)
ωn

∣∣τdx)1τ(∫
|ωn|≥R1

|ωn|σdx
)2/σ

≤
(∫
|ωn|≥R1

F(x, ωn)dx
)1τ

‖ωn‖2σ

≤M1τ (γqγ0)
2q(σ−2)
(q−2)σ

( 1
λb

) 2(q−σ)
(q−2)σ ‖ωn‖2λ + o(1)

= c7(
1
λb

)θ1‖ωn‖2λ + o(1).

(2.28)

where c7 = M1τ (γqγ0)
2q(σ−2)
(q−2)σ > 0, θ1 = 2(q−s)

s(q−2) > 0. In addition, using (2.13) and
(2.24), we have∫

|ωn|≤R1

f(x, ωn)ωndx ≤
∫
|ωn|≤R1

(
ε+ CεR

q−2
1

)
ω2
ndx

≤ CεR
q−2
1

λb
‖ωn‖2λ + o(1)

=
c8
λb
‖ωn‖2λ + o(1),

(2.29)

where c8 = CεR
q−2
1 . Consequently, combining (2.21), (2.28) with (2.29), we obtain

o(1) = 〈Φ′λ(ωn), ωn〉

= ‖ωn‖2λ −
∫

RN
f(x, ωn)ωndx− µ

∫
RN

ξ(x)|ωn|pdx

≥
[
1− c8

λb
− c7

( 1
λb

)θ1]‖ωn‖2λ + o(1).
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Choosing Λ0 > 0 large enough such that the term in the brackets above is positive
when λ > Λ0, we obtain ωn → 0 in Eλ, thus un → u0 in Eλ. This completes the
proof. �

Define
dλ = inf

γ∈Γλ
max

0≤t≤1
Φλ(γ(t))

where Γλ =
{
γ ∈ C([0, 1], Eλ) : γ(0) = 0, γ(1) = e

}
.

Proof of Theorem 1.1. By Theorem 2.1, and Lemmas 2.2 and 2.3, we obtain that,
for each λ ≥ Λ0, 0 < µ < µ0, there exists (PS) sequence {un} ⊂ Eλ for Φλ on Eλ.
Then, by Lemma 2.5, we can conclude that there exist a subsequence {un} ⊂ Eλ
and u1

λ ∈ Eλ such that un → u1
λ in Eλ. Moreover, Φλ(u1

λ) = dλ ≥ η > 0.
The second solution of problem (1.1) will be constructed through the local min-

imization. Since ξ ∈ L
2

2−p (RN ,R+), we can choose a function φ ∈ Eλ such that∫
RN

ξ(x)|φ|pdx > 0.

Thus, by (A8) we have

Φλ(lφ) =
l2

2
‖φ‖2λ −

∫
RN

F (x, lφ)dx− µlp

p

∫
RN

ξ(x)|φ|pdx

≤ l2

2
‖φ‖2λ −

µlp

p

∫
RN

ξ(x)|φ|pdx < 0,
(2.30)

for l > 0 small enough. Hence, there exists ρ1 > 0 such that β := inf{Φλ(u) : u ∈
B̄ρ1} < 0. By the Ekeland’s variational principle, there exists a minimizing sequence
{un} ⊂ B̄ρ1 such that Φλ(un)→ β and Φ′λ(un)→ 0 as n→∞. Hence, Lemma 2.5
implies that there exists a nontrivial solution u2

λ of problem (1.1) satisfying

Φλ(u2
λ) < 0 and ‖u2

λ‖λ < ρ1.

Moreover, (2.30) implies that there exists l0 > 0 and κ < 0 are independent of λ
such that Φλ(l0φ) = κ and ‖l0φ‖λ < ρ1. Therefore, we can conclude that

Φλ(u2
λ) ≤ κ < 0 < η < dλ = Φλ(u1

λ) for all λ > Λ0 and 0 < µ < µ0.

This completes the proof. �

3. Concentration of solutions

Here we study the concentration of solutions and give the proof of Theorem 1.2.
Define

d0 = inf
γ∈eΓλ max

0≤t≤1
Φλ|H2(Ω)∩H1

0 (Ω)(γ(t))

where
Γ̃λ =

{
γ ∈ C([0, 1], H2(Ω) ∩H1

0 (Ω)) : γ(0) = 0, γ(1) = e
}
,

and Φλ|H2(Ω)∩H1
0 (Ω) is a restriction of Φλ on H2(Ω) ∩H1

0 (Ω). Note that

Φλ|H2(Ω)∩H1
0 (Ω)(u) =

1
2

∫
Ω

(|∆u|2 + |∇u|2)dx−
∫

Ω

F (x, u)dx− µ
∫

Ω

ξ(x)|u|pdx

and d0 independent of λ. From the above arguments, we conclude that functional
Φλ|H2(Ω)∩H1

0 (Ω) has a mountain pass type solution ũ such that Φλ|H2(Ω)∩H1
0 (Ω)(ũ) =
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d0. Since (H2(Ω)∩H1
0 (Ω)) ⊂ Eλ for all λ > 0, it is easy to see that 0 < η < dλ < d0

for all λ ≥ Λ0 and 0 < µ < µ0. Take C0 > d0, thus

0 < η < dλ < d0 < C0, for all λ ≥ Λ0 and 0 < µ < µ0.

Proof of Theorem 1.2. We follow the arguments in [7]. For any sequence λn →∞,
let uin := uiλn be the critical points of Φλn obtained in Theorem 1.1 for i = 1, 2.
Since

Φλn(u2
n) ≤ κ < 0 < η < dλn = Φλn(u1

n) (3.1)
and

Φλn(uin)− 1
θ
〈Φ′λn(uin), uin〉

=
(1

2
− 1
θ

)
‖uin‖2λn +

∫
RN

(1
θ
f(x, uin)uin − F (x, uin)

)
dx

−
(µ
p
− µ

θ

) ∫
RN

ξ(x)|uin|pdx

=
(1

2
− 1
θ

)
‖uin‖2λn −

(µ
p
− µ

θ

) ∫
RN

ξ(x)|uin|pdx,

it follows that
‖uin‖λn ≤ c0, (3.2)

where the constant c0 is independent of λn. Therefore, we assume that uin ⇀ ui0 in
Eλn and uin → ui0 in Lqloc(RN ) for 2 ≤ q < 2∗. From Fatou’s lemma, we have∫

RN
V (x)|ui0|2dx ≤ lim inf

n→∞

∫
RN

V (x)|uin|2dx ≤ lim inf
n→∞

‖uin‖2λn
λn

= 0,

which implies that ui0 = 0 a.e. in RN \ V −1(0) and ui0 ∈ H2(Ω) ∩H1
0 (Ω) by (A5).

Now for any ϕ ∈ C∞0 (Ω), since 〈Φ′λn(uin), ϕ〉 = 0, it is easy to verify that∫
Ω

(
∆ui0∆ϕ+∇ui0 · ∇ϕ

)
dx−

∫
Ω

f(x, ui0)ϕdx− µ
∫

RN
ξ(x)|ui0|p−2ui0ϕdx = 0,

which implies that ui0 is a weak solution of problem (1.3) by the density of C∞0 (Ω)
in H2(Ω) ∩H1

0 (Ω).
Now we prove that uin → ui0 in Lq(RN ) for 2 ≤ q < 2∗. Otherwise, by Lions

vanishing lemma [12, 19], there exist δ > 0, R0 > 0 and xn ∈ RN such that∫
BR0 (xn)

|u(i)
n − ui0|2dx ≥ δ.

Since uin → ui0 in L2
loc(RN ), |xn| → ∞. Hence meas (BR0(xn) ∩ Vb) → 0. By

Hölder’s inequality, we have∫
BR0 (xn)∩Vb

|uin − ui0|2dx

≤ (meas (BR0(xn) ∩ Vb))
2∗−2
2∗

(∫
RN
|uin − ui0|2∗

)2/2∗
→ 0.

Consequently,

‖uin‖2λn ≥ λnb
∫
BR0 (xn)∩{x∈RN :V (x)≥b}

|uin|2dx
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= λnb

∫
BR0 (xn)∩{x∈RN :V (x)≥b}

|uin − ui0|2dx

= λnb
(∫

BR0 (xn)

|uin − ui0|2dx−
∫
BR0 (xn)∩Vb

|uin − ui0|2dx+ o(1)
)

→∞,
which contradicts (3.2).

Next, we show that uin → ui0 in H2(RN ). From 〈Φ′λn(uin), uin〉 = 〈Φ′λn(uin), ui0〉 =
0 and the fact that uin → ui0 in Lq(RN ) for 2 ≤ q < 2∗, we have

lim
n→∞

‖uin‖2λn = lim
n→∞

(uin, u
i
0)λn = lim

n→∞
(uin, u

i
0) = ‖ui0‖2,

therefore
lim sup
n→∞

‖uin‖2 ≤ ‖ui0‖2.

On the other hand, the weak lower semi-continuity of norm yields

‖ui0‖2 ≤ lim inf
n→∞

‖uin‖2 ≤ lim sup
n→∞

‖uin‖2 ≤ lim
n→∞

‖uin‖2λn ,

thus, uin → ui0 in Eλ, and so

uin → ui0 in H2(RN ).

Using (3.1) and the constants κ, η are independent of λn, we have
1
2

∫
Ω

(
|∆u1

0|2 + |∇u1
0|2
)
dx−

∫
Ω

F (x, u1
0)dx− µ

p

∫
RN

ξ(x)|u1
0|pdx ≥ η > 0

and
1
2

∫
Ω

(
|∆u2

0|2 + |∇u2
0|2
)
dx−

∫
Ω

F (x, u2
0)dx− µ

p

∫
RN

ξ(x)|u2
0|pdx ≤ κ < 0,

which implies that ui0 6= 0 and u1
0 6= u2

0. This completes the proof. �
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