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Abstract. This article concerns the incompressible Navier-Stokes equations

with damping and homogeneous Dirichlet boundary conditions in 3D bounded
domains. We find conditions on parameters to guarantee that the problem

has a strong time-periodic solution and that the weak solutions of the problem

converge to a unique time-periodic solution as t→∞.

1. Introduction

In this article we consider the three-dimensional Navier-Stokes equations with
nonlinear damping

ut + (u · ∇)u− ν∆u+ α|u|β−1u = −∇p+ f, x ∈ Ω, t > 0,
div u = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where ν > 0, α > 0 and β ≥ 1 are constants and f(x, t) is the external force. Ω ⊂ R3

is an open bounded set with the boundary ∂Ω smooth enough. The unknown
functions u(x, t) and p(x, t) are velocity and pressure of the flow, respectively.

For the case α = 0, the equations are the three-dimensional Navier-Stokes equa-
tions and the regularity and the uniqueness of weak solutions remain completely
open in spite of interests of many mathematicians.

For the case α > 0, the problem describes the flow with the resistance to the
motion such as porous media flow and drag or friction effects (see [3] and references
therein). From a mathematical viewpoint, (1.1) can be viewed as a modification
of the classic Navier-Stokes equations with the regularizing term α|u|β−1u. So,
it is important to find the conditions on parameters to guarantee the regularity
properties and uniqueness of the weak solutions of (1.1).

For the case α > 0, problem (1.1) has been studied in [3, 7, 8, 10, 11]. In [3], it
was proved that the Cauchy problem in Ω = R3 has week solutions if β ≥ 1 and
global strong solutions if β ≥ 7/2 and the strong solution is unique if 5 ≥ β ≥ 7/2.
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In [10], they proved for β > 3 that problem (1.1) has a global strong solution and
the strong solution is unique when 5 ≥ β > 3. Later, in [11], they proved that the
strong solution exists globally for β = 3 and α = ν = 1 and the strong solution is
unique even among weak solutions in L∞(0, T ; (L2(Ω))3) for β ≥ 1. In [7, 8], the
existence of global attractor for the problem in bounded set Ω ⊂ R3 was proved
provided 5 ≥ β ≥ 7/2. However, the existence of global strong solutions was not
proved when β = 3 and 1 > αν > 0 if Ω = R3 and when 7/2 > β ≥ 3 if Ω ⊂ R3

is bounded. Also, for the problem (1.1), whether the weak solution, which is not
smooth, is unique or not is still open.

On the other hand, the time-periodic solutions of the Navier-Stokes equations
and variants of it have been studied by several authors (see e.g. [1, 2, 4, 5, 6]). They
proved the existence of the time-periodic solutions of the Navier-Stokes equations
in an unbounded domain in [1] and [6], of the Euler-Voigt and Navier-Stokes-Voigt
models in [2] and of 2D stochastic Navier-Stokes equations in [4], and they proved
the uniqueness of the time-periodic solutions of the Navier-Stokes equations in [5]
under the some assumptions. However, it seems that there is no result for the
time-periodic solutions of (1.1).

Motivated by the above work, we shall study the incompressible Navier-Stokes
Equations with damping and homogeneous Dirichlet boundary conditions in 3D
bounded domains. First, we are going to improve conditions on parameters to
guarantee global existence of strong solutions of (1.1) as β = 3, αν > 1/4. Second,
we will prove that the problem has the strong T -periodic solutions provided 5 >
β > 3, α > 0 or β = 3, αν > 1/4 and f ∈ W 1,2

loc (0,∞;H) is T -periodic. Finally,
we find the conditions on parameters to guarantee that the weak solutions of the
problem converge to the unique T -periodic strong solution as t→∞.

We define the usual space

V∞ := {v ∈ (C∞0 (Ω))3,div u = 0}.

Let H and V denote the closure of V∞ in the space (L2(Ω))3 and (H1
0 (Ω))3, respec-

tively. H and V are endowed, respectively, with the inner products

(u, v) =
∫

Ω

u · v dx, ∀u, v ∈ H,

((u, v)) =
∫

Ω

∇u · ∇v dx, ∀u, v ∈ V.

Denote the dual space of V by V ′ and the norms in (Lq(Ω))3 by ‖ · ‖q(1 ≤ q ≤ ∞)
and ‖ · ‖ = ‖ · ‖2.

A function u ∈ L∞loc(0,∞;H)∩L2
loc(0,∞;V )∩Lβ+1

loc (0,∞; (Lβ+1(Ω))3) is said to
be a weak solution of (1.1) if it satisfies

d

dt
(u, v) + ν((u, v)) + b(u, u, v) + α(|u|β−1u, v) = (f, v),

∀v ∈ V ∩ (Lβ+1(Ω))3, t > 0

u(0) = u0,

(1.2)

where

b(u, v, w) = Σ3
i,j=1

∫
Ω

ui∂ivjwj dx, ∂i := ∂/∂xi.
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The weak formulation (1.2) is equivalent to the abstract equation

du

dt
+ νAu+B(u) +G(u) = Pf, t > 0

u(0) = u0,

where Au = −P∆u and P is the orthogonal projection of (L2(Ω))3 onto H, G(u) =
αP |u|β−1u and 〈B(u), w〉 = b(u, u, w)(see [8]). The existence of global weak solu-
tions of (1.1) was proved when β ≥ 1, α > 0, u0 ∈ H, and f ∈ L2

loc(0,∞; (L2(Ω))3),
by Galerkin method(see [7, Theorem 1], [8, Theorem 2.1] and [3, Theorem 2.1]).

The weak solution obtained as the limit of Galerkin approximations is said to
be a G-weak solution.

We say that (u(x, t), p(x, t)) is a strong solution of (1.1), if u(x, t) is a weak
solution and u ∈ L∞loc(0,∞;V ∩ (Lβ+1(Ω))3) ∩ L2

loc(0,∞;D(A)). Now we state our
main results as follows.

Theorem 1.1. Suppose u0 ∈ V and f ∈W 1,2
loc (0,∞; (L2(Ω))3). Under the assump-

tions

5 > β > 3, α > 0 or β = 3, αν >
1
4
,

the G-weak solutions of (1.1) are strong solutions.

Theorem 1.2. If

β > 3, α > 0 or β = 3, αν ≥ 1
4
,

then there is a constant δ (not necessarily positive) such that

‖u(t)− v(t)‖2 ≤ ‖u0 − v0‖2 exp(−δt) (1.3)

for all t ≥ 0 and for any u0, v0 ∈ H, where u and v are the G-weak solutions with
initial data u0, v0, respectively. Further, if β ≥ 3, α > 0 and

λβ−3
1 α2(2ν)2β−4 >

(2β − 4)2β−4

(β − 1)2β−2
, (1.4)

then there is a δ > 0, which satisfies (1.3), where λ1 is the first eigenvalue of the
Stokes operator A.

Remark 1.3. We conclude that the G-weak solution of (1.1) is unique under the
first condition of Theorem 1.2.

Note that Theorem 1.2 is independent of Theorem 1.1, but we have the following
combination of these two theorems.

Theorem 1.4. Suppose f ∈W 1,2
loc (0,∞; (L2(Ω))3) and f(·, t) = f(·, t+T )(∀t ≥ 0).

If

5 > β > 3, α > 0 or β = 3, αν >
1
4
,

then there exists a T -periodic strong solution of (1.1). Further, if (1.4) is fulfilled,
the periodic solution of (1.1) is unique and the weak solutions of (1.1) converge
exponentially to the periodic solution as t→∞.
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2. Proof of the Theorem 1.1

The proof is based on some a priori estimations which we will obtain by standard
energy and Sobolev estimates. When Ω = R3, −∆u can be used as a test function
to get some regularity of weak solutions. But, it is not an allowed test function for
the Dirichlet boundary value problem. So, the relation

−(|u|β−1u,∆u) = ‖|u|(β−1)/2∇u‖2 +
β − 1

4
‖|u|(β−3)/2∇|u|2‖2

can not be used to obtain a regularity property, while it has been used well for the
Cauchy problem(see [3, 11]). It is a difficulty for our case.

Suppose u0 ∈ V , f ∈W 1,2
loc (0,∞; (L2(Ω))3) and 5 > β > 3, α > 0 or β = 3, αν >

1/4. Let u be a G-weak solution of (1.1) and fix T > 0.
Assuming that u is smooth, in (1.2), we replace v by Au, we have

(ut, Au) + ν((u,Au)) + b(u, u,Au) = −α(|u|β−1u,Au) + (f(t), Au).

Since

(ut, Au) =
1
2
d

dt
‖∇u‖2, ((u,Au)) = ‖Au‖2,

this relation can be written
1
2
d

dt
‖∇u‖2 + ν‖Au‖2 + b(u, u,Au) = −α(|u|β−1u,Au) + (f(t), Au). (2.1)

Using
|b(u, u,Au)| ≤ C‖∇u‖3/2‖Au‖3/2

(see [9, (2.32)]) and Young’s inequality, we obtain

1
2
d

dt
‖∇u‖2 + ν‖Au‖2

≤ C‖∇u‖3/2‖Au‖3/2 + α‖u‖β2β‖Au‖+ ‖f(t)‖‖Au‖

≤ ν

2
‖Au‖2 + C‖∇u‖6 + C ′‖u‖2β2β +

1
ν
‖f(t)‖2.

(2.2)

For the estimate of ‖u‖2β2β recall that 5 > β ≥ 3 and ‖u‖2∞ ≤ C‖∇u‖‖Au‖ (see [9]).
Thus we get that

‖u(t)‖2β2β =
∫

Ω

|u(x, t)|2β−6|u(x, t)|6 dx

≤ C + ‖u(t)‖2β−6
∞ ‖u(t)‖66

≤ C + C‖u(t)‖2β−6
∞ ‖∇u(t)‖6

≤ C + C‖∇u(t)‖β+3‖Au(t)‖β−3

≤ C + C‖∇u(t)‖2(β+3)/(5−β) +
ν

4C ′
‖Au(t)‖2.

(2.3)

Substituting (2.3)) into (2.2) and putting q := (β + 3)/(5− β)(≥ 3), we obtain

d

dt
‖∇u‖2 +

ν

2
‖Au‖2 ≤ C + C‖∇u‖2q +

2
ν
‖f(t)‖2. (2.4)

Momentarily, dropping the term ν/2‖Au‖2, we have a differential inequality,

d

dt
y(t) ≤ C(C1 + yq(t)), y(t) := ‖∇u(t)‖2, C1 := C +

2
ν

sup
0≤t≤T

‖f(t)‖2.
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Here, we used f ∈ C([0, T ]; (L2(Ω))3), because f ∈ W 1,2
loc (0,∞; (L2(Ω))3). The

differential inequality

d

dt
z(t) ≤ Czq(t), z = 1 + y, z(0) = z0 := 1 + ‖∇u0‖2

has a solution defined on [0, T ′], where

T ′ =
1

2Cqzq−1
0

> 0. (2.5)

And by comparison, we have

z(t) ≤ z0

(1− CqT ′zq−1
0 )1/(q−1)

= 21/(q−1)z0 ,

‖∇u(t)‖2 ≤ 21/(q−1)(1 + ‖∇u0‖2), ∀t ∈ [0, T ′].
(2.6)

Therefore, by (2.4) and (2.6), we have

sup
0≤t≤T ′

‖∇u(t)‖2 +
∫ T ′

0

‖Au(t)‖2dt ≤ C2(‖∇u0‖2q). (2.7)

Thus, we proved the existence of local strong solutions to (1.1).
Multiplying the first equation of (1.1) by ut, integrating the resulting equation

on Ω, and using Young’s inequality and [9, (2.32)], we have

‖ut‖2 +
ν

2
d

dt
‖∇u‖2 +

α

β + 1
d

dt
‖u‖β+1

β+1

= −((u · ∇)u, ut) + (f(t), ut)

≤ 1
4
‖ut‖2 + C‖∇u‖3/2‖Au‖1/2‖ut‖+ ‖f(t)‖2

≤ 1
2
‖ut‖2 + C(‖∇u‖6 + ‖Au‖2 + ‖f(t)‖2).

(2.8)

Integrating over [0, T ′] and considering (2.7), it follows that∫ T ′

0

‖ut(t)‖2dt ≤ C3(‖∇u0‖2q). (2.9)

Therefore, there is a constant 0 < t1 < T ′ such that

‖ut(t1)‖2 ≤ C3

T ′
= 2Cq(1 + ‖∇u0‖2)q−1C3(‖∇u0‖2q) (2.10)

by (2.5) and (2.9).
Differentiating the first equation of (1.1) with respect to t and taking the inner

product with ut in H, we obtain

1
2
d

dt
‖ut‖2 + ν‖∇ut‖2 + α((|u|β−1u)t, ut) = −((u · ∇u)t, ut) + (ft(t), ut). (2.11)

Since

((|u|β−1u)t, ut) = (|u|β−1ut, ut) +
(β − 1)

4

∫
Ω

|u|β−3| ∂
∂t
|u|2|2 dx

≥ (|u|β−1ut, ut),
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−((u · ∇u)t, ut) = −((ut · ∇)u, ut)− (u · ∇ut, ut)
= −((ut · ∇)u, ut) = ((ut · ∇)ut, u)

≤ ε1ν‖∇ut‖2 +
1

4ε1ν
‖|u||ut|‖2,

(ft, ut) ≤
1
4
‖ut‖2 + ‖ft‖2,

for any ε1 > 0, It follows that (2.11) implies

1
2
d

dt
‖ut‖2 + ν(1− ε1)‖∇ut‖2 + α‖|u|(β−1)/2|ut|‖2

≤ 1
4ε1ν

‖|u||ut|‖2 +
1
4
‖ut‖2 + ‖ft(t)‖2.

(2.12)

On the other hand, in (2.8), we use

−((u · ∇)u, ut) = ((u · ∇)ut, u) ≤ νε2‖∇ut‖2 +
1

4νε2
‖u‖44

to have
1
2
‖ut‖2 +

ν

2
d

dt
‖∇u‖2 +

α

β + 1
d

dt
‖u‖β+1

β+1

≤ νε2‖∇ut‖2 +
1

4νε2
‖u‖44 + ‖f(t)‖2,

(2.13)

for any ε2 > 0. Adding (2.12) and (2.13), we have

d

dt
(
1
2
‖ut‖2 +

ν

2
‖∇u‖2 +

α

β + 1
‖u‖β+1

β+1) +
1
4
‖ut‖2

+ ν(1− ε1 − ε2)‖∇ut‖2 + α‖|u|(β−1)/2|ut|‖2 −
1

4ε1ν
‖|u||ut|‖2

≤ 1
4ε2ν

‖u‖44 + ‖f(t)‖2 + ‖ft(t)‖2

≤ C(1 + ‖u‖β+1
β+1) + ‖f(t)‖2 + ‖ft(t)‖2.

(2.14)

Suppose β = 3 and αν > 1/4. Then we choose constants ε1 > 0 and ε2 > 0 which
satisfy

1 > ε1 > 0, α− 1
4ε1ν

> 0, 1− ε1 − ε2 > 0.

If β > 3 and α > 0, there are constants ε1 > 0, ε2 > 0 and γ > 0 which satisfy
1 > ε1 > 0, 1− ε1 − ε2 > 0 and

α

2
‖|u|(β−1)/2|ut|‖2 − γ‖ut‖2 ≤ α‖|u|(β−1)/2|ut|‖2 −

1
4ε1ν

‖|u||ut|‖2

As above, substituting ε1 > 0, ε2 > 0 and γ > 0 in (2.14), we obtain

d

dt
(
1
2
‖ut‖2 +

ν

2
‖∇u‖2 +

α

β + 1
‖u‖β+1

β+1)

≤ C(1 + ‖u‖β+1
β+1) + γ‖ut‖2 + ‖f(t)‖2 + ‖ft(t)‖2,

(2.15)

for any t1 ≤ t ≤ T . Applying Gronwall’s lemma into (2.15) and dropping unneces-
sary terms, we have

‖∇u(t)‖2 ≤ C(T )(‖ut(t1)‖2 + ‖∇u(t1)‖2 + ‖u(t1)‖β+1
β+1
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+
∫ T

0

(‖f(t)‖2 + ‖ft(t)‖2)dt),

for any t1 ≤ t ≤ T . Thus using (2.6), (2.10) and ‖u‖β+1 ≤ C‖∇u‖, we can show
that

sup
T ′≤t≤T

‖∇u(t)‖2 ≤ C(T )(1 + ‖∇u0‖4q(q−1) +
∫ T

0

(‖f(t)‖2 + ‖ft(t)‖2)dt). (2.16)

From this and (2.6), we deduce that ‖∇u(t)‖ is bounded on [0, T ]. Therefore,
integrating (2.4) over [0, T ], we have u ∈ L∞(0, T ;V )∩L2(0, T ;D(A)), and thus we
have u ∈ L∞loc(0,∞;V ∩ (Lβ+1(Ω))3)∩L2

loc(0,∞;D(A)). This completes the proof.

3. Proof of the Theorem 1.2

First, we introduce the elementary inequality which will be used later.

Lemma 3.1. For any x, y ∈ RN and β ≥ 1 , the inequality

(|x|β−1x− |y|β−1y) · (x− y) ≥ 1
2

(|x|β−1 + |y|β−1)|x− y|2 (3.1)

holds and the coefficient 1/2 is the best.

Proof. Let x, y ∈ RN and β ≥ 1. Then it follows that

0 ≤ (|x|β−1 − |y|β−1)(|x|2 − |y|2) = |x|β+1 + |y|β+1 − |x|β−1|y|2 − |y|β−1|x|2,

|x|β+1 + |y|β+1 ≥ |x|β−1|y|2 + |y|β−1|x|2.

Adding this to |x|β+1 + |y|β+1 − 2(|x|β−1 + |y|β−1)x · y, we obtain

2(|x|β−1x− |y|β−1y) · (x− y) = 2|x|β+1 + 2|y|β+1 − 2(|x|β−1 + |y|β−1)x · y

≥ |x|β+1 + |y|β+1 − 2(|x|β−1 + |y|β−1)x · y + |x|β−1|y|2 + |y|β−1|x|2

= (|x|β−1 + |y|β−1)|x− y|2.

Therefore, we have (3.1). The coefficient 1/2 is the best since the equality is fulfilled
in (3.1) if x = −y or x = y. Then proof is complete. �

Lemma 3.2. Let λ1, ν, α be positive and β ≥ 3. If

λβ−3
1 α2(2ν)2β−4 >

(2β − 4)2β−4

(β − 1)2β−2
, (3.2)

then there are δ > 0 and 1 > ε > 0 such that

2νλ1(1− ε) + α(|u|β−1 + |v|β−1)− 1
4νε

(|u|2 + |v|2) ≥ δ,

for any u, v ∈ RN .

Proof. Let α > 0, ν > 0 and ε > 0. Suppose β > 3 and consider the function

g(x, y) := 2νλ1(1− ε) + α(x(β−1)/2 + y(β−1)/2)− 1
4νε

(x+ y).

The minimum of g(x, y) in {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} attains at

(x0, y0) = ((2νεα(β − 1))−2/(β−3), (2νεα(β − 1))−2/(β−3)).

Further, it is satisfied that

g(x0, y0) = 2νλ1(1− ε)− (β − 3)α−2/(β−3)(2νε(β − 1))−(β−1)/(β−3).
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Find 1 ≥ ε > 0 which fulfills

2νλ1(1− ε) > (β − 3)α−2/(β−3)(2νε(β − 1))−(β−1)/(β−3).

This is equivalent to

λβ−3
1 α2(2ν)2β−4(1− ε)β−3εβ−1 >

(β − 3)β−3

(β − 1)β−1
. (3.3)

The maximum of (1− ε)β−3εβ−1 in 0 ≤ ε ≤ 1 is

(β − 3)β−3(β − 1)β−1

(2β − 4)2β−4
.

Substituting this into (3.3), we have (3.2). If β = 3, (3.2) is equivalent to αν > 1/4.
The proof is complete. �

Proof of Theorem 1.2. Suppose β > 3 and α > 0, or β = 3 and αν ≥ 1/4. Denote
u and v be the G-weak solutions with initial data u0, v0 ∈ H, respectively. Fix
T > 0. Let um(m ≥ 1) and vn(n ≥ 1) be subsequences of Galerkin approximations
of u and v of (1.1), respectively, which satisfy the conditions

um → u weakly in L2(0, T ;V ) and strongly in L2(0, T ;H), as m→∞
vn → v weakly in L2(0, T ;V ) and strongly in L2(0, T ;H) as n→∞,

(see [3, 7]). Denote wm,n = um − vn. Using the inequality (3.1) and

((um · ∇)um, wm,n)− ((vn · ∇)vn, wm,n) = −((wm,n · ∇)wm,n, um),

we get
1
2
d

dt
‖wm,n‖2 + ν‖∇wm,n‖2

= −α(|um|β−1um − |vn|β−1vn, um − vn)− ((um · ∇)um, wm,n)

+ ((vn · ∇)vn, wm,n)

≤ −α
2

∫
Ω

(|um|β−1 + |vn|β−1)|wm,n|2 dx+
∫

Ω

|um||wm,n||∇wm,n| dx

≤ −α
2

∫
Ω

(|um|β−1 + |vn|β−1)|wm,n|2 dx+ νε‖∇wm,n‖2

+
1

4νε

∫
Ω

|um|2|wm,n|2 dx,

(3.4)

for t > 0, where 0 < ε ≤ 1. Changing the order of um and vn, we have
1
2
d

dt
‖wm,n‖2 + ν‖∇wm,n‖2

≤ −α
2

∫
Ω

(|um|β−1 + |vn|β−1)|wm,n|2 dx+ νε‖∇wm,n‖2

+
1

4νε

∫
Ω

|vn|2|wm,n|2 dx,

(3.5)

Adding (3.4) and (3.5) and using λ1‖wm,n‖2 ≤ ‖∇wm,n‖2, it follows that

d

dt
‖wm,n‖2 + 2λ1ν(1− ε)‖wm,n‖2

≤
∫

Ω

{−α(|um|β−1 + |vn|β−1) +
1

4νε
(|um|2 + |vn|2)}|wm,n|2 dx.

(3.6)
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Suppose β > 3 and α > 0, or β = 3 and αν ≥ 1
4 . Then there are constants δ

(not necessarily positive) and ε ∈ (0, 1] such that

2λ1ν(1− ε) + α(|um|β−1 + |vn|β−1)− 1
4νε

(|um|2 + |vn|2) ≥ δ. (3.7)

Therefore, from (3.6), (3.7) and Gronwall’s lemma we have

‖wm,n(t)‖2 ≤ ‖wm,n(0)‖2e−δt, ∀t ∈ [0, T ]. (3.8)

Passing to m,n→∞ in (3.8) implies

‖u(t)− v(t)‖2 ≤ ‖u0 − v0‖2e−δt, t > 0, (3.9)

for almost all t ∈ [0, T ]. If we redefine u(t) on a set of measure zero so that
they continuous in [0, T ], (29) is fulfilled for all t ∈ [0, T ] and for all t ≥ 0 from
arbitrariness of T > 0. The proof is complete. �

Remark 3.3. Since the weak solution u of (1.1) is in L∞(0, T ;H) ∩ L2(0, T ;V ) ∩
Lβ+1(0, T ; (Lβ+1(Ω))3), |Bu|V ′ ∈ L4(0, T ) and |Gu|V ′ ∈ L(β+1)/β(0, T ), du/dt be-
longs to only L(β+1)/β(0, T ;V ′). Thus, we can not know whether the formula

〈du(t)
dt

, u(t)〉V ′V =
1
2
d

dt
‖u(t)‖2

is true or false, while the formula is true if du/dt ∈ L2(0, T ;V ′) and u ∈ L2(0, T ;V ).
So, for general weak solutions, we can not know whether the formula (29) is true
or false.

4. Proof of Theorem 1.4

Suppose the assumptions of Theorem 1.4 are fulfilled. Denote

F := ‖f‖2W 1,2(0,T ;(L2(Ω))3).

Let S be the mapping defined by

(Su0)(x) := u(x, T ;u0),

where u(x, t;u0) is the unique G-weak solution of (1.1) with initial data u0 ∈ H
(see Remark 1.3). Denote

X :=
{
u0 ∈ H : ‖u0‖2 ≤ C4 :=

F

λ1ν(1− e−λ1νT )
}
.

Let u0 ∈ X. Multiplying the first equation of (1.1) by u, integrating the resulting
equation on Ω, we have

1
2
d

dt
‖u‖2 + ν‖∇u‖2 + α‖u‖β+1

β+1 ≤
λ1ν

2
‖u‖2 +

1
2λ1ν

‖f(t)‖2. (4.1)

Dropping the term α‖u‖β+1
β+1, considering λ1‖u‖2 ≤ ‖∇u‖2 and applying Gronwall’s

lemma, we have

‖u(t)‖2 ≤ e−λ1νt‖u0‖2 +
F

λ1ν
, ∀t ∈ [0, T ]. (4.2)

Therefore, ‖u(T ;u0)‖2 ≤ C4 if ‖u0‖2 ≤ C4. That is, SX ⊂ X.
Assuming ‖u0‖2 ≤ C4, integrating (4.1) over [0, T ] and substituting (31), it

follows that ∫ T

0

‖∇u(t)‖2dt ≤ λ1C4T

2
+

F

2λ1ν2
:= C5.
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This implies that there is a time t0 ∈ (0, T ) satisfying

‖∇u(t0)‖2dt ≤ C5

T
. (4.3)

The inequality (2.16), with t = 0 is replaced by t = t0, gives us

‖∇u(T )‖2 ≤ C(T )(1 + ‖∇u(t0)‖4q(q−1) + F )

≤ C(T )(1 + (
C5

T
)2q(q−1) + F ).

(4.4)

Therefore, SX is precompact in H.
The continuity of S : X → X follows from Theorem 1.2. It is clear that X

is a closed, bounded, and convex set in H. Since S : X → X is a compact and
continuous mapping, from Schauder’s fixed point theorem we know that S has a
fixed point in X. Thus there is a u0 ∈ X such that u(T ;u0) = u0. Further, from
Theorem 1.1 and u0 = u(T ;u0) ∈ V , we know that the periodic G-weak solutions
are the periodic strong solutions.

Suppose (1.4) is fulfilled. Since the weak solution u belongs to C((0, T ];H) for
any T > 0, it follows that there is a constant δ > 0 such that

‖u(t)− v(t)‖2 ≤ ‖u(s)− v(s)‖2 exp(−δ(t− s))
for any t > s > 0 and the weak solutions u and v by (3.9). Then the last part of
the Theorem 1.4 is proved, and proof is complete.
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