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Abstract. This paper deals with the existence and multiplicity results for
fractional problem involving the square root of the Laplacian A1/2 in a bounded

domain with zero Dirichlet boundary conditions by Morse theory and critical

groups for a C1 functional at both isolated critical points and infinity.

1. Introduction

This article concerns the existence and multiplicity of nontrivial weak solutions
to nonlinear equations involving a non-local positive operator, the square root of the
Laplacian in a bounded domain with zero Dirichlet boundary condition. Precisely,
we study the fractional problem

A1/2u = f(u) x ∈ Ω,
u = 0 x ∈ ∂Ω,

(1.1)

where Ω is a smooth bounded domain of RN , N > 2, and the nonlinearity f : R→ R
is a continuous function that satisfies the condition

(A1) f(0) ≡ 0 and there exist a > 0 and 1 6 p < 2] := 2N
N−1 such that

|f(t)| 6 a(1 + |t|p−1) for all t ∈ R.
According to [12], the operator A1/2 is regarded as the square root of the Laplacian
operator −∆ and is defined as follows. Let {λj , ϕj}∞j=1 be the eigenvalues and the
corresponding eigenfunctions of the Laplacian operator −∆ in Ω with zero Dirichlet
boundary data on ∂Ω; that is,

∫
Ω
ϕjϕkdx = δj,k and

−∆ϕj = λjϕj x ∈ Ω,
ϕj = 0 x ∈ ∂Ω.

(1.2)

For u ∈ H1
0 (Ω) with

u(x) =
∞∑
j=1

αjϕj(x), x ∈ Ω,
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the operator A1/2 is defined by

A1/2u :=
∞∑
j=1

αjλ
1/2
j ϕj .

It is proved in [12] that the operator A1/2 is self-adjoint and positive definite and
{λ1/2

j , ϕj}∞j=1 are the eigenvalues and the corresponding eigenfunctions of A1/2 on
Ω. Precisely, one has that

A1/2ϕj = µjϕj x ∈ Ω,
ϕj = 0 x ∈ ∂Ω,

(1.3)

here and in the sequel we denote by

µj := λ
1/2
j , j ∈ N (1.4)

the j-th eigenvalue of the operator A1/2. The precise mathematical description and
basic properties of the operator A1/2 will be recalled in the next section.

It should be pointed out that the operator A1/2 is different from the integro-
differential operator (−∆)s with s = 1/2, where (−∆)s(0 < s < 1) is defined, up
to a constant, as

−(−∆)su(x) :=
∫

RN

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

dy, x ∈ RN

and is the infinitesimal generators of Lévy stable diffusion processes (see [6]). In [33]
the authors showed that the operator A1/2 depends on the domain Ω considered,
since its eigenfunctions and eigenvalues depend on Ω, while the integral one (−∆)1/2

evaluated at some point is independent of the domain in which the equation is set.
Besides, the eigenvalues and eigenfunctions of these two fractional operators behave
quite different.

The fractions of the Laplacian, such as the square root of the Laplacian A1/2 con-
sidered in the present paper, appear in flames propagation and chemical reactions
in liquids, population dynamics, geophysical fluid dynamics, anomalous diffusions
in plasmas, and American options in finances (see [3, 24, 38]).

Nonlinear equations involving the fractional Laplacian have attracted much at-
tention in the recent years. A lot of interest has been devoted to the fractional
Laplacian problems with various nonlinearities in getting the existence, non-existence
and regularity results as well as the qualitative properties, see [1, 4, 5, 9, 10, 11,
12, 13, 14, 17, 21, 22, 34, 36, 37, 40] and the references therein.

Through the Dirichlet-to-Neumann map due to Stein([35]) on Ω, Cabré and
Tan in their well-known work [12] constructed a framework by transforming the
nonlocal problem (1.1) to a local problem equivalently in the cylinder C = Ω×(0,∞)
with mixed boundary data which has variational structure so that the classical
variational methods work well. Under such a framework from [12], the existence
of a positive solution of (1.1) for f(u) = |t|q−1t with 1 < q < N+1

N−1 was obtained
in [12] by constrained minimization method, Tan studied in [36] the existence of a
positive solution of (1.1) with critical nonlinearity case of f(t) = µt+ |t|

2
N−1 t by the

mountain pass theorem, and in [40] Nehari manifold method was applied to get the
the existence of solutions and multiple solutions of (1.1) for f(t) = µt+ b(x)|t|q−1t
with 0 < q < N+1

N−1 and sign-changing weight b(x).
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The aim of the present paper is to establish the existence and multiplicity results
for (1.1) for general nonlinear function f with subcritical growth. The problem (1.1)
has admitted a trivial solution u = 0 because f(0) ≡ 0, we are interested in finding
nontrivial weak solutions of (1.1). The existence of nontrivial weak solutions of
(1.1) depends mainly upon the behaviors of the nonlinear term f or its primitive
F (t) =

∫ t
0
f(s)ds near infinity and near zero.

Now we state the assumptions on the nonlinearity f in our context. Near infinity
we make the following assumptions.

(A2) There exist R > 0 and θ > 2 such that

0 < θF (t) 6 f(t)t for |t| > R. (1.5)

(A3) For some eigenvalue µm of A1/2 with m > 1 there exist the limits

lim
|t|→∞

f(t)
t

= µm, (1.6)

lim
|t|→∞

±(f(t)t− 2F (t)) = +∞. (1.7)

(A4) There exist µ < µ1 and C > 0 such that

F (t) 6
1
2
µt2 + C for all t ∈ R. (1.8)

(A5) There exist the limits

lim
|t|→∞

2F (t)
t2

= µ1, (1.9)

lim
|t|→∞

(2F (t)− µ1t
2) = −∞. (1.10)

Near the origin we make the following assumptions.
(A6) There exist δ > 0 and τ ∈ (1, 2) such that

f(t)t > 0 for 0 < |t| 6 δ, (1.11)

τF (t)− f(t)t > 0 for |t| 6 δ. (1.12)

(A7) There exist δ > 0 and k > 1 such that for two different adjacent eigenvalues
µk < µk+1 of A1/2, it holds that

µkt
2 6 2F (t) 6 µk+1t

2 for |t| 6 δ, (1.13)

(A8) There exist δ > 0 such that

2F (t) 6 µ1t
2 for |t| 6 δ. (1.14)

The main results of this article are the following theorems for equations driven
by the square root of the Laplacian. The first theorem is related to the existence
of one nontrivial weak solution of (1.1).

Theorem 1.1. Assume (A1). Then problem (1.1) admits at least one nontrivial
weak solution in each of the following cases:

(a) (A2) and (A7),
(b) (A2) and (A8),
(c) (A3) and (A6),
(d) (A3) and (A8),
(e) (A4) and (A6),
(f) (A5) and (A6).
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In the second theorem we establish the multiplicity of nontrivial solutions of
(1.1).

Theorem 1.2. Assume (A1). Then problem (1.1) admits at least two nontrivial
weak solutions in each of the following cases:

(a) (A4) and (A7),
(b) (A5) and (A7).

Now we give some remarks about the conditions presented above.
We first look at the conditions near infinity. The condition (A2) is the well-

known Ambrosetti-Rabinowitz superquadratic condition at infinity introduced in
the pioneering paper [2] and has been used extensively in the literature in dealing
with superlinear variational problems. We mention a famous work [39] by Wang
where the condition (A2) was exploited to describe the topological property of
the energy functional at infinity and a third nontrivial solution for superlinear
elliptic equations was obtained via Morse theory. In the condition (A3), (1.6)
means that problem (1.1) is completely resonant at the eigenvalue µm of A1/2 near
infinity, while (1.7) is so-called the non-quadratic conditions (see [23]). We regard
the condition (A4) as a weak version of sub-quadratic condition since it includes
lim|t|→∞ 2F (t)/t2 = 0 or lim|t|→∞ f(t)/t = 0 as the special case. The condition
(A5) means problem (1.1) is resonant near infinity at µ1 from the left side. In this
case we use (1.10) that is weaker than the case + in (1.7).

Next we look at the conditions near zero. The conditions (A6) means that the
function f is superlinear near zero as which implies limt→0 2F (t)/t2 = ∞. This
condition was introduced in [30] and a similar case was seen in [31]. The condi-
tion (A7) means that problem (1.1) is resonant near zero between two consecutive
eigenvalues of A1/2. This condition was first introduced in [27]. The condition (A8)
means that problem (1.1) is resonant near zero at µ1 from the left side.

Theorems 1.1 and 1.2 will be proved by applying the infinite dimensional Morse
theory to the fractional framework. Because of the nonlocal feature of problem (1.1)
on Ω, it is difficult for us to apply Morse theory directly. Instead, we apply Morse
theory to an extended local problem in the cylinder C which is equivalent to (1.1)
according to the framework built in [12]. By studying the variational functional
corresponding to the extended local problem in the cylinder C with Morse theory
and critical groups at zero and at infinity, we prove Theorem 1.1 for the existence
of one nontrivial weak solutions of (1.1). The multiplicity result in Theorem 1.2
will be obtained by applying a three critical point theorem in [29].

The article is organized as follows. In Section 2, we present the functional space
related to problem (1.1) together with the basic properties about the operator A1/2.
Then we recall some abstract results about Morse theory and critical groups. In
Section 3, we satisfy the compactness of the functional and give the computations
of critical groups at infinity. In Section 4, we compute the critical groups at zero.
In Section 5, we give the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section we will give the preliminaries for the variational settings related
to problem (1.1) and some abstract results in Morse theory.
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2.1. Functional spaces and the operator A1/2. We first recall briefly the func-
tional framework built in [12]. Denote the upper half space in RN+1 by

RN+1
+ = {(x, y) : x ∈ RN , y > 0},

and the half cylinder standing on Ω by C = Ω×(0,+∞) and its lateral boundary by
∂LC = ∂Ω × (0,∞). Consider the Sobolev space of functions with trace vanishing
on ∂LC:

H1
0,L(C) =

{
v ∈ L2(C) : v = 0 on ∂LC,

∫
C
|∇v|2 dx dy <∞

}
.

Then H1
0,L(C) is a Hilbert space with the scalar product

〈v, w〉 =
∫
C
∇v∇w dxdy

and the norm

‖v‖ =
(∫
C
|∇v|2 dx dy

)1/2

.

From [12, Lemmas 2.4 and 2.5] we get the following embedding results:

Proposition 2.1. The embedding from H1
0,L(C) into Lq(Ω) is continuous for all

q ∈ [1, 2N
N−1 ] and is compact for all q ∈ [1, 2N

N−1 ). Moreover, there is cq > 0 such
that(∫

Ω×{0}
|v(x, 0)|qdx

)1/q

6 cq
(∫
C
|∇v|2 dx dy

)1/2

for all v ∈ H1
0,L(C). (2.1)

Denote by trΩ the trace operator on Ω× {0} for functions in H1
0,L(C):

trΩ v := v(·, 0), for v ∈ H1
0,L(C).

Let V0(Ω) be the space of all traces on Ω× {0} of functions in H1
0,L(C); that is,

V0(Ω) :=
{
u = trΩ v : v ∈ H1

0,L(C)
}
.

Then by [12, Lemma 2.10], V0(Ω) can be characterized as

V0(Ω) =
{
u ∈ L2(Ω) : u =

∞∑
j=1

αjϕj satisfies
∞∑
j=1

α2
jλ

1/2
j < +∞

}
(2.2)

and the space H1
0,L(C) can be characterized as (see the proof of[12, Lemma 2.10])

H1
0,L(C) =

{
v ∈ L2(C) : v(x, y) =

∞∑
j=1

αjϕj exp(−λ1/2
j y) with

∞∑
j=1

α2
jλ

1/2
j < +∞

}
.

Where the pair {λj , ϕj}j∈N are the eigenvalue and the corresponding eigenfunction
of −∆ on Ω with zero boundary value on ∂Ω, as stated in (1.2).

For a given function u ∈ V0(Ω), its harmonic extension v to the cylinder C is the
weak solution of the problem

−∆v = 0 in C,
v = 0 on ∂LC,

v = u on Ω× {0}.
(2.3)
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The idea of the harmonic extension was introduced in the pioneering work of
Caffarelli-Silvestre[16] where the fractional Laplacian in the whole space was dealt
with.

The definition and properties of the operator A1/2 are stated as follows.

Proposition 2.2 ([12]). For u =
∑∞
j=1 αjϕj ∈ V0(Ω), there exists a unique har-

monic extension v in C of u such that v ∈ H1
0,L(C), and it is given by the expansion

v(x, y) =
∞∑
j=1

αjϕj(x) exp(−λ1/2
j y), for all (x, y) ∈ C. (2.4)

The operator A1/2 : V0(Ω)→ V∗0 (Ω) is given by the Dirichlet-to-Neumann map

A1/2u :=
∂v

∂ν

∣∣∣
Ω×{0}

, (2.5)

where V∗0 (Ω) is the dual space of V0(Ω) and where ν is the unit outer normal to C
at Ω× {0}. We have

A1/2u =
∞∑
j=1

αjλ
1/2
j ϕj , (2.6)

and that A1/2 ◦ A1/2 is equal to −∆ in Ω with zero Dirichlet boundary values on
∂Ω. The inverse A−1

1/2 is the unique positive square root of the inverse Laplacian
(−∆)−1 in Ω with zero Dirichlet boundary values on ∂Ω.

Now we consider the linear eigenvalue problem
A1/2u = µu in Ω,
u = 0 on ∂Ω.

(2.7)

By the definition of A1/2, we see that a nontrivial function u ∈ V0(Ω) is an eigen-
function associated to the eigenvalue µ if and only if the harmonic extension v of u
to the cylinder C satisfies

−∆v = 0 in C,
v = 0 on ∂LC,

∂v

∂ν
= µu on Ω× {0}.

(2.8)

We have that {λ1/2
j , ϕj}j∈N are the eigenvalues and the corresponding eigenfunc-

tions of (2.7) (see [12, Lemma 2.13]). Setting

µj = λ
1/2
j and ej(x, y) = ϕj(x) exp(−µjy) for all j ∈ N. (2.9)

Then all the pairs {µj , ej}j∈N satisfy (2.8): for all j ∈ N,
−∆ej = 0 in C,
ej = 0 on ∂LC,

∂ej
∂ν

= µje(·, 0) = µjϕj on Ω× {0},
(2.10)

The eigenfunction sequence {ej}j∈N forms an orthogonal basis of H1
0,L(C). The

eigenvalue sequence {µj}j∈N has the following variational characterizations:

µ1 = min
v∈H1

0,L(C)\{0}

∫
C |∇v|

2 dx dy∫
Ω
|v(x, 0)|2dx

=
∫
C
|∇e1|2 dx dy, (2.11)
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and

µj = min
v∈Pj\{0}

∫
C |∇v|

2 dx dy∫
Ω
|v(x, 0)|2dx

=
∫
C
|∇ej |2 dx dy,

where
Pj =

{
v ∈ H1

0,L(C) : 〈v, ei〉 = 0 for i = 1, 2, . . . , j − 1
}
.

Moreover, µ1 is simple and 0 < µ1 < µ2 6 · · · 6 µj 6 · · · → ∞ as j →∞, and that
each µj has finite multiplicity. For j ∈ N, let `j be the multiplicity of µj ; that is,

µj−1 < µj = µj+1 = · · · = µj+`j−1 < µj+`j .

Set

H−(µj) = span{e1, . . . , ej−1}, H(µj) = span{ej , . . . , ej+`j−1},

H+(µj) = span{ej+`j , ej+`j+1, . . . , } =
[
H−(µj)⊕H(µj)

]⊥
.

Then
H1

0,L(C) = H−(µj)⊕H(µj)⊕H+
j (µj). (2.12)

Proposition 2.3. The following variational inequalities hold:∫
C
|∇v|2 dx dy 6 µj−1

∫
Ω

|v(x, 0)|2dx for all v ∈ H−(µj),∫
C
|∇v|2 dx dy = µj

∫
Ω

|v(x, 0)|2dx, for all v ∈ H(µj),∫
C
|∇v|2 dx dy > µj+`j

∫
Ω

|v(x, 0)|2dx. for all v ∈ H+(µj).

2.2. Extended problem, weak solutions and variational formula. With the
preliminaries in the previous subsection at hand, we turn to problem (1.1). We say
that a function u ∈ V0(Ω) is a weak solution of (1.1) if the function v ∈ H1

0,L(C)
with trΩ v = v(·, 0) = u weakly solves the extended problem

−∆v = 0 in C,
v = 0 on ∂LC,

∂v

∂ν
= f(v(·, 0)) on Ω× {0},

(2.13)

that is the function v satisfies the variational formula∫
C
∇v∇φdx dy =

∫
Ω

f(v(x, 0))φ(x, 0)dx for all φ ∈ H1
0,L(C). (2.14)

Observe that the extended problem (2.13) has a variational structure, indeed, it is
the Euler-Lagrange equation of the functional J : H1

0,L(C)→ R defined by

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx, v ∈ H1
0,L(C). (2.15)

Since the nonlinear function f satisfies the subcritical growth condition (A1), by
Proposition 2.1, the functional J is well-defined on H1

0,L(C) and is of class C1 with
derivative given by

〈J ′(v), φ〉 =
∫
C
∇v∇φdx dy −

∫
Ω

f(v(x, 0))φ(x, 0)dx. (2.16)

Therefore critical points of J are exactly weak solutions of (2.13) and then the
traces of critical points of J are exactly weak solutions to problem (1.1).
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We will apply Morse theory and critical groups to find critical points of J .

2.3. Preliminaries about Morse theory. In this subsection we collect some
results on Morse theory for a C1 functional J defined on a Hilbert space E.

Let J ∈ C1(E,R). Denote for c ∈ R

J c = {z ∈ E : J (z) 6 c}, Kc = {z ∈ E : J ′(z) = 0, J (z) = c}.
We say that the functional J possesses the deformation property at the level c ∈ R
if for any ε̄ > 0 and any neighborhood N of Kc, there are ε > 0 and a continuous
deformation ζ : [0, 1]× E → E such that

(i) ζ(z, t) = z for either t = 0 or z 6∈ J−1([c− ε̄, c+ ε̄]);
(ii) J (ζ(t, z)) is nonincreasing in t for any z ∈ E;

(iii) ζ(J c+ε \ N ) ⊂ J c−ε.
We say that J possesses the deformation property if J possesses the deformation
property at all c ∈ R.

We say that J satisfies the Palais-Smale condition at the level c ∈ R if any
sequence {zn} ⊂ E satisfying J (zn) → c and J ′(zn) → 0 as n → ∞ has a
convergent subsequence. We say that J satisfies the the Palais-Smale condition
condition if J satisfies the Palais-Smale condition at each c ∈ R.

We say that J satisfies the Cerami condition at the level c ∈ R if any sequence
{zn} ⊂ E such that J (zn) → c and (1 + ‖zn‖)‖J ′(zn)‖ → 0 as n → ∞ has a
convergent subsequence. We say that J satisfies the Cerami condition if J satisfies
the Cerami condition at any c ∈ R.

We note that if J satisfies the Palais-Smale condition or the Cerami condition
then J possesses the deformation property (see [20, 8]).

Let K = {z ∈ E : J ′(z) = 0}. Assume that J (K) is bounded from below
by a ∈ R and J possesses the deformation property at all c 6 a. The group
Cq(J ,∞) := Hq(E,J a), q ∈ Z, is called the q-th critical group of J at infinity
([8]), where H∗(A,B) denotes a singular relative homology group of the pair (A,B)
with integer coefficients.

Let z0 be an isolated critical point of J with J (z0) = c ∈ R, and U be a
neighborhood of z0 such that U ∩ K = {z0}. The group Cq(J , z0) := Hq(J c ∩
U,J c ∩ U \ {z0}), q ∈ Z, is called the q-th critical group of J at z0.

Assume that J possesses the deformation property and K is a finite set. We
have the following basic facts from Morse theory (see [19, 32, 8]). If K = ∅ then
Cq(J ,∞) ∼= 0 for all q ∈ Z. Thus if Cq(J ,∞) 6∼= 0 for some q ∈ Z then K 6= ∅.
Assume that 0 ∈ K. If K = {0} then Cq(J ,∞) ∼= Cq(J , 0) for all q ∈ Z. Thus if
Cq(J ,∞) 6∼= Cq(J , 0) for some q ∈ Z then J must have a critical point differing
from 0. Therefore the basic idea in applying Morse theory to find nonzero critical
points of J is to compute critical groups both at infinity and at 0.

The critical group Cq(J ,∞) can be computed partially when J has a saddle
point geometry at infinity.

Proposition 2.4 ([8]). Let E be a Hilbert space such that E = V∞ ⊕W∞ with
` = dimV∞ < ∞. Let J ∈ C1(E,R) possess the deformation property. Suppose
that J satisfies

(i) infz∈W∞ J (u) > −∞;
(ii) J (z)→ −∞ as ‖z‖ → ∞, z ∈ V∞.

Then C`(J ,∞) 6∼= 0.
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The critical group Cq(J , 0) can be computed partially when J has a local linking
structure at zero.

Proposition 2.5 ([28]). Let E be a Hilbert space such that E = V0 ⊕ W0 with
`0 = dimV0 < ∞. Let J ∈ C1(E,R) possess the deformation property. Assume
that J has an isolated critical point z = 0 with J (0) = 0. If J has a local linking
at 0 with respect to E = V0 ⊕W0 where `0 = dimV0 < ∞ i.e., there exists ρ > 0
small such that

J (z) 6 0, z ∈ V0, ‖z‖ 6 ρ, J (z) > 0, z ∈W0, 0 < ‖z‖ 6 ρ. (2.17)

Then C`0(J , 0) 6∼= 0.

In this subsection we recall a very general version of the famous three critical
point theorem.

Proposition 2.6 ([29]). Let E be a Hilbert space and let J ∈ C1(E,R) possess the
deformation property and be bounded from below. Assume that J has an isolated
critical point z∗ ∈ E such that

(i) z∗ is homological nontrivial, i.e., Cq(J , z∗) 6∼= 0 for some q ∈ Z,
(ii) z∗ is not the global minimizer of J .

Then J has at least three critical points.

We point out that the all above results on Morse theory are valid for E being a
Banach space.

3. Compactness and critical groups at infinity

We will prove Theorems 1.1 and 1.2 by studying the functional J defined by
(2.15):

J(v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx, v ∈ H1
0,L(C).

We will use Morse theory and critical groups computations to get the existence of
nontrivial critical points of J . First of all we study the bounded compactness of
J . We have the following result.

Lemma 3.1. Let f satisfy (A1). Then any bounded sequence {vn} ⊂ H1
0,L(C) such

that
J ′(vn)→ 0 in (H1

0,L(C))∗ as n→∞ (3.1)
has a convergent subsequence.

Proof. Let {vn} ⊂ H1
0,L(C) be bounded and satisfy (3.1). Since H1

0,L(C) is a Hilbert
space and then is reflexive, there is a subsequence of {vn}, it is still denoted by
{vn}, and there exists v∗ ∈ H1

0,L(C), such that

vn ⇀ v∗ weakly in H1
0,L(C) as n→∞. (3.2)

By Proposition 2.1, up to a subsequence, it holds

trΩ vn → trΩ v
∗ strongly in Lq(Ω) ∀q ∈ [1, 2]),

vn(x, 0)→ v∗(x, 0) a.e. in Ω
(3.3)

as n→∞, and there exists κq ∈ Lq(Ω) such that

|vn(x, 0)| 6 κq(x) a.e. in Ω for any n ∈ N. (3.4)
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By (A1), (3.3), (3.4) and the Dominated Convergence Theorem, we have

lim
n→∞

∫
Ω

f(vn(x, 0))vn(x, 0)dx =
∫

Ω

f(v∗(x, 0))v∗(x, 0)dx, (3.5)

lim
n→∞

∫
Ω

f(vn(x, 0))v∗(x, 0)dx =
∫

Ω

f(v∗(x, 0))v∗(x, 0)dx. (3.6)

Since {vn} is bounded, by (3.1) we have

〈J ′(vn), vn〉 = ‖vn‖2 −
∫

Ω

f(vn(x, 0))vn(x, 0)dx→ 0 as n→∞. (3.7)

Consequently, from (3.5)and (3.7) we deduce that

lim
n→∞

‖vn‖2 =
∫

Ω

f(v∗(x, 0))v∗(x, 0)dx. (3.8)

Furthermore, using (3.1) again, we have

〈J ′(vn), v∗〉 = 〈vn, v∗〉 −
∫

Ω

f(vn(x, 0))v∗(x, 0)dx→ 0, as n→∞. (3.9)

By (3.2), (3.6)–(3.9) we obtain

‖v∗‖2 =
∫

Ω

f(v∗(x, 0))v∗(x, 0)dx. (3.10)

Thus, (3.8) and (3.10) give that

lim
n→∞

‖vn‖2 = ‖v∗‖2.

Finally we have that

‖vn − v∗‖2 = ‖vn‖2 + ‖v∗‖2 − 2〈vn, v∗〉 → 0 as n→∞.

The proof is complete. �

Next we prove the compactness of the functional J and compute the critical
groups of J at infinity. We will use Ci > 0 to denote various constants independent
of the functions in H1

0,L(Ω).

Lemma 3.2. Assume (A1) and (A2).

(i) The functional J satisfies the Palais-Smale condition.
(ii) Cq(J ,∞) ∼= 0 for all q ∈ Z.

Proof. (i) Let {vn} ⊂ H1
0,L(C) be such that {J (vn)} is bounded from above by

some C1 > 0 for all n ∈ N and

J ′(vn)→ 0 in (H1
0,L(C))∗ as n→∞. (3.11)
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By Lemma 3.1 we only need to show that {vn} is bounded in H1
0,L(C). Now it

follows from (A1) and (A2) that for n large,

θC1 + ‖vn‖

> θJ (vn)− 〈J ′(vn), vn〉

=
θ − 2

2
‖vn‖2 −

∫
Ω

(
θF (vn(x, 0))− f(vn(x, 0))vn(x, 0)

)
dx

=
θ − 2

2
‖vn‖2 −

∫
{|vn(x,0)|>R}

(
θF (vn(x, 0))− f(vn(x, 0))vn(x, 0)

)
dx

−
∫
{|vn(x,0)|<R}

(
θF (vn(x, 0))− f(vn(x, 0))vn(x, 0)

)
dx

>
θ − 2

2
‖vn‖2 −

∫
{|vn(x,0)|6R}

|θF (vn(x, 0))− f(vn(x, 0))vn(x, 0)|dx

>
θ − 2

2
‖vn‖2 − C2

(3.12)

where
C2 = |Ω| sup

|t|6R
|θF (t) + f(t)t|.

Since θ > 2, it follows from (3.12) that {vn} is bounded in H1
0,L(C). By Lemma 3.1

one sees that {vn} has a convergent subsequence .
(ii) Denote B1 = {v ∈ H1

0,L(C) : ‖v‖ 6 1}. By (1.5), we deduce that there is
C3 > 0 such that

F (t) > C3|t|θ, for all |t| > R. (3.13)
For v ∈ ∂B1 = {v ∈ H1

0,L(C) : ‖v‖ = 1} and η > 0, we have

J (ηv) =
1
2
η2

∫
C
|∇v|2 dx dy −

∫
Ω

F (ηv(x, 0))dx

=
1
2
η2 − C3

∫
{|ηv(x,0)|>R}

|ηv(x, 0)|θdx+
∫
|ηv(x,0)|<R

|F (ηv(x, 0))|dx

6
1
2
η2 − C3

∫
Ω

|ηv(x, 0)|θdx+ C3

∫
{|ηv(x,0)|<R}

|ηv(x, 0)|θdx

+
∫
{|ηv(x,0)|<R}

|F (ηv(x, 0))|dx

6
1
2
η2 − C3η

θ‖ trΩ v‖θLθ(Ω) + C4

where
C4 = |Ω|(C3R

θ + sup
|t|6R

|F (t)|).

Since θ > 2, it follows that

lim
η→+∞

J (ηv) = −∞. (3.14)

For v ∈ ∂B1 and η > 0, by (1.5) we have

d

dη
J (ηv) = 〈J ′(ηv), v〉
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= η

∫
C
|∇v|2 dx dy −

∫
Ω

f(ηv(x, 0))v(x, 0)dx

=
1
η

(
2J (ηv) +

∫
Ω

(2F (ηv(x, 0))− f(ηv(x, 0))ηv(x, 0))dx
)

6
1
η

(
2J (ηv) +

∫
{|ηv(x,0)|6R}

(2F (ηv(x, 0))− f(ηv(x, 0))ηv(x, 0))dx
)

6
1
η

(2J (ηv) + C5),

where
C5 = |Ω| sup

|t|6R
(2|F (t)|+R|f(t)|).

Therefore, for any a fixed a < −C5/2,

J (ηv) 6 a ⇒ d

dη
J (ηv) < 0. (3.15)

Since J (0) = 0, it follows from (3.14) and (3.15) that for any v ∈ ∂B1, there is a
unique η(v) > 0 such that

J (η(v)v) = a, v ∈ ∂B1. (3.16)

By (3.16) and the Implicit Function Theorem we have that η ∈ C(∂B1,R). Now
we define

π(v) =

{
1, if J (v) 6 a,
‖v‖−1η(‖v‖−1v), if J (v) > a, v 6= 0.

Then π ∈ C(H1
0,L(C) \ {0},R). Define the mapping ξ : [0, 1] × H1

0,L(C) \ {0} →
H1

0,L(C) \ {0} by
ξ(σ, v) = (1− σ)v + σπ(v)v.

It is easy to see that ξ is continuous. For all v ∈ H1
0,L(C) \ {0} with J (v) > a, by

(3.16),
J (ξ(1, v)) = J (π(v)v) = J (η(‖v‖−1v)‖v‖−1v) = a.

Therefore ξ(1, v) ∈ J a for all v ∈ H1
0,L(C) \ {0}, and ξ(σ, v) = v for all σ ∈ [0, 1],

v ∈ J a. Then J a is a strong deformation retract of H1
0,L(C) \ {0}. It follows that

Cq(J ,∞) = Hq(H1
0,L(C),J a)

∼= Hq(H1
0,L(C), H1

0,L(C) \ {0})
∼= Hq(B1, ∂B1) ∼= 0, q ∈ Z,

since ∂B1 is contractible which follows from dimH1
0,L(C) = ∞. The proof is com-

plete. �

We remark here that the idea for computing Cq(J ,∞) ∼= 0 is essentially from
the famous paper [39] where superlinear Laplacian problems were studied. We use
this idea for superlinear problems involved with the square root of Laplacian.

Lemma 3.3. Assume (A3). Then
(i) the functional J satisfies the Cerami condition.
(ii) (A3) with + in (1.7) implies C`∞(J ,∞) 6∼= 0, where `∞ = dimH−(µm).

(iii) (A3) with − in (1.7) implies C`∗∞(J ,∞) 6∼= 0, where `∗∞ = dim
[
H−(µm)⊕

H(µm)
]
.
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Proof. Denote
g(t) = f(t)− µmt, 2G(t) = 2F (t)− µmt2.

We first note that (1.6) implies (A1) and

lim
|t|→∞

2G(t)
t2

= lim
|t|→∞

g(t)
t

= 0. (3.17)

By (1.7) we have

lim
|t|→∞

±(g(t)t− 2G(t)) = lim
|t|→∞

±(f(t)t− 2F (t)) = +∞. (3.18)

It follows from (3.17) that for any ε > 0 there exists Cε > 0 such that

|g(t)| 6 ε|t|+ Cε for all t ∈ R. (3.19)

We rewrite the functional J defined by (2.15) as

J (v) =
1
2

∫
C
|∇v|2 dx dy − µm

2

∫
Ω

|v(x, 0)|2dx−
∫

Ω

G(v(x, 0))dx, (3.20)

and rewrite the derivative of J as

〈J ′(v), φ〉 =
∫
C
∇v∇φdx dy − µm

∫
Ω

v(x, 0)φ(x, 0)dx

−
∫

Ω

g(v(x, 0))φ(x, 0)dx.
(3.21)

(i) Now we begin to satisfy the Cerami condition. Let {vn} ⊂ H1
0,L(C) be such

that

J (vn)→ c ∈ R as n→∞ (3.22)

(1 + ‖vn‖)‖J ′(vn)‖∗ → 0 as n→∞. (3.23)

We first show that {vn} is bounded in H1
0,L(C). By the way of contradiction, we

assume that
‖vn‖ → ∞, n→∞. (3.24)

Set wn = vn
‖vn‖ . Then ‖wn‖ ≡ 1 for all n ∈ N. By Proposition 2.1, up to a

subsequence if necessary, there is some w∗ ∈ H1
0,L(C) satisfying

wn ⇀ w∗, weakly in H1
0,L(C)

trΩ wn → trΩ w
∗ strongly in Lq(Ω) ∀q ∈ [1, 2]),

wn(x, 0)→ w∗(x, 0) a.e. in Ω

(3.25)

as n→∞, and there exists ψ ∈ Lq(Ω) such that

|wn(x, 0)| 6 ψ(x) a.e. in Ω for any n ∈ N. (3.26)

By (3.21) and (3.23), we have that for any φ ∈ H1
0,L(C),

〈J ′(vn), φ〉 =
∫
C
∇vn∇φdx dy − µm

∫
Ω

vn(x, 0)φ(x, 0)dx

−
∫

Ω

g(vn(x, 0))φ(x, 0)dx→ 0 as n→∞.
(3.27)
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Take φ = wn − w∗ in (3.27), and divide it by ‖vn‖, we get∫
C
∇wn∇(wn − w∗)dx− µm

∫
Ω

wn(x, 0)(wn(x, 0)− w∗(x, 0))dx

−
∫

Ω

g(vn(x, 0))
‖vn‖

(wn(x, 0)− w∗(x, 0))dx→ 0 as n→∞.
(3.28)

By (3.19), (3.25), Proposition 2.1 and the Hölder inequality, we have∣∣ ∫
Ω

g(vn(x, 0))
‖vn‖

(wn(x, 0)− w∗(x, 0))dx
∣∣

6
1
‖vn‖

∫
Ω

(ε|vn(x, 0)|+ Cε)|wn(x, 0)− w∗(x, 0)|dx

6 ε‖ trΩ wn‖L2(Ω)‖ trΩ wn − trΩ w
∗‖L2(Ω)

+
Cε
‖vn‖

∫
Ω

|wn(x, 0)− w∗(x, 0)|dx

6 εc2‖ trΩ wn − trΩ w
∗‖L2(Ω) + Cε

‖ trΩ wn − trΩ w
∗‖L1(Ω)

‖vn‖
→ 0 as n→∞,

(3.29)

where c2 is the embedding constant of H1
0,L(C) ↪→ L2(Ω). Moreover, (3.25) implies

that ∫
Ω

wn(x, 0)(wn(x, 0)− w∗(x, 0))dx→ 0 as n→∞. (3.30)

It follows from (3.28), (3.29) and (3.30) that

〈wn, wn − w∗〉 =
∫
C
∇wn∇(wn − w∗) dx dy → 0 as n→∞.

By (3.25), it is clear that

〈w∗, wn − w∗〉 =
∫
C
∇w∗∇(wn − w∗) dx dy → 0 as n→∞.

Thus
‖wn − w∗‖2 = 〈wn − w∗, wn − w∗〉 → 0 as n→∞.

This proves
wn → w∗ strongly in H1

0,L(C) (3.31)

and ‖w∗‖ = 1. Now dividing by ‖vn‖ in (3.27), we deduce that for all φ ∈ H1
0,L(C),∫

C
∇wn∇φdx dy − µm

∫
Ω

wn(x, 0)φ(x, 0)dx−
∫

Ω

g(vn(x, 0))
‖vn‖

φ(x, 0)dx→ 0 (3.32)

as n→∞. Since for each φ ∈ H1
0,L(C), by (3.19) we have∣∣ ∫

Ω

g(vn(x, 0))
‖vn‖

φ(x, 0)dx
∣∣

6 ε‖ trΩ wn‖L2(Ω)‖ trΩ φ‖L2(Ω) +
Cε‖ trΩ φ‖L1(Ω)

‖vn‖

6 εc2‖ trΩ φ‖L2(Ω) +
Cε‖ trΩ φ‖L1(Ω)

‖vn‖
,
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it follows that

lim
n→∞

∫
Ω

g(vn(x, 0))
‖vn‖

φ(x, 0)dx = 0, ∀φ ∈ H1
0,L(C). (3.33)

By (3.31), (3.32) and (3.33), setting n→∞, we have∫
C
∇w∗∇φdx = µm

∫
Ω

w∗(x, 0)φ(x, 0)dx, ∀φ ∈ H1
0,L(C).

Therefore w∗ weakly solves the linear elliptic equation in the cylinder C,
−∆w∗ = 0 in C,
w∗ = 0 on ∂LC,

∂w∗

∂ν
= µmw

∗(x, 0) on Ω× {0}.

This means that w∗(·, 0) is an eigenfunction corresponding to the eigenvalue µm of
the operator A1/2 therefore an eigenfunction corresponding to λm of the operator
−∆. By the unique continuity property of the eigenfunctions of −∆, we have that
w∗(x, 0) 6= 0 a.e in Ω. Thus by (3.24) and (3.25) we obtain

|vn(x, 0)| = ‖vn‖|wn(x, 0)| → ∞ uniformly for a.e. x ∈ Ω.

It follows from (3.18) that

lim
n→∞

(
f(vn(x, 0))vn(x, 0)− 2F (vn(x, 0))

)
= ±∞ uniformly for a.e. x ∈ Ω.

Then Fatou’s lemma gives∫
Ω

(
f(vn(x, 0))vn(x, 0)− 2F (vn(x, 0))

)
dx→ ±∞. (3.34)

On the other hand, it follows from (3.22) and (3.23) that

2J (vn)− 〈J ′(vn), vn〉 → 2c,

therefore∫
Ω

(
f(vn(x, 0))vn(x, 0)− 2F (vn(x, 0))

)
dx = 2J (vn)− 〈J ′(vn), vn〉 → 2c,

which contradicts (3.34). Thus {vn} is bounded and then the Cerami condition
follows from Lemma 3.1.

(ii) We will prove that the functional J has the geometric feature required by
Proposition 2.4 with respect to the orthogonal splitting (see (2.12))

H1
0,L(C) = H−(µm)⊕

[
H(µm)⊕H+(µm)

]
:= V∞ ⊕W∞.

By (3.17), for ε > 0 small, there is Mε > 0 such that

G(t) > −1
2
εt2 −Mε for all t ∈ R. (3.35)

Thus ∫
Ω

G(v(x, 0))dx > −1
2
ε

∫
Ω

|v(x, 0)|2dx−Mε|Ω|.

For v ∈ H−(µm), by (3.35) and Propositon 2.3, we have

J (v) =
1
2

∫
C
|∇v|2 dx dy − µm

2

∫
Ω

|v(x, 0)|2dx−
∫

Ω

G(v(x, 0))dx

6
1
2

∫
C
|∇v|2 dx dy − 1

2
(µm − ε)

∫
Ω

|v(x, 0)|2dx+Mε|Ω|
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6
1
2

(
1− µm − ε

µm−1

)∫
C
|∇v|2 dx dy +Mε|Ω|

Let ε ∈ (0, µm − µm−1) be fixed. Then we have that

J (v)→ −∞ for v ∈ H−(µm) with ‖v‖ → ∞. (3.36)

It follows from (3.18) and (A3) with + in (1.7), that for every T > 0, there is M > 0
such that

g(t)t− 2G(t) > T for all |t| >M.

For t > 0, we have
d

dt

[G(t)
t2

]
=
g(t)t− 2G(t)

t3
. (3.37)

Integrating (3.37) over [t, s] ⊂ [M,∞), we obtain

G(s)
s2
− G(t)

t2
>
T

2
( 1
t2
− 1
s2

)
.

Letting s→ +∞ and using (3.17), we see that

G(t) 6 −T
2

for t >M.

A similar process shows that

G(t) 6 −T
2

for all t 6 −M.

Hence
lim
|t|→∞

G(t) = −∞. (3.38)

For v ∈ H(µm) ⊕ H+(µm) =
[
H−(µm)

]⊥, we write v = v̄ + ṽ, v̄ ∈ H(µm), ṽ ∈
H+(µm). Then by Propostion 2.3 we have

J (v) =
1
2

∫
C
|∇v|2 dx dy − µm

2

∫
Ω

|v(x, 0)|2dx−
∫

Ω

G(v(x, 0))dx

=
1
2

∫
C
|∇ṽ|2 dx dy − µm

2

∫
Ω

|ṽ(x, 0)|2dx−
∫

Ω

G(v(x, 0))dx

>
1
2

(
1− µm

µm+`m

)∫
C
|∇ṽ|2 dx dy −

∫
Ω

G(v(x, 0))dx

By (3.38), we see that for some K > 0 it holds that

G(t) 6 K for all t ∈ R.

Therefore

J (v) >
1
2

(
1− µm

µm+`m

)∫
C
|∇ṽ|2 dx dy −K|Ω|.

It follows that
J (v) = J (ṽ + v̄)→∞ as ‖ṽ‖ → ∞. (3.39)

Now we show that

‖ṽ‖ bounded and ‖v̄‖ → ∞ =⇒ J (v) = J (ṽ + v̄)→∞. (3.40)

We only need to show that for any {vn = ṽn + v̄n} such that {‖ṽn‖} is bounded
and ‖v̄n‖ → ∞ implies J (ṽn + v̄n)→∞ as n→∞.
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Set wn = vn/‖vn‖ and write wn = w̃n + w̄n, w̃n = ṽn
‖vn‖ , w̄n = v̄n

‖vn‖ . We have

‖w̃n‖ → 0 and ‖w̄n‖ → 1 as n→∞. (3.41)

By Proposition 2.1, up to a subsequence if necessary, there is some w∗ ∈ H(µm)⊕
H+(µm) such that

wn ⇀ w∗, weakly in H1
0,L(C)

trΩ wn → trΩ w∗ strongly in L2(Ω),

wn(x, 0)→ w∗(x, 0) a.e. in Ω

(3.42)

as n → ∞. From (3.41) and (3.42) we deduce that w∗ ∈ E(µm) and ‖w∗‖ = 1.
Therefore w∗ weakly solves the linear elliptic equation in the cylinder C,

−∆w∗ = 0 in C,
w∗ = 0 on ∂LC,

∂w

∂ν
= µmw∗(x, 0) on Ω× {0}.

This means that w∗(·, 0) is an eigenfunction corresponding to the eigenvalue µm of
A1/2. Therefore w(x, 0) 6= 0 for a.e. x ∈ Ω. It follows that

|vn(x, 0)| = ‖vn‖|vn(x, 0)| → ∞, for a.e. x ∈ Ω, as n→∞. (3.43)

Now by (3.38), (3.43) and Fatou’s lemma, we obtain

J (vn) >
1
2

(
1− µm

µm+`m

)∫
C
|∇ṽn|2 dx dy −

∫
Ω

G(vn(x, 0))dx→∞

as n→∞. This proves (3.40). Now (3.39) and (3.40) imply

J (v)→∞ for v ∈ H(µm)⊕H+(µm) with ‖v‖ → ∞. (3.44)

It follows from the fact of J being weakly lower semicontinuous onH(µm)⊕H+(µm)
and (3.44) that J is bounded from below on H(µm)⊕H+(µm). Finally by Propo-
sition 2.4 we get C`∞(J,∞) 6∼= 0, where `∞ = dimH−(µm).

(iii) In a similar way we can prove that the functional J has the geometric feature
required by Proposition 2.4 with respect to the orthogonal splitting (see (2.12))

H1
0,L(C) =

[
H−(µm)⊕H(µm)

]
⊕H+(µm) := V∞ ⊕W∞.

Therefore, C`∗∞(J,∞) 6∼= 0, where `∗∞ = dimH−(µm) ⊕H(µm). The proof is com-
plete. �

Lemma 3.4. Assume (A1) and (A4).
(i) The functional J is coercive on H1

0,L(C).
(ii) The functional J satisfies the Palais-Smale condition.

(iii) Cq(J ,∞) ∼= δq,0Z.

Proof. (i) For v ∈ H1
0,L(C), we have by (A4) that

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx

>
1
2

∫
C
|∇v|2 dx dy − 1

2
µ

∫
Ω

|v(x, 0)|2dx− C|Ω|

>
1
2

(
1− µ

µ1

)
‖v‖2 − C|Ω|.



18 Y. CHEN, J. SU, H. YAN EJDE-2017/234

Since µ < µ1, we have that J (v)→∞ as ‖v‖ → ∞. This proves that J is coercive.
(ii) Let {vn} ⊂ H1

0,L(C) be a Palais-Smale sequence at c ∈ R. By the coerciveness
of J , {vn} is bounded and then by Lemma 3.1 it contains convergent subsequence.

(iii) Since J is coercive and is weakly lower semicontinuous on H1
0,L(C), J attains

its global minima inf J at some v∗:

J (v∗) = min
v∈H1

0,L(C)
J (v).

Take a < J (v∗). Then

Cq(J ,∞) = Hq(H1
0,L(C),J a) ∼= Hq({v∗}, ∅) ∼= δq,0Z.

The proof is complete. �

Lemma 3.5. Assume (A5). Then

(i) the functional J is coercive on H1
0,L(C);

(ii) the functional J satisfies the Palais-Smale condition;
(iii) Cq(J ,∞) ∼= δq,0Z.

Proof. (i) We first prove that under the condition (A5) the functional J is coercive
on H1

0,L(C). Denote 2G(t) = 2F (t)− µ1t
2. Then (1.10) implies

lim
|t|→∞

G(t) = −∞. (3.45)

Rewrite J as

J (v) =
1
2

∫
C
|∇v|2 dx dy − µ1

2

∫
Ω

|v(x, 0)|2dx−
∫

Ω

G(v(x, 0))dx,

for v ∈ H1
0,L(C). Assume that J is not coercive on H1

0,L(C), then there is a sequence
{vn} ⊂ H1

0,L(C) such that

‖vn‖ → ∞ as n→∞ (3.46)

and
J (vn) 6 C for all n ∈ N. (3.47)

for some C ∈ R. Set wn = vn
‖vn‖ then ‖wn‖ ≡ 1 for all n ∈ N. By Proposition 2.1,

up to a subsequence if necessary, there is a w∗ ∈ H1
0,L(C) satisfying

wn ⇀ w∗ weakly in H1
0,L(C),

trΩ wn → trΩ w
∗ strongly in L2(Ω),

wn(x, 0)→ w∗(x, 0) a.e. in Ω.

(3.48)

By (3.45) we see that G(t) is bounded from above by some constant K > 0 for all
t ∈ R. Now from (3.47) we deduce that

C

‖vn‖2
>
J (vn)
‖vn‖2

>
1
2

∫
C
|∇wn|2 dx dy −

µ1

2

∫
Ω

|wn(x, 0)|2dx− K|Ω|
‖vn‖2

. (3.49)

It follows from (3.46), (3.48) and (3.49) that

lim sup
n→∞

∫
C
|∇wn|2 dx dy 6 µ1

∫
Ω

|w∗(x, 0)|2dx. (3.50)
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On the other hand, by the variational characterization of µ1 and the lower semi-
continuity of the norm, we have

µ1

∫
Ω

|w∗(x, 0)|2dx 6
∫
C
|∇w∗|2 dx dy 6 lim inf

n→∞

∫
C
|∇wn|2 dx dy. (3.51)

From (3.50) and (3.51) we have that

lim
n→∞

‖wn‖2 = ‖w∗‖2, (3.52)∫
C
|∇w∗|2 dx dy = µ1

∫
Ω

|w∗(x, 0)|2dx. (3.53)

Since H1
0,L(C) is a Hilbert space, we have by (3.48) and (3.52) that

wn → w∗ strongly in H1
0,L(C) as n→∞.

Hence ‖w∗‖ = 1 and by (3.53) we see that w∗(x, 0) = ±(µ1)−
1
2ϕ1(x). This implies

|vn(x, 0)| → ∞ uniformly for a.e. x ∈ Ω. (3.54)

Now by (3.45), (3.47), (3.54) and the Fatou’s lemma we have that

C >
1
2

∫
C
|∇vn|2 dx dy −

µ1

2

∫
Ω

|vn(x, 0)|2dx−
∫

Ω

G(vn(x, 0))dx

> −
∫

Ω

G(vn(x, 0))dx→∞ as n→∞.

This contradiction shows that J is coercive on H1
0,L(C).

(ii) Let {vn} ⊂ H1
0,L(C) be a Palais-Smale sequence at c ∈ R. By the coerciveness

of J , {vn} is bounded and then by Lemma 3.1 it contains a convergent subsequence.
(iii) Since J is coercive and is weakly lower semicontinuous on H1

0,L(C), J attains
its global minima inf J at some v∗:

J (v∗) = min
v∈H1

0,L(C)
J (v).

Take a < J (v∗). Then

Cq(J ,∞) = Hq(H1
0,L(C),J a) ∼= Hq({v∗}, ∅) ∼= δq,0Z.

The proof is complete. �

4. Critical groups at zero

In this section we compute the critical groups of the functional J at zero. We
will use Ci > 0 to denote various constants independent of the functions in H1

0,L(C).
We also make a convention that problem (1.1) has finitely many weak solutions and
so the trivial solution is an isolated critical point of J .

Lemma 4.1. Assume (A1) and (A6). Then Cq(J , 0) ∼= 0 for all q ∈ Z.

Proof. By the definition of critical groups, we write

Cq(J , 0) := Hq(Bρ(0) ∩ J 0, (Bρ(0) ∩ J 0) \ {0}),

where Bρ(0) = {v ∈ H1
0,L(C) : ‖v‖ 6 ρ}, and ρ > 0 is to be chosen suitable for use.

We will construct a deformation mapping for the topological pairs (Bρ(0), Bρ(0) \
{0}) and (Bρ(0) ∩ J 0, (Bρ(0) ∩ J 0) \ {0}).
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A direct calculation by using (1.11) and (1.12) shows that there exists a constant
C1 > 0 such that

F (t) > C1|t|τ for all |t| 6 δ.
By (A1), there exists a constant C2 > 0 such that for some max{2, p} < γ < 2],

|F (t)| 6 C2|t|γ , |f(t)t| 6 C2|t|γ for all |t| > δ. (4.1)

Therefore,
F (t) > C1|t|τ − C2|t|γ for all t ∈ R.

Take a function v ∈ H1
0,L(C) with v 6= 0, then for η > 0 we have

J (ηv) =
1
2

∫
C
|∇(ηv)|2 dx dy −

∫
Ω

F (ηv(x, 0))dx

6
1
2
η2‖v‖2 − C1

∫
Ω

|ηv(x, 0)|τdx+ C2

∫
Ω

|ηv(x, 0)|γdx

6
1
2
η2‖v‖2 − C1η

τ‖ trΩ v‖τLτ (Ω) + C2η
γ‖ trΩ v‖γLγ(Ω).

(4.2)

Since 1 < τ < 2 < γ < 2], one sees from (4.2) that for given v ∈ H1
0,L(C) with

v 6= 0, there exists η0 = η0(v) > 0 such that

J (ηv) < 0 for all 0 < η < η0. (4.3)

Let v ∈ H1
0,L(C) be such that

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx = 0.

It follows from (1.12), (A1) and the continuous embedding H1
0,L(C) ↪→ Lq(Ω) for

any q ∈ [1, 2]] that

d

dη
J (ηv)

∣∣
η=1

=
∫
C
|∇v|2 dx dy −

∫
Ω

f(v(x, 0))v(x, 0)dx

=
2− τ

2
‖v‖2 +

∫
Ω

(
τF (v(x, 0))− f(v(x, 0))v(x, 0)

)
dx

>
2− τ

2
‖v‖2 +

∫
{|v(x,0)|>δ}

(
τF (v(x, 0))− f(v(x, 0))v(x, 0)

)
dx

>
2− τ

2
‖v‖2 −

∫
{|v(x,0)|>δ}

(
|2F (v(x, 0))|+ |f(v(x, 0)v(x, 0)|

)
dx

>
2− τ

2
‖v‖2 − C3

∫
{|v(x,0)|>δ}

|v(x, 0)|γdx

>
2− τ

2
‖v‖2 − C4‖v‖γ

Thus we can find some ρ > 0 such that

d

dη
J (ηv)

∣∣
η=1

> 0, for v ∈ H1
0,L(C) with J (v) = 0 and 0 < ‖v‖ 6 ρ. (4.4)

By (4.3) and (4.4), one sees that for each v ∈ Bρ(0) \ {0} with J (v) > 0, there
exists a unique η0 = η0(v) > 0 such that

J (ηv) < 0 for all 0 < η < η0. (4.5)
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From now on we fix ρ > 0. We claim that if v ∈ Bρ(0) \ {0} and J (v) < 0 then

J (ηv) < 0 for all η ∈ (0, 1). (4.6)

Let v ∈ Bρ(0) and J (v) < 0. By the continuity of J , there exists ϑ ∈ (0, 1] such
that

J (ηv) < 0 for all η ∈ (1− ϑ, 1).
We show (4.6) by proving ϑ = 1. Suppose that there is some η∗ ∈ (0, 1 − ϑ] such
that

J (η∗v) = 0, J (ηv) < 0 for all η ∈ (η∗, 1).
Denote v∗ = η∗v. Then by (4.4), we have

d

dη
J (ηv∗)

∣∣
η=1

> 0. (4.7)

But η > η∗ implies
J (ηv)− J (η∗v) < 0,

which implies
d

dη
J (ηv∗)

∣∣
η=1

= lim
η→η∗+

J (ηv)− J (ηv∗)
η − η∗

6 0.

This contradicts (4.7). Hence ϑ = 1 and (4.6) holds.
Now we define a mapping η : Bρ(0)→ [0, 1] by

η(v) =

{
1, for v ∈ Bρ(0) with J (v) 6 0,
η, for v ∈ Bρ(0) with J (v) > 0,J (ηv) = 0, η < 1.

By (4.4), (4.5) and (4.6), the mapping η is well-defined and if J (v) > 0 then there
exists a unique η(v) ∈ (0, 1) such that

J (η(v)v) = 0,

J (ηv) < 0, ∀η ∈ (0, η(v))

J (ηv) > 0, ∀η ∈ (η(v), 1)
(4.8)

It follows from (4.4), (4.8) and the Implicit Function Theorem that the mapping η
is continuous in v. Define a mapping h : [0, 1]×Bρ(0)→ Bρ(0) by

h(t, v) = (1− t)v + tη(v)v, t ∈ [0, 1], v ∈ Bρ(0).

It is easy to see that the mapping h is a continuous deformation from (Bρ(0), Bρ(0)\
{0}) to (Bρ(0)∩J 0, (Bρ(0)∩J 0) \ {0}). By the homotopy invariance of homology
group, we have for all q ∈ Z,

Cq(J , 0) = Hq(Bρ(0) ∩ J 0, (Bρ(0) ∩ J 0) \ {0}) ∼= Hq(Bρ(0), Bρ(0) \ {0}) ∼= 0.

since Bρ(0) \ {0} is contractible. The proof is complete. �

We remark that the idea for computing critical groups at zero is essentially from
[30] where Laplacian equations with superlinear at zero was studied. The similar
idea was presented in [31] to deal with also the same problem as in [30] using a
global sign condition 2F (t)− f(t)t > 0 for all t 6= 0. In [25] this idea was used for
studying p-Laplacian problems.

Lemma 4.2. Assume that (A1) and (A7) hold. Then C`0(J , 0) 6∼= 0 where `0 =
dimH−(µk+1).
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Proof. We will prove that the functional J has a local linking structure at 0 with
respect to the orthogonal splitting (see (2.12))

H1
0,L(C) = H−(µk+1)⊕

[
H(µk+1)⊕H+(µk+1)

]
:= V0 ⊕W0.

(i) For v ∈ H−(µk+1), by Proposition 2.1 we have

‖ trΩ v‖L2(Ω) 6 C2‖v‖.

Note that trΩ(H−(µk+1)) = span{ϕ1, . . . , ϕk} ⊂ L∞(Ω) is finite dimensional and
all norms are equivalent, we can find a positive constant ρ > 0 such that

‖v‖ 6 ρ⇒ |v(x, 0)| 6 ‖ trΩ v‖L∞(Ω) 6 δ.

It follows from (1.13) and Propostion 2.3 that for any v ∈ H−(µk+1) with ‖v‖ 6 ρ,
we have

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx

6
1
2

∫
C
|∇v|2 dx dy − µk

2

∫
Ω

|v(x, 0)|2dx 6 0.
(4.9)

(ii) For v ∈
[
H(µk+1)⊕H+(µk+1)

]
= span{ek+1, . . . }, we write v = v̄+ ṽ, where

v̄ ∈ H(µk+1), ṽ ∈ H+(µk+1). Then by Propostion 2.3 we have

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx

=
1
2

∫
C
|∇ṽ|2 dx dy − µk+1

2

∫
Ω

|ṽ(x, 0)|2dx

+
∫

Ω

(µk+1

2
|v(x, 0)|2 − F (v(x, 0))

)
dx

>
1
2

(
1− µk+1

µk+1+`k+1

)
‖ṽ‖2 +

∫
Ω

(µk+1

2
|v(x, 0)|2 − F (v(x, 0))

)
dx.

(4.10)

For |v(x, 0)| 6 δ, by (1.13) we get that∫
{|v(x,0)|6δ}

(1
2
µk+1|v(x, 0)|2 − F (v(x, 0))

)
dx > 0. (4.11)

Since trΩH(µk+1) is finite dimensional, there exists ρ > 0 such that

‖v‖ 6 ρ ⇒ ‖ trΩ v̄‖L∞(Ω) 6
1
3
δ.

For ‖v‖ 6 ρ and |v(x, 0)| > δ,

|ṽ(x, 0)| > |v(x, 0)| − |v̄(x, 0)| > 2
3
|v(x, 0)|.

By (A1), take max{2, p} < γ < 2], there is C5 > 0 such that∣∣1
2
µk+1t

2 − F (t)
∣∣ 6 C5|t|γ for all |t| > δ.
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By Proposition 2.1, we have∫
{|v(x,0)|>δ}

∣∣1
2
µk+1|v(x, 0)|2 − F (v(x, 0))

∣∣dx
6 C5

∫
{|v(x,0)|>δ}

|v(x, 0)|γdx

6 C5(3/2)γ
∫

Ω

|ṽ(x, 0)|γdx

6 C5(3/2)γCγγ ‖ṽ‖γ := C6‖ṽ‖γ .

(4.12)

Then by (4.10), (4.11) and (4.12) we get

J (v) >
1
2

(
1− µk+1

µk+1+`k+1

)
‖ṽ‖2 − C6‖ṽ‖γ . (4.13)

Since γ > 2, we see from (4.13) that for ρ > 0 small

J (v) > 0 for ‖v‖ 6 ρ and ṽ 6= 0. (4.14)

On the other hand, we conclude that for ‖v‖ 6 ρ with ṽ = 0 and v̄ 6= 0,

J (v) = J (v̄) =
∫

Ω

(1
2
µk+1v̄

2(x, 0)− F (v̄(x, 0))
)
dx > 0. (4.15)

Otherwise, if for some v̄∗ 6= 0 and ‖v̄∗‖ 6 ρ such that J (v̄∗) = 0, then by (A7) we
have

F (v̄∗(x, 0)) =
1
2
µk+1v̄

2
∗(x, 0) for a.e.x ∈ Ω. (4.16)

As v∗ ∈ H(µk+1), all σv∗ for σ ∈ [−1, 1] are critical points of J and so 0 is not
isolated. It is a contradiction. Therefore we get the conclusion that

J (v) > 0 for v ∈ H(µk+1)⊕H+(µk+1) with 0 < ‖v‖ 6 ρ. (4.17)

Now by (4.9), (4.17) and Proposition 2.5, C`0(J, 0) 6∼= 0, where `0 = dimH−(µk+1).
The proof is complete. �

Lemma 4.3. Assume (A1) and (A8). Then we have

Cq(J , 0) ∼= δq,0Z, q ∈ Z.

Proof. We will show that 0 is a strictly local minimizer of J . For v ∈ H1
0,L(C), we

v = v̄ + ṽ where v̄ ∈ H(µ1) and ṽ ∈ H+(µ1). Take ρ > 0 small such that

‖v‖ 6 ρ ⇒ ‖ trΩ v̄‖∞ 6
1
3
δ.

Then

|v(x, 0)| > δ ⇒ |v(x, 0)| < 3
2
|ṽ(x, 0)|. (4.18)

By (A1), take max{2, p} < γ < 2], there is C7 > 0 such that

1
2
µ1t

2 + |F (t)| 6 C7|t|γ for |t| > δ. (4.19)

By (4.18), (4.19) and Proposition 2.1, we have∫
{|v(x,0)|>δ}

∣∣1
2
µ1|v(x, 0)|2 − F (v(x, 0))

∣∣dx 6 C8‖ṽ‖γ . (4.20)
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Now for ‖v‖ 6 ρ, by (A8), (4.20) and (2.3), we have

J (v) =
1
2

∫
C
|∇v|2 dx dy −

∫
Ω

F (v(x, 0))dx

=
1
2
‖ṽ‖2 − µ1

2

∫
Ω

|ṽ(x, 0)|2dx

+
∫
{|v(x,0)|6δ}

(1
2
µ1|v(x, 0)|2 − F (v(x, 0))

)
dx

+
∫
{|v(x,0)|>δ}

(µ1

2
|v(x, 0)|2 − F (v(x, 0))

)
dx

>
1
2

(
1− µ1

µ2

)
‖ṽ‖2 − C8‖ṽ‖γ .

(4.21)

Arguing in the same way as that in the proof of Lemma 4.2 we can prove that
v = 0 is a strictly local minimizer of J . Thus Cq(J , 0) ∼= δq,0Z, q ∈ Z. The proof
is complete. �

We remark here that (A8) includes the nonresonance case 2F (t) 6 µt2 with
µ < µ1 for |t| 6 δ as a special case.

5. Proofs of main results

In this section we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. (a) By Lemma 3.2, the functional J satisfies the Palais-
Smale condition and

Cq(J ,∞) ∼= 0 for all q ∈ Z. (5.1)
By Lemma 4.2, we have that

C`0(J , 0) 6∼= 0. (5.2)
It follows that

C`0(J ,∞) 6∼= C`0(J , 0). (5.3)
Therefore J has at least one nontrivial critical point.

(c) By Lemma 3.3, the functional J satisfies the Cerami condition and

C`(J ,∞) 6∼= 0 for ` = `∞ or ` = `∗∞. (5.4)

By Lemma 4.1, we have

Cq(J , 0) ∼= 0 for all q ∈ Z. (5.5)

It follows that
C`(J ,∞) 6∼= C`(J , 0). (5.6)

Therefore J has at least one nontrivial critical point.
The other cases are proved in a similar way. The proof is complete. �

Proof of Theorem 1.2. We give the proof for the case (b). By Lemma 3.4, J is
coercive on H1

0,L(Ω) and satisfies the Palais-Smale condition. Thus J is bounded
from below and has a global minimizer. By Lemma 4.2, we have that

C`0(J , 0) 6∼= 0. (5.7)

Since `0 > 1, the trivial critical point 0 is homological nontrivial and is not a
minimizer of J . It follows from Proposition 2.6 that J has at least two nontrivial
critical points. The proof is complete. �
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[3] D. Applebaum; Lévy processes – from probability to finance and quantum groups, Notices
Amer.Math.Soc., 51 (2004), 1336–1347.

[4] D. Arcoya, E. Colorado, T. Leonori; Asymptotically linear problems and antimaximum prin-

ciple for the square root of the Laplacian. Advanced Nonlinear Studies, 12 (2012), 683–701.
[5] B. Barrios, E. Colorado, A. De Pablo, U. Sanchez; On some critical problems for the fractional

Laplacian operator, J. Differential Equations, 252 (2012), 6133–6162.
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