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POSITIVE SOLUTIONS FOR SECOND-ORDER
BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING

GREEN’S FUNCTIONS
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Communicated by Pavel Drabek

Abstract. In this article we analyze some possibilities of finding positive

solutions for second-order boundary-value problems with the Dirichlet and

periodic boundary conditions, for which the corresponding Green’s functions
change sign. The obtained results can also be adapted to Neumann and mixed

boundary conditions.

1. Introduction

In the literature, the existence of positive solutions for boundary-value problems
(BVP) has been widely studied, in particular for second-order BVP with periodic
and Dirichlet boundary conditions. A standard technique consists in obtaining the
existence of positive solutions through Krasnoselskii’s fixed point theorem on cones,
or to use fixed point index theory. In these cases, the positivity of the associated
Green’s functions is usually fundamental to prove such results. In this paper we
are able to prove existence of solutions for several problems where the associated
Green’s function changes sign.

Hill’s operator properties have been described in several papers, where existence
and multiplicity results, comparison principles, Green’s functions and spectral anal-
ysis were studied. Some of these results can be originally found in [4, 5, 6, 12, 15].

Positivity results for BVP where the Green’s function can vanish are treated
for example in [8, 13]. Graef, Kong and Wang [8] studied the periodic BVP (with
T = 1)

u′′(t) + a(t)u(t) = g(t)f(u(t)), t ∈ (0, T ),

u(0) = u(T ), u′(0) = u′(T ),

with f and g nonnegative continuous functions and g satisfying the condition
mint∈[0,T ] g(t) > 0. They assumed the Green’s function to be nonnegative and
to satisfy the condition

min
0≤s≤T

∫ T

0

G(t, s) dt > 0. (1.1)
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Webb [13] considered weaker assumptions to prove the existence of positive solutions
of the previous problem, but he still assumed Green’s function to be nonnegative.
Despite our results do not require the Green’s function to be nonnegative, they
could be applied to this particular case, obtaining positive solutions assuming an
integral condition weaker than (1.1) (see Remarks 3.6 and 3.11).

On the other hand, some existence results for BVP with sign-changing Green’s
function have been considered in [7, 10], where the authors asked for the existence
of a subinterval [c, d] ⊂ [0, T ], a function φ ∈ L1([0, T ]) and a constant c ∈ (0, 1]
such that the Green’s function G satisfies the condition

|G(t, s)| ≤ φ(s) for all t ∈ [0, T ] and almost every s ∈ [0, T ],

G(t, s) ≥ c φ(s) for all t ∈ [c, d] and almost every s ∈ [0, T ].
(1.2)

It must be pointed out that, if we consider a periodic problem with constant
potential a(t) = ρ2 for which the related Green’s function changes its sign (i.e.
ρ > π/T , ρ 6= 2kπ/T , k = 1, 2, . . .), condition (1.2) is never fulfilled for any strictly
positive function φ. This is due to the fact that in such situation the Green’s
function is constant along the straight lines of slope equals to one (see [2, 3] for
details). Meanwhile, as we will prove on Section 4, our results can be applied
without further complications for this case.

Moreover, for the Dirichlet BVP with constant potential a(t) = ρ2 with sign-
changing Green’s function (i.e. ρ > π/T , ρ 6= kπ/T , k = 1, 2, . . .), as a direct
consequence of expression (5.1) below, it is immediate to verify that condition (1.2)
holds if and only if ρ2 lies between the first and the second eigenvalues of the
problem ( πT < ρ < 2π

T ) but it is never satisfied for ρ > 2π
T . However, as we will

point out in Section 5, our results can be applied for any nonresonant value of
ρ > π/T . Despite this, we must note that the imposed restrictions increase with ρ.

Furthermore, in [7, 10] the authors proved the existence of solutions in the cone

K0 =
{
u ∈ C[0, T ] : min

t∈[c,d]
u(t) ≥ c ‖u‖

}
,

that is, they ensured the positivity of the solutions on the subinterval [c, d] but such
solutions were allowed to change sign when considering the whole interval [0, T ].

As far as we know, positive solutions for BVP with sign-changing Green’s func-
tion can be tracked only as back as 2011 in the papers [11, 16]. In the first of these
papers, Ma considers the one-parameter family of problems

u′′(t) + a(t)u(t) = λ g(t)f(u(t)), t ∈ (0, T ),

u(0) = u(T ), u′(0) = u′(T ).
(1.3)

By using the Schauder’s fixed point Theorem, the author obtains the existence of
a positive solution for sufficiently small values of λ. These existence results are not
comparable with the ones we will obtain in this paper. In the second paper, Zhong
and An [16] study the following autonomous periodic BVP, with constant potential
ρ ∈ (0, 3π

2T ]:

u′′ + ρ2u = f(u), t ∈ (0, T ), u(0) = u(T ), u′(0) = u′(T ). (1.4)

In this case, it is very well known that the related Green’s function GP (t, s) ≥ 0
for all ρ ∈ (0, πT ] and it changes sign for ρ ∈ ( πT ,

3π
2T ] (see [2, 3]). With this, it can
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be defined the constant

δ =

∞ if ρ ∈ (0, πT ],

inft∈I
R T
0 G+

P (t,s) dsR T
0 G−P (t,s) ds

ifρ ∈ ( πT ,
3π
2T ],

and using the Krasnoselskii’s fixed point Theorem, the authors prove the following
existence result:

Theorem 1.1. [16, Theorem 3] Suppose that the following assumptions are fulfilled:
(1) f : [0,∞)→ [0,∞) is continuous.
(2) 0 ≤ m = infu≥0 {f(u)} and M = supu≥0 {f(u)} ≤M ≤ ∞.
(3) M/m ≤ δ, with M/m =∞ when m = 0.

Moreover, if δ =∞ assume that

lim
x→∞

f(x)
x

< ρ2 < lim
x→0+

f(x)
x

.

Then problem (1.4) has a positive solution on [0, T ].

Concerning this specific case, along this paper we improve the range of the values
ρ for which the result is still valid. Furthermore, we apply our study to nonconstant
potentials and nonautonomous nonlinear parts.

As we will see, some of the positivity conditions imposed for the periodic BVP
cannot be adapted for the Dirichlet BVP, so the approach that must be used needs
to be considerably modified, by using, in this case, a different type of cones.

The rest of this article is organized the following way: In Section 2 we state some
preliminary results considering the Hill’s operator. In Section 3 some new results
concerning the existence of a positive solution for the Hill’s periodic BVP in the case
that the Green’s function may change sign are proved. Moreover, in this section,
such existence results are generalized to other boundary conditions. In Section 4
we improve Theorem 1.1 for the periodic problem with a constant potential. In
Section 5 we approach the Dirichlet BVP, also in the case of a constant potential,
where as far as we know, no results for sign changing Green’s function were proved
before.

2. Preliminaries

Let L[a] be the Hill’s operator related to the potential a

L[a]u(t) ≡ u′′(t) + a(t)u(t), t ∈ [0, T ] ≡ I,
where a : I → R, a ∈ Lα(I), α ≥ 1.

Let X ⊂W 2,1(I) be a Banach space such that the homogeneous problem

L[a]u(t) = 0, for a. e. t ∈ I, u ∈ X (2.1)

has only the trivial solution. This condition is known as operator L[a] being non-
resonant in X. Moreover, it is very well known that if this condition is satisfied
and σ ∈ L1(I), the nonhomogeneous problem

L[a]u(t) = σ(t), for a. e. t ∈ I, u ∈ X
has a unique solution

u(t) =
∫ T

0

G(t, s)σ(s) ds, t ∈ I,
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where G is the corresponding Green’s function.
We denote x � 0 on I if x ≥ 0 on I and

∫ T
0
x(s) ds > 0. It is said that operator

L[a] satisfies a strong maximum principle (MP) in X if

u ∈ X, L[a]u � 0 on I ⇒ u < 0 in (0, T ).

Analogously, L[a] satisfies the antimaximum principle (AMP) in X if

u ∈ X, L[a]u � 0 on I ⇒ u > 0 in (0, T ).

The next result is a direct consequence of [3, Corollaries 1.6.6 and 1.6.12], and it
ensures that the maximum and anti-maximum principles for the periodic problem
are equivalent to the constant sign of the Green’s function.

Lemma 2.1. The following claims are equivalent:
(1) The related Green’s function G of problem (2.1) satisfies G(t, s) ≥ 0 (≤ 0)

on I × I.
(2) Operator L[a] satisfies a strong maximum (antimaximum) principle in X.

We will consider now the periodic boundary-value problem

u′′(t) + a(t)u(t) = 0, t ∈ I, u(0) = u(T ), u′(0) = u′(T ), (2.2)

and we will denote its related Green’s function as GP .
Now, let λP be the smallest eigenvalue of the periodic problem

u′′(t) + (a(t) + λ)u(t) = 0, for a. e. t ∈ I, u(0) = u(T ), u′(0) = u′(T ),

and let λA be the smallest eigenvalue of the anti-periodic problem

u′′(t) + (a(t) + λ)u(t) = 0, for a. e. t ∈ I, u(0) = −u(T ), u′(0) = −u′(T ).

In [15] it is proved that λP < λA. The following result relates the constant sign of
the periodic Green’s function with the sign of these eigenvalues:

Lemma 2.2. [15, Theorem 1.1] Suppose that a ∈ L1(I), then:
(1) GP (t, s) ≤ 0 on I × I if and only if λP > 0.
(2) GP (t, s) ≥ 0 on I × I if and only if λP < 0 ≤ λA.

If we consider other boundary-value problems, such as the Neumann problem

u′′(t) + a(t)u(t) = 0, t ∈ I, u′(0) = u′(T ) = 0; (2.3)

the Dirichlet problem

u′′(t) + a(t)u(t) = 0, t ∈ I, u(0) = u(T ) = 0; (2.4)

and the mixed problems

u′′(t) + a(t)u(t) = 0, t ∈ I, u′(0) = u(T ) = 0; (2.5)

u′′(t) + a(t)u(t) = 0, t ∈ I, u(0) = u′(T ) = 0; (2.6)

denoting by GN , GD, GM1 and GM2 the related Green’s functions and λN , λD,
λM1 and λM2 the corresponding smallest eigenvalue of each of the problems, we
know that the following results are satisfied (see [6]):

Lemma 2.3. (1) GN (t, s) < 0 on I × I if and only if λN > 0.
(2) GN (t, s) ≥ 0 on I × I if and only if λN < 0, λM1 ≥ 0 and λM2 ≥ 0.
(3) GN changes sign if and only if min{λM1 , λM2} < 0.
(4) GD(t, s) < 0 on (0, T )× (0, T ) if and only if λD > 0.
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(5) GD changes sign if and only if λD < 0.
(6) GM1(t, s) < 0 on [0, T )× [0, T ) if and only if λM1 > 0.
(7) GM1 changes sign if and only if λM1 < 0.
(8) GM2(t, s) < 0 on (0, T ]× (0, T ] if and only if λM2 > 0.
(9) GM2 changes sign if and only if λM2 < 0.

3. Periodic boundary-value problems

Consider now the nonlinear and nonautonomous periodic boundary value prob-
lem

u′′(t) + a(t)u(t) = f(t, u(t)), t ∈ I, u(0) = u(T ), u′(0) = u′(T ). (3.1)

We will assume that problem (2.2) is nonresonant and λA < 0. From Lemma 2.2,
it is clear that in this case the related Green’s function changes its sign on I × I.

On the other hand, it is well-known that there exists vP , a positive eigenfunction
on I, unique up to a constant, related to λP ; that is, vP is such that

v′′P (t) + a(t)vP (t) = −λP vP (t), a. e. t ∈ I,
vP (0) = vP (T ), v′P (0) = v′P (T ).

Therefore,

vP (t) = −λP
∫ T

0

GP (t, s)vP (s) ds

and, since vP is positive and λP < 0, we have that∫ T

0

GP (t, s)vP (s) ds > 0 ∀t ∈ I

and, consequently,∫ T

0

G+
P (t, s)vP (s) ds >

∫ T

0

G−P (t, s)vP (s) ds ∀t ∈ I,

where G+
P and G−P are the positive and negative parts of GP .

Since the Green’s function changes sign, it makes sense to define

γ = inf
t∈I

∫ T
0
G+
P (t, s)vP (s) ds∫ T

0
G−P (t, s)vP (s) ds

(> 1).

Moreover, to ensure the existence of solutions of problem (3.1), we will make the
following assumptions:

(H1) f : I × [0,∞)→ [0,∞) satisfies L1-Carathéodory conditions, that is, f(·, u)
is measurable for every u ∈ R, f(t, ·) is continuous for a. e. t ∈ I and
for each r > 0 there exists φr ∈ L1(I) such that f(t, u) ≤ φr(t) for all
u ∈ [−r, r] and a. e. t ∈ I.

(H2) There exist two positive constants m and M such that mvP (t) ≤ f(t, x) ≤
MvP (t) for every t ∈ I and x ≥ 0. Moreover, these constants satisfy that
M
m ≤ γ.

(H3) There exists [c, d] ⊂ I such that
∫ d
c
GP (t, s) dt ≥ 0, for all s ∈ I and∫ d

c
GP (t, s) dt > 0, for all s ∈ [c, d].
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Remark 3.1. We note that condition (H2) includes, as particular cases, hypotheses
(2) and (3) in Theorem 1.1 imposed in [16]. This is so because if a(t) = ρ2, as in
problem (1.4), we have that λP = −ρ2 and vP (t) = 1 for all t ∈ I. Moreover, as we
will point out in Section 4, we have that if a(t) = ρ2 then∫ T

0

GP (t, s) ds =
1
ρ2
,

and condition (H3) is trivially fulfilled for [c, d] = I.
Moreover, we note that in (H2) we are not considering the possibility of m = 0.

Theorem 1.1 includes this case, but only when γ = +∞, which only happens when
the Green’s function is nonnegative. In [16] the authors consider this possibility
because they are assuming that ρ ∈

(
0, 3π

2T

]
and when ρ ∈

(
0, πT

]
, GP is nonnegative.

As we will see in Corollary 3.5, hypothesis (H2) is not necessary in this case, so this
is the reason why we do not consider the possibility m = 0.

We will consider the Banach space (C(I,R), ‖ · ‖) coupled with the supremum
norm ‖u‖ ≡ ‖u‖∞, and define the cone

K =
{
u ∈ C(I,R) : u ≥ 0 on I,

∫ T

0

u(s) ds ≥ σ‖u‖
}
,

where
σ =

η

maxt, s∈I{GP (t, s)}
,

with

η = min
s∈[c,d]

{∫ d

c

GP (t, s) dt
}
. (3.2)

Now, it is clear that u is a solution of the periodic problem (3.1) if and only if it is
a fixed point of the following operator:

T u(t) =
∫ T

0

GP (t, s)f(s, u(s)) ds.

Lemma 3.2. Assume hypothesis (H1)–(H3). Then T : C(I)→ C(I) is a completely
continuous operator which maps the cone K to itself.

Proof. The proof that operator T is a completely continuous operator follows stan-
dard arguments and we omit it.

Let us see now that T maps the cone to itself. Considering u ∈ K, then, for all
t ∈ I, the following inequalities are fulfilled:

T u(t) =
∫ T

0

GP (t, s)f(s, u(s)) ds

=
∫ T

0

(
G+
P (t, s)−G−P (t, s)

)
f(s, u(s)) ds

≥
∫ T

0

(
mvP (s)G+

P (t, s)−MvP (s)G−P (t, s)
)
ds

≥ m
(∫ T

0

G+
P (t, s)vP (s) ds− γ

∫ T

0

G−P (t, s)vP (s) ds
)
≥ 0.
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Moreover, ∫ T

0

T u(t) dt ≥
∫ d

c

T u(t) dt =
∫ d

c

∫ T

0

GP (t, s)f(s, u(s)) ds dt

=
∫ T

0

f(s, u(s))
∫ d

c

GP (t, s) dt ds

≥ η
∫ T

0

f(s, u(s)) ds,

and since

T u(t) ≤ max
t,s∈I
{GP (t, s)}

∫ T

0

f(s, u(s)) ds,

we deduce that
∫ T

0
T u(t) dt ≥ σT u(t) for all t ∈ I, that is∫ T

0

T u(t) dt ≥ σ‖T u‖,

and the result is concluded. �

Now, to prove the existence of solutions for problem (3.1), we use some classical
results regarding the fixed point index. We compile them in the following lemma.
Let Ω be an open bounded subset of C(I) and let us denote Ω̄ and ∂Ω its closure
and boundary, respectively. Moreover, let us denote ΩK = Ω ∩K.

Lemma 3.3. [1, Lemma 12.1] Let ΩK be an open bounded set with 0 ∈ ΩK and
Ω̄K 6= K. Assume that F : Ω̄K → K is a completely continuous map such that
x 6= Fx for all x ∈ ∂ΩK . Then the fixed point index iK(F,ΩK) has the following
properties:

(1) If there exists e ∈ K \ {0} such that x 6= Fx + λe for all x ∈ ∂ΩK and all
λ > 0, then iK(F,ΩK) = 0.

(2) If x 6= µFx for all x ∈ ∂ΩK and for every µ ≤ 1, then iK(F,ΩK) = 1.
(3) If iK(F,ΩK) 6= 0, then F has a fixed point in ΩK .
(4) Let Ω1

K be an open set with Ω̄1
K ⊂ ΩK . If iK(F,ΩK) = 1 and iK(F,Ω1

K) =
0, then F has a fixed point in ΩK\Ω̄1

K . The same result holds if iK(F,ΩK) =
0 and iK(F,Ω1

K) = 1.

Now we are in a position to prove the existence results concerning the periodic
problem (3.1) as follows. First, we note that, as an immediate consequence of
condition (H2), we deduce the following properties:

f0 = lim
x→0+

{
min
t∈[c,d]

f(t, x)
x

}
=∞, f∞ = lim

x→∞

{
max
t∈I

f(t, x)
x

}
= 0,

where the interval [c, d] is given in (H3). These properties will let us prove the
following theorem.

Theorem 3.4. Assume that λA < 0 and hypothesis (H1)–(H3) hold. Then there
exists at least one positive solution of problem (3.1) in the cone K.

Proof. Taking into account the definition of f0, we know that there exists δ1 > 0
such that when ‖u‖ ≤ δ1, then

f(t, u(t)) >
u(t)
η

, ∀t ∈ [c, d],
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with η defined in (3.2). Let

Ω1 = {u ∈ K : ‖u‖ < δ1}
and choose u ∈ ∂Ω1 and e ∈ K \ {0}.

We will prove that u 6= T u+ λ e for every λ > 0. Assume, on the contrary, that
there exists some λ > 0 such that u = T u+ λ e, that is,

u(t) = T u(t) + λ e(t) ≥ T u(t) ∀ t ∈ I.
Then ∫ d

c

u(t) dt ≥
∫ d

c

T u(t) dt =
∫ d

c

∫ T

0

GP (t, s)f(s, u(s)) ds dt

=
∫ T

0

(∫ d

c

GP (t, s) dt
)
f(s, u(s)) ds

≥
∫ d

c

(∫ d

c

GP (t, s) dt
)
f(s, u(s)) ds >

∫ d

c

u(s) ds,

which is a contradiction. Therefore iK(T,Ω1) = 0.
Proceeding in an analogous way to [5, 8, 9], we define f̃(t, u) = max0≤z≤u f(t, z).

Clearly f̃(t, ·) is a nondecreasing function on [0,∞). Moreover, since f∞ = 0 it is
obvious that

lim
x→∞

{
max
t∈I

f̃(t, x)
x

}
= 0.

As a consequence, there exists δ2 > 0 such that if ‖u‖ ≥ δ2 then

f̃(t, ‖u‖) < σ2

T 2η
‖u‖ ∀t ∈ I.

Let
Ω2 = {u ∈ K; ‖u‖ < δ2}

and choose u ∈ ∂ Ω2.
We will prove that u 6= µT u for every µ ≤ 1. Assume, on the contrary, that

there exists some µ ≤ 1 such that u(t) = µ T u(t) for all t ∈ I. Then

σ‖u‖ ≤
∫ T

0

u(t) dt = µ

∫ T

0

T u(t) dt

= µ

∫ T

0

∫ T

0

GP (t, s)f(s, u(s)) ds dt

= µ

∫ T

0

(∫ T

0

GP (t, s) dt
)
f(s, u(s)) ds

≤ µT max
t,s∈I
{GP (t, s)}

∫ T

0

f(s, u(s)) ds

≤ µT max
t,s∈I
{GP (t, s)}

∫ T

0

f̃(s, u(s)) ds

≤ µT max
t,s∈I

{GP (t, s)}
∫ T

0

f̃(s, ‖u‖) ds

< µT 2 η

σ

σ2

T 2η
‖u‖ ≤ σ ‖u‖,
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which is a contradiction. As a consequence, iK(T,Ω2) = 1. We conclude that
operator T has a fixed point, that is, there exists at least a nontrivial solution of
problem (3.1). �

The previous theorem is also valid if the Green’s function is nonnegative. In
this case, hypothesis (H3) would be trivially fulfilled and hypothesis (H2) is not
necessary since it is only used to prove that T maps the cone to itself, which is
obvious (since f is nonnegative) when GP is nonnegative. On the other hand, we
would need to add the hypothesis that f0 = ∞ and f∞ = 0 (which can not be
deduced if we eliminate (H2)). The result reads as follows:

Corollary 3.5. Assume that λP < 0 ≤ λA and hypothesis (H1) is fulfilled. Then,
if f0 = ∞ and f∞ = 0 there exists at least one positive solution of problem (3.1)
in the cone K.

Remark 3.6. We note that for a nonnegative Green’s function, we generalize the
results of Graef, Kong and Wang [8, 9] and Webb [13] since our condition (H3) is
weaker than condition (1.1) considered by them.

Corollary 3.7. If f(t, x) ≡ f(t) ∈ L1(I) satisfies (H2), then the unique solution
of (3.1) is a nonnegative function on [0, T ].

Remark 3.8. We note that u(t) ≡ 1 is the unique solution of the periodic problem

u′′(t) + a(t)u(t) = a(t), t ∈ I,
u(0) = u(T ), u′(0) = u′(T ).

Therefore it is clear that ∫ T

0

GP (t, s) a(s) ds = 1 > 0 (3.3)

and so the previous reasoning is also valid if a ≥ 0, a > 0 on [c, d], and we change
the definition of γ by

γ∗ = inf
t∈I

∫ T
0
G+
P (t, s) a(s) ds∫ T

0
G−P (t, s) a(s) ds

.

In this case, assumption (H2) would be substituted by
(H2’) There exist two positive constants m and M such that ma(t) ≤ f(t, u) ≤

Ma(t) for every t ∈ I, u > 0. Moreover, these constants satisfy that
M
m ≤ γ

∗.

3.1. Neumann, Dirichlet and mixed boundary value problems. From the
classical spectral theory [14], it is very well know that, as in the periodic case, for
any of the boundary conditions introduced in Lemma 2.3, there exists a positive
eigenfunction on (0, T ) related to the corresponding smallest eigenvalue. Therefore,
if we are in the case in which L[a] operator coupled with the associated boundary
conditions is nonresonant and the related Green’s function changes sign (different
cases are characterized in Lemma 2.3), we could follow the same argument as in
the previous section to define γ and we would obtain analogous existence results.
Hypothesis (H1)–(H3) would be the same with the suitable notation for each of the
problems (that is, considering in each case the appropriate Green’s function and
eigenfunction).
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Remark 3.9. For the Neumann problem, it is not difficult to verify that we also
have that if a(t) = ρ2 then ∫ T

0

GN (t, s) ds =
1
ρ2
,

and condition (H3) is trivially fulfilled for [c, d] = I.
On the other hand, since u(t) ≡ 1 is the unique solution of

u′′(t) + a(t)u(t) = a(t), t ∈ I, u′(0) = u′(T ) = 0,

Remark 3.8 is also valid for the Neumann problem.

Remark 3.10. For the Dirichlet problem, condition (H3) does not hold for [c, d] =
I. This is so because GD(t, ·) satisfies the Dirichlet boundary value conditions for
all t ∈ [0, T ], that is, GD(t, 0) = GD(t, T ) = 0.

It is important to note that the eigenfunction vD is positive on (0, T ) but vD(0) =
vD(T ) = 0, so condition (H2) would imply that f(0, x) = f(T, x) = 0 for every
x ≥ 0. However, since as we have mentioned, [c, d] 6= I, this property does not
affect on the fact that f0 =∞.

An analogous situation occurs for the mixed problems. In these cases it is also
impossible to consider [c, d] = I since the corresponding Green’s functions and
eigenfunctions vanish on one side of the interval.

Moreover, if we consider the Dirichlet and mixed problems, the constant function
u(t) ≡ 1 is not a solution of the related linear problem L[a]u(t) = a(t). So, Remark
3.8 is not longer valid for such situations.

Remark 3.11. As it was commented in Remark 3.6, we also generalize the results
of Graef, Kong and Wang [8, 9] and Webb [13] for a nonnegative Green’s function
coupled with the Neumann conditions.

Moreover, the results in [8, 9, 13] could not be applied to any Dirichlet problem
since the related Green’s function will cancel on the whole lines s = 0 and s = T so
the minimum in (1.1) would be 0, however our result could be applied. The same
will happen with any mixed problem. Again, hypothesis (H2) is not necessary in
this case and we would need to add the hypothesis that f0 =∞ and f∞ = 0.

4. Periodic boundary value problem with constant potential

This section is devoted to the particular case in which the potential a is constant.
As we will see, in this situation it is possible to calculate the exact value of γ.

It is well known (see [3, 14]) that the eigenvalues associated to the periodic
problem

u′′ + λu = 0, u(0) = u(T ), u′(0) = u′(T ) (4.1)

are λn = (2nπ/T )2 with n = 0, 1, 2, . . . The eigenfunctions associated to the first
eigenvalue λP = 0 are the constants, which can be written as multiples of a repre-
sentative eigenfunction vP (t) ≡ 1.

Moreover, the related Green’s function is strictly negative in the square I × I if
and only if λ < 0 and it is nonnegative on I × I if and only if 0 < λ ≤ (π/T )2 (see
[6] for details).
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For λ = ρ2 a nonresonant value, the explicit form of GP is the following (see
[2, 3, 11, 16]):

GP (t, s) =


sin ρ(t−s)+sin ρ(T−t+s)

2ρ(1−cos ρT ) , 0 ≤ s ≤ t ≤ T,
sin ρ(s−t)+sin ρ(T−s+t)

2ρ(1−cos ρT ) , 0 ≤ t ≤ s ≤ T .

From (3.3) it is clear that

g(t) =
∫ T

0

GP (t, s) ds =
1
ρ2
,

therefore we define

γ = min
t∈[0,T ]

∫ T
0
G+
P (t, s) ds∫ T

0
G−P (t, s) ds

> 1

for all ρ > π/T , ρ 6= kπ/T , k = 1, 2, . . .
Let us make a careful study of this value γ. It is very well-known that the Green’s

function related to the periodic problem (4.1) satisfies that

GP (t, s) = GP (0, t− s) and GP (t, s) = GP (T − t, T − s)
(see [3] for the details). Therefore,∫ T

0

GP (t, s) ds =
∫ t

0

GP (t, s) ds+
∫ T

t

GP (t, s) ds,

where∫ t

0

GP (t, s) ds =
∫ t

0

GP (0, t− s) ds =
∫ t

0

GP (0, T + s− t) ds =
∫ T

T−t
GP (0, s) ds

and∫ T

t

GP (t, s) ds =
∫ T

t

GP (0, T + s− t) ds =
∫ 2T−t

T

GP (0, s) ds =
∫ T−t

0

GP (0, s) ds,

that is ∫ T

0

GP (t, s) ds =
∫ T

0

GP (0, s) ds ∀ t ∈ [0, T ].

The same argument is valid for both the positive and the negative parts of GP ,
that is∫ T

0

G+
P (t, s) ds =

∫ T

0

G+
P (0, s) ds and

∫ T

0

G−P (t, s) ds =
∫ T

0

G−P (0, s) ds

for all t ∈ [0, T ], so the ratio
R T
0 G+

P (t,s) dsR T
0 G−P (t,s) ds

is constant for all t ∈ [0, T ].

This implies that we can restrict our analysis to the case t = 0, that is, to assume
that

γ =

∫ T
0
G+
P (0, s) ds∫ T

0
G−P (0, s) ds

.

We have that

GP (0, s) =
sin ρs+ sin ρ(T − s)

2ρ(1− cos ρT )
,

so GP (0, s) = 0 if and only if s = T
2 + (2k+1)π

2ρ . We will consider four cases:

Case 1A: GP (0, T2 )GP (0, 0) > 0 and GP (0, T2 ) > 0;
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Case 1B: GP (0, T2 )GP (0, 0) > 0 and GP (0, T2 ) < 0;
Case 2A: GP (0, T2 )GP (0, 0) < 0 and GP (0, T2 ) > 0;
Case 2B: GP (0, T2 )GP (0, 0) < 0 and GP (0, T2 ) < 0.

Computing these values, we find that

if (4k+1)π
T < ρ < (4k+2)π

T for some k ∈ N0, we are in case 2A and γ =
2k+1

2k+1−sin(ρT/2) ;

if (4k+2)π
T < ρ < (4k+3)π

T for some k ∈ N0, we are in case 2B and γ =
2k+1−sin(ρT/2)

2k+1 ;

if (4k−1)π
T < ρ < 4kπ

T for some k ∈ N, we are in case 1B and γ = 2k
2k+sin(ρT/2) ;

if 4kπ
T < ρ < (4k+1)π

T for some k ∈ N, we are in case 1A and γ = 2k+sin(ρT/2)
2k .

In the cases where ρ = (2k+ 1) πT for some k ∈ N, the value of γ coincides with the
limit when ρ→ (2k+ 1) πT . The graph of γ for a given value ρ is sketched in Figure
1.

Π/T 2 Π/T 3 Π/T 4 Π/T 5 Π/T 6 Π/T 7 Π/T 8 Π/T

1

2

Figure 1. Graph of γ for the periodic problem.

5. Dirichlet boundary value problem with constant potential

Let us now try to prove some analogue results for the Dirichlet boundary condi-
tions. In this case, the eigenvalues for the Dirichlet problem

u′′(t) + λu(t) = 0, for t ∈ (0, T ), u(0) = u(T ) = 0,

are λn = (nπ/T )2 for n = 1, 2, 3 . . . , and it follows easily that the eigenfunctions
associated to λD ≡ λ1 = (π/T )2 are the multiples of the function vD(t) = sin(πtT ).

It is well known that the associated Green’s function is strictly negative if and
only if λ < λ1 = (π/T )2, and it changes sign for any nonresonant value of λ >
(π/T )2.

Considering λ = ρ2 for ρ 6= nπ
T , with n ∈ N, we have

∫ T
0
GD(t, s) sin(πsT ) ds > 0

for t ∈ (0, T ), and we define

γ(ρ) = inf
t∈(0,T )

γ(t, ρ) = inf
t∈(0,T )

∫ T
0
G+
D(t, s) sin(πsT ) ds∫ T

0
G−D(t, s) sin(πsT ) ds

.
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The explicit formula for the Green’s function in the nonresonant cases is given by
(see [3])

GD(t, s) =

G1(t, s) = − sin(ρs) sin ρ(T−t)
ρ sin(ρT ) , 0 ≤ s ≤ t ≤ T,

G2(t, s) = − sin(ρt) sin ρ(T−s)
ρ sin(ρT ) , 0 ≤ t ≤ s ≤ T .

(5.1)

We will consider two cases:
Case 1: (2n−1)π

T < ρ < 2nπ
T for n ∈ N;

Case 2: 2nπ
T < ρ < (2n+1)π

T for n ∈ N.
In case 1 the function γ(t, ρ) has a different computation in each of the 4n − 1
intervals]

0, T − (2n− 1)π
ρT

]
,
[
T − (2n− 1)π

ρT
,
π

ρT

]
,
[ π
ρT

, T − (2n− 2)π
ρT

]
,

[
T − (2n− 2)π

ρT
,

2π
ρT

]
, . . .

[ (2n− 2)π
ρT

, T − π

ρT

]
,

[
T − π

ρT
,

(2n− 1)π
ρT

]
,
[ (2n− 1)π

ρT
, T
[

and in case 2, it has a different computation in each of the 4n+ 1 intervals]
0, T − 2nπ

ρT

]
,
[
T − 2nπ

ρT
,
π

ρT

]
, . . . ,

[
T − π

ρT
,

2nπ
ρT

]
,
[2nπ
ρT

, T
[
.

In both cases, given a fixed ρ it is easy to calculate the value of γ(t, ρ). However
the general expression for an arbitrary ρ requires very long computations which are
not fundamental for the purpose of this paper. Because of this, we are going to
calculate the general expression of γ(ρ) only for the first intervals of ρ, in particular
for ρ < 6π/T .

For ρ < 6π
T , we can see that the infimum is attained at t = 0, so we will restrain

our analysis to the first interval of t in both cases in order to obtain the exact
expression of γ(ρ) for ρ < 6π/T .

In case 1 we have∫ T

0

G+
D(t, s) sin

(πs
T

)
ds

=
∫ T

T−πρ
G2(t, s) sin

(πs
T

)
ds+

n∑
i=2

∫ T− (2i−2)π
ρT

T− (2i−1)π
ρT

G2(t, s) sin
(πs
T

)
ds

and

−
∫ T

0

G−D(t, s) sin
(πs
T

)
ds

=
∫ t

0

G1(t, s) sin
(πs
T

)
ds+

∫ T− (2n−1)π
ρT

t

G2(t, s) sin
(πs
T

)
ds

+
n−1∑
i=1

∫ T− (2i−1)π
ρT

T− 2iπ
ρT

G2(t, s) sin
(πs
T

)
ds

=
sin
(
πt
T

)
ρ2 −

(
π
T

)2 − ∫ T

0

G+
D(t, s) sin

(πs
T

)
ds
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so

γ(t, ρ) =
(∫ T

T− π
ρT

G2(t, s) sin
(πs
T

)
ds+

n∑
i=2

∫ T− (2i−2)π
ρT

T− (2i−1)π
ρT

G2(t, s) sin
(πs
T

)
ds
)

÷
(∫ T

T− π
ρT

G2(t, s) sin
(πs
T

)
ds+

n∑
i=2

∫ T− (2i−2)π
ρT

T− (2i−1)π
ρT

G2(t, s) sin
(πs
T

)
ds

−
sin
(
πt
T

)
ρ2 −

(
π
T

)2).
Doing a similar study for case 2 we get

γ(t, ρ) =

∑n
i=1

∫ T− (2i−1)π
ρT

T− 2iπ
ρT

G2(t, s) sin
(
πs
T

)
ds∑n

i=1

∫ T− (2i−1)π
ρT

T− 2iπ
ρT

G2(t, s) sin
(
πs
T

)
ds− sin

(
πt
T

)
ρ2−
(
π
T

)2 .
Using the previous expressions it is immediate to calculate γ(t, ρ) for any fixed
value of ρ and T . For instance, computing γ(t, ρ) for T = 1 we obtain:
If ρ ∈ (π, 2π), then

γ(t, ρ) =
sin ρ t sin π2

ρ

sin ρ t sin π2

ρ + sin ρ sinπ t
;

If ρ ∈ (2π, 3π), then

γ(t, ρ) =
sin ρ t

(
sin π2

ρ + sin 2π2

ρ

)
sin ρt

(
sin π2

ρ + sin 2π2

ρ

)
− sin ρ sinπt

;

If ρ ∈ (3π, 4π), then

γ(t, ρ) =
sin ρt

(
sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ

)
sin ρ t

(
sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ

)
+ sin ρ sinπt

;

If ρ ∈ (4π, 5π), then

γ(t, ρ) =
sin ρt

(
sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ + sin 4π2

ρ

)
sin ρt

(
sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ + sin 4π2

ρ

)
− sin ρ sinπt

;

If ρ ∈ (5π, 6π), then

γ(t, ρ) =
(

sin ρt
(

sin
2π2

ρ
+ sin

3π2

ρ
+ sin

4π2

ρ
+ sin

5π2

ρ

)
+ 2
(

1− π2

ρ2

)
sin ρt

)
÷
(

sin ρt
(

sin
2π2

ρ
+ sin

3π2

ρ
+ sin

4π2

ρ
+ sin

5π2

ρ

)
+ sin ρ sinπt+ 2

(
1− π2

ρ2

)
sin ρ t

)
.

In Figure 2 we have a sketch of the function γ(t, 10.8) for T = 1.
Computing the limit

γ(ρ) = lim
t→0

γ(t, ρ),
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0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Figure 2. Graph of γ(t, 10.8) for the Dirichlet problem.

we get the following expressions for γ(ρ):
If ρ ∈ (π, 2π), then

γ(ρ) = 1− π sin ρ
π sin ρ+ ρ sin π2

ρ

;

If ρ ∈ (2π, 3π), then

γ(ρ) = 1 +
π sin ρ

−π sin ρ+ ρ
(

sin π2

ρ + sin 2π2

ρ

) ;

If ρ ∈ (3π, 4π), then

γ(ρ) = 1− π sin ρ

π sin ρ+ ρ
(

sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ

) ;

If ρ ∈ (4π, 5π), then

γ(ρ) = 1 +
π sin ρ

−π sin ρ+ ρ
(

sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ + sin 4π2

ρ

) ;

If ρ ∈ (5π, 6π), then

γ(ρ) = 1− π sin ρ

π sin ρ+ ρ
(

sin π2

ρ + sin 2π2

ρ + sin 3π2

ρ + sin 4π2

ρ + sin 5π2

ρ

)
+ 2ρ

2−π2

ρ

.

Graphically the function γ(ρ) is represented in Figure 3 for T = 1.
Let us now see some examples.

Example 5.1. The Dirichlet BVP

u′′(t) + 60u(t) = t(1− t), for t ∈ (0, 1) u(0) = u(1) = 0 (5.2)

has a positive solution, since γ(
√

60) ≈ 1.36 > 4/3 and 3 sin(πt)
4π ≤ t(1− t) ≤ sin(πt)

π ,
but the solution of the Dirichlet BVP

u′′(t) + 60u(t) = t, for t ∈ (0, 1) u(0) = u(1) = 0 (5.3)

changes sign. We can see the respective solutions in Figures 4 and 5.
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Figure 3. Graph of γ for the Dirichlet problem.
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Figure 4. Solution of problem (5.2)
.

0.2 0.4 0.6 0.8 1.0

-0.01

0.01

0.02

Figure 5. Solution of problem (5.3).

Remark 5.2. Analogous arguments and calculations can be done for the Neumann
and mixed problems.
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Acknowledgments. A. Cabada and L. López-Somoza were partially supported by
Ministerio de Economı́a y Competitividad, Spain, and FEDER, project MTM2013-
43014-P, and by the Agencia Estatal de Investigación (AEI) of Spain under grant
MTM2016-75140-P, co-financed by the European Community fund FEDER.

L. López-Somoza was spartially supported by FPU scholarship, Ministerio de
Educación, Cultura y Deporte, Spain.

R. Enguiça was partially supported by Fundaçao para a Ciência e a Tecnologia,
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