SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR DIFFERENCE EQUATIONS ON INTEGERS

ROBERT STEGLIŃSKI
Communicated by Vicentiu D. Radulescu

Abstract

In this article, we determine a concrete interval of positive parameters λ, for which we prove the existence of infinitely many homoclinic solutions for a discrete problem $$
-\Delta\left(a(k) \phi_{p}(\Delta u(k-1))\right)+b(k) \phi_{p}(u(k))=\lambda f(k, u(k)), \quad k \in \mathbb{Z}
$$ where the nonlinear term $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ has an appropriate oscillatory behavior at zero. We use both the general variational principle of Ricceri and the direct method introduced by Faraci and Kristály [11].

1. Introduction

In this article we study the nonlinear second-order difference equation

$$
\begin{align*}
-\Delta\left(a(k) \phi_{p}(\Delta u(k-1))\right)+b(k) \phi_{p}(u(k)) & =\lambda f(k, u(k)) \quad \text { for all } k \in \mathbb{Z} \\
u(k) \rightarrow 0 \quad \text { as }|k| & \rightarrow \infty \tag{1.1}
\end{align*}
$$

Here $p>1$ is a real number, λ is a positive real parameter, $\phi_{p}(t)=|t|^{p-2} t$ for all $t \in \mathbb{R}, a, b: \mathbb{Z} \rightarrow(0,+\infty)$, while $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Moreover, the forward difference operator is defined as $\Delta u(k-1)=u(k)-u(k-1)$. We say that a solution $u=\{u(k)\}$ of (1.1) is homoclinic if $\lim _{|k| \rightarrow \infty} u(k)=0$.

Difference equations represent the discrete counterpart of ordinary differential equations and are usually studies in connection with numerical analysis. We may regard (1.1) as being a discrete analogue of the following second order differential equation

$$
-\left(a(t) \phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+b(t) \phi_{p}(x(t))=f(t, x(t)), \quad t \in \mathbb{R}
$$

The case $p=2$ in (1.1) has been motivated in part by searching standing waves for the nonlinear Schrodinger equation

$$
i \dot{\psi}_{k}+\Delta^{2} \psi_{k}-\nu_{k} \psi_{k}+f\left(k, \psi_{k}\right)=0, \quad k \in \mathbb{Z}
$$

Boundary value problems for difference equations can be studied in several ways. It is well known that variational method in such problems is a powerful tool. Many authors have applied different results of critical point theory to prove existence and multiplicity results for the solutions of discrete nonlinear problems. Studying

[^0]such problems on bounded discrete intervals allows for the search for solutions in a finite-dimensional Banach space (see [1, 2, 9, 10, 19, 20, 21]). The issue of finding solutions on unbounded intervals is more delicate. To study such problems directly by variational methods, 13 and [18] introduced coercive weight functions which allow for preservation of certain compactness properties on l^{p}-type spaces. That method was used in the following papers [12, 14, 23, 24, 25.

The goal of the present paper is to establish the existence of a sequence of homoclinic solutions for problem (1.1), which has been studied recently in several papers. Infinitely many solutions were obtained in [25] by employing Nehari manifold methods, in [14] by applying a variant of the fountain theorem, in [23] by use of the Ricceri's theorem (see [4, 22]) and in [24] by applying a direct argumentation. In the two latter papers the nonlinearity f has a suitable oscillatory behavior at infinity. In this article we will prove that results analogous to [23] and 24] can be obtained assuming that the nonlinearity f has a suitable oscillatory behavior at zero.

A special case of our contributions reads as follows. For $b: \mathbb{Z} \rightarrow \mathbb{R}$ and the continuous mapping $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ define the following conditions:
(A1) $b(k) \geq \alpha>0$ for all $k \in \mathbb{Z}, b(k) \rightarrow+\infty$ as $|k| \rightarrow+\infty$;
(A2) there is $T_{0}>0$ such that $\sup _{|t| \leq T_{0}}|f(\cdot . t)| \in l_{1}$;
(A3) $f(k, 0)=0$ for all $k \in \mathbb{Z}$;
(A4) there are sequences $\left\{c_{m}\right\},\left\{d_{m}\right\}$ such that $0<d_{m+1}<c_{m}<d_{m}$,
$\lim _{m \rightarrow \infty} d_{m}=0$ and $f(k, t) \leq 0$ for every $k \in \mathbb{Z}$ and $t \in\left[c_{m}, d_{m}\right], m \in \mathbb{N}$;
(A5) $\liminf _{t \rightarrow 0^{+}} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq t} F(k, \xi)}{t^{p}}=0$;
(A6) $\lim \sup _{(k, t) \rightarrow\left(+\infty, 0^{+}\right)} \frac{F(k, t)}{[a(k+1)+a(k)+b(k)] t^{p}}=+\infty$;
(A7) $\lim \sup _{(k, t) \rightarrow\left(-\infty, 0^{+}\right)} \frac{F(k, t)}{[a(k+1)+a(k)+b(k)] t^{p}}=+\infty$;
$\sup _{k \in \mathbb{Z}}\left(\limsup _{t \rightarrow 0^{+}} \frac{F(k, t)}{[a(k+1)+a(k)+b(k)] t^{p}}\right)=+\infty$,
where $F(k, t)$ is the primitive function of $f(k, t)$, i. e. $F(k, t)=\int_{0}^{t} f(k, s) d s$ for every $t \in \mathbb{R}$ and $k \in \mathbb{Z}$.
The solutions are found in the normed space $(X,\|\cdot\|)$, where

$$
\begin{gathered}
X=\left\{u: \mathbb{Z} \rightarrow \mathbb{R}: \sum_{k \in \mathbb{Z}}\left[a(k)|\Delta u(k-1)|^{p}+b(k)|u(k)|^{p}\right]<\infty\right\} \\
\|u\|=\left(\sum_{k \in \mathbb{Z}}\left[a(k)|\Delta u(k-1)|^{p}+b(k)|u(k)|^{p}\right]\right)^{1 / p}
\end{gathered}
$$

Theorem 1.1. Assume that (A1)-(A4) are satisfied. Moreover, assume that at least one of the conditions (A6)-(A8), is satisfied. Then, for any $\lambda>0$, problem (1.1) admits a sequence of non-negative solutions in X whose norms tend to zero.

Theorem 1.2. Assume that (A1), (A2), (A5) are satisfied. Moreover, assume that at least one of the conditions (A6)-(A8) is satisfied. Then, for any $\lambda>0$, problem (1.1) admits a sequence of solutions in X whose norms tend to zero.

The issue of multiplicity of solutions can be investigated through variational methods, which consist in seeking solutions of a difference equation as critical points of an energy functional defined on a convenient Banach space. In the proof for the first theorem a direct variational approach is used, introduced in 11 and then used in such papers as $[8,15,16,17,24]$. In the proof for the second theorem the general
variational principle of Ricceri is used, which was applied in [2, 3, 5, 6, 7, 23. To obtain the differentiability of the energy functional associated with problem (1.1), so far in the literature the following condition has been used

$$
\lim _{t \rightarrow 0} \frac{|f(k, t)|}{|t|^{p-1}}=0 \quad \text { uniformly for all } k \in \mathbb{Z}
$$

following [13, 18] and then used in [23, 24, 25].
We cannot use the condition, as it contradicts each of the conditions (A6)-(A8).
We obtain our results due to a suitable oscillatory behavior of the nonlinearity f. Let us observe that to satisfy the condition (A8) it suffices that a suitable oscillatory behavior is present for just one $k \in \mathbb{Z}$, while for satisfying conditions (A6) or (A7) a suitable behavior of the nonlinearity f needs to be maintained for an infinite number of $k \in \mathbb{Z}$.

The plan of the paper is as follows: Section 2 is devoted to our abstract framework, in Section 3 and Section 4 we prove more general versions of Theorems 1.1 and 1.2 respectively. In Section 5 we give examples and we show that Theorem 1.1 and Theorem 1.2 are independent.

2. Abstract framework

For all $1 \leq p<+\infty$, we denote by ℓ^{p} the set of all functions $u: \mathbb{Z} \rightarrow \mathbb{R}$ such that

$$
\|u\|_{p}^{p}=\sum_{k \in \mathbb{Z}}|u(k)|^{p}<+\infty .
$$

Moreover, we denote by ℓ^{∞} the set of all functions $u: \mathbb{Z} \rightarrow \mathbb{R}$ such that

$$
\|u\|_{\infty}=\sup _{k \in \mathbb{Z}}|u(k)|<+\infty
$$

Lemma 2.1. Let a continuous function $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\sup _{|t| \leq T}|f(\cdot, t)| \in l_{1} \text { for all } T>0 \tag{2.1}
\end{equation*}
$$

Then the functional $\Psi: l^{p} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Psi(u):=\sum_{k \in \mathbb{Z}} F(k, u(k)) \quad \text { for all } u \in l^{p}, \tag{2.2}
\end{equation*}
$$

where $F(k, s)=\int_{0}^{s} f(k, t) d t$ for $s \in \mathbb{R}$ and $k \in \mathbb{Z}$, is continuously differentiable.
Proof. Let us fix $u, v \in l^{p}$. We will prove that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0^{+}} \frac{\Psi(u+\tau v)-\Psi(u)}{\tau}=\sum_{k \in \mathbb{Z}} f(k, u(k)) v(k) . \tag{2.3}
\end{equation*}
$$

Put $r=\|u\|_{\infty}+\|v\|_{\infty}$ and $q(k)=\sup _{|t| \leq r}|f(k, t)|$ for all $k \in \mathbb{Z}$. We have $q \in l^{1}$, by (2.1.

Let us fix arbitrarily $\epsilon>0$. Then, there exists $h \in \mathbb{N}$ such that

$$
\sum_{|k|>h}|q(k)|<\frac{\epsilon}{3\|v\|_{\infty}}
$$

We can find $0<\tau_{0}<1$ such that for all $0<\tau \leq \tau_{0}$,

$$
\sum_{|k| \leq h}\left|\frac{F(k, u(k)+\tau v(k))-F(k, u(k))}{\tau}-f(k, u(k)) v(k)\right|<\frac{\epsilon}{3}
$$

Now fix $0<\tau<\tau_{0}$. For all $|k|>h$ we can find $0 \leq \tau_{k} \leq \tau$ such that

$$
\frac{F(k, u(k)+\tau v(k))-F(k, u(k))}{\tau}=f\left(k, u(k)+\tau_{k} v(k)\right) v(k) .
$$

We define $w \in l^{p}$ by putting $w(k)=0$ for all $|k| \leq h$ and $w(k)=u(k)+\tau_{k} v(k)$ for all $|k|>h$. So $\|w\|_{\infty} \leq r$ and

$$
\begin{aligned}
& \left|\frac{\Psi(u+\tau v)-\Psi(u)}{\tau}-\sum_{k \in \mathbb{Z}} f(k, u(k)) v(k)\right| \\
& \leq \frac{\epsilon}{3}+\sum_{|k|>h}|f(k, w(k)) v(k)|+\sum_{|k|>h}|f(k, u(k)) v(k)| \\
& \leq \frac{\epsilon}{3}+2\|v\|_{\infty} \sum_{|k|>h} q(k)<\epsilon,
\end{aligned}
$$

which proves 2.3). From (2.1) and the continuity of the embeddings $l^{p} \hookrightarrow l^{\infty}$ and $l^{1} \hookrightarrow l^{p^{\prime}}$, the linear operator on the right-hand side of 2.3 lies in $l^{p^{\prime}}, \frac{1}{p}+\frac{1}{p^{\prime}}=1$, so Ψ is Gateaux differentiable and

$$
\left\langle\Psi^{\prime}(u), v\right\rangle=\sum_{k \in \mathbb{Z}} f(k, u(k)) v(k) .
$$

It remains to prove that $\Psi^{\prime}: l^{p} \rightarrow l^{p^{\prime}}$ is continuous. Let $\left(u_{n}\right)$ be a sequence such that $u_{n} \rightarrow u$ in l^{p}. Put $R=\max \left\{\|u\|_{\infty}, \sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{\infty}\right\}$ and $Q(k)=\sup _{|t| \leq R}|f(k, t)|$ for all $k \in \mathbb{Z}$. We have $Q \in l^{1}$, by (2.1). Fix an $\epsilon>0$ arbitrarily. There exists $h \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{|k|>h}|Q(k)|<\frac{\epsilon}{3} \tag{2.4}
\end{equation*}
$$

and there exists $N \in \mathbb{N}$ such that for all $n>N$ we have

$$
\begin{equation*}
\sum_{|k| \leq h}\left|f\left(k, u_{n}(k)\right)-f(k, u(k))\right|<\frac{\epsilon}{3} \tag{2.5}
\end{equation*}
$$

Applying (2.4) and 2.5), for every $n>N$ and $v \in l^{p}$ one has

$$
\begin{aligned}
& \left|\left\langle\Psi^{\prime}\left(u_{n}\right)-\Psi^{\prime}(u), v\right\rangle\right| \\
& \leq\|v\|_{\infty} \sum_{k \in \mathbb{Z}}\left|f\left(k, u_{n}(k)\right)-f(k, u(k))\right| \\
& \leq\|v\|_{p}\left(\sum_{|k| \leq h}\left|f\left(k, u_{n}(k)\right)-f(k, u(k))\right|+\sum_{|k|>h}\left|f\left(k, u_{n}(k)\right)\right|+\sum_{|k|>h}|f(k, u(k))|\right) \\
& \leq\|v\|_{p}\left(\frac{\epsilon}{3}+2 \sum_{|k|>h} Q(k)\right) \\
& <\epsilon\|v\|_{p}
\end{aligned}
$$

thus, $\left\|\Psi^{\prime}\left(u_{n}\right)-\Psi^{\prime}(u)\right\|<\epsilon$. So, Ψ^{\prime} is continuous and $\Psi \in C^{1}\left(l^{p}\right)$.
Now, we set

$$
X=\left\{u: \mathbb{Z} \rightarrow \mathbb{R}: \sum_{k \in \mathbb{Z}}\left[a(k)|\Delta u(k-1)|^{p}+b(k)|u(k)|^{p}\right]<\infty\right\}
$$

and

$$
\|u\|=\left(\sum_{k \in \mathbb{Z}}\left[a(k)|\Delta u(k-1)|^{p}+b(k)|u(k)|^{p}\right]\right) 1 / p
$$

Clearly we have

$$
\begin{equation*}
\|u\|_{\infty} \leq\|u\|_{p} \leq \alpha^{-1 / p}\|u\| \quad \text { for all } u \in X \tag{2.6}
\end{equation*}
$$

As is shown in [13, Propositions 3], $(X,\|\cdot\|)$ is a reflexive Banach space and the embedding $X \hookrightarrow l^{p}$ is compact. See also [14, Lemma 2.2].

Let $J_{\lambda}: X \rightarrow \mathbb{R}$ be the functional associated with problem (3.3) defined by

$$
J_{\lambda}(u)=\Phi(u)-\lambda \Psi(u)
$$

where

$$
\Phi(u):=\frac{1}{p} \sum_{k \in \mathbb{Z}}\left[a(k)|\Delta u(k-1)|^{p}+b(k)|u(k)|^{p}\right] \quad \text { for all } u \in X
$$

and Ψ is given by 2.2 .
Proposition 2.2. Assume that (A1) and 2.1) are satisfied. Then
(a) $\Psi \in C^{1}\left(l^{p}\right)$ and $\Psi \in C^{1}(X)$;
(b) $\Phi \in C^{1}(X)$;
(c) $J_{\lambda} \in C^{1}(X)$ and every critical point $u \in X$ of J_{λ} is a homoclinic solution of problem 1.1);
(d) J_{λ} is sequentially weakly lower semicontinuous functional on X.

Proof. Part (a) follows from Lemma 2.1. Parts (b) and (c) can be proved essentially by the same way as [13, Propositions 5 and 7], where $a(k) \equiv 1$ on \mathbb{Z} and the norm on X is slightly different. See also [14, Lemmas 2.4 and 2.6]. The proof of part (d) is based on the following facts: $\Phi=\frac{1}{p}\|\cdot\|^{p}, \Psi \in C\left(l^{p}\right)$ and the compactness of $X \hookrightarrow l^{p}$ and it is standard.

3. Proof of Theorem 1.1

Now we will formulate and prove a stronger form of Theorem 1.1. Let

$$
\begin{align*}
& B_{ \pm}:=\limsup _{(k, t) \rightarrow\left(\pm \infty, 0^{+}\right)} \frac{F(k, t)}{[a(k+1)+a(k)+b(k)] t^{p}} \tag{3.1}\\
& B_{0}:=\sup _{k \in \mathbb{Z}}\left(\limsup _{t \rightarrow 0^{+}} \frac{F(k, t)}{[a(k+1)+a(k)+b(k)] t^{p}}\right) \tag{3.2}
\end{align*}
$$

Set $B=\max \left\{B_{ \pm}, B_{0}\right\}$. For convenience we put $1 /+\infty=0$.
Theorem 3.1. Assume that (A1)-(A4) are satisfied and assume that $B>0$. Then, for any $\lambda>\frac{1}{B p}$, problem (1.1) admits a nonzero sequence of non-negative solutions in X whose norms tend to zero.

Proof. To apply Proposition 2.2, we need to have a nonlinearity which satisfies condition (2.1). Let $T_{0}>0$ be a number satisfying (A2). Define the truncation function

$$
\tilde{f}(k, s)= \begin{cases}0, & s \leq 0 \text { and } k \in \mathbb{Z} \\ f(x, s), & 0 \leq s \leq T_{0} \text { and } k \in \mathbb{Z} \\ f\left(x, T_{0}\right), & s \geq T_{0} \text { and } k \in \mathbb{Z}\end{cases}
$$

and consider the problem

$$
\begin{gather*}
-\Delta\left(a(k) \phi_{p}(\Delta u(k-1))\right)+b(k) \phi_{p}(u(k))=\lambda \tilde{f}(k, u(k)) \tag{3.3}\\
u(k) \rightarrow 0 .
\end{gather*}
$$

Clearly, if u is a non-negative solution of problem (3.3) with $\|u\|_{\infty} \leq T_{0}$, then it is also a non-negative solution of problem 1.1), so it is enough to show that problem (3.3) admits a nonzero sequence of non-negative solutions in X whose norms tend to zero.

Put $\lambda>\frac{1}{B p}$ and put Φ, Ψ and J_{λ} as in the previous section. By Proposition 2.2 we need to find a nontrivial sequence $\left\{u_{n}\right\}$ of critical points of J_{λ} with non-negative terms whose norms tend to zero.

Let $\left\{c_{n}\right\},\left\{d_{n}\right\}$ be sequences satisfying conditions (A4). Up to subsequence, we may assume that $d_{1}<T_{0}$. For every $n \in \mathbb{N}$ define the set

$$
W_{n}=\left\{u \in X:\|u\|_{\infty} \leq d_{n} \text { for every } k \in \mathbb{Z}\right\}
$$

Claim 3.2. For every $n \in \mathbb{N}$, the functional J_{λ} is bounded from below on W_{n} and its infimum on W_{n} is attained.

The proof of this Claim is essentially the same as the proof of [24, Claim 3.2].
Claim 3.3. For every $n \in \mathbb{N}$, let $u_{n} \in W_{n}$ be such that $J_{\lambda}\left(u_{n}\right)=\inf _{W_{n}} J_{\lambda}$. Then, u_{n} is a solution of problem (3.3) with $0 \leq u_{n}(k) \leq c_{n}$ for all $k \in \mathbb{Z}$.

Firstly, arguing as in the proof of [24, Claim 3.3], we obtain that if $u_{n} \in W_{n}$ is such that $J_{\lambda}\left(u_{n}\right)=\inf _{W_{n}} J_{\lambda}$, then $0 \leq u_{n}(k) \leq c_{n}$ for all $k \in \mathbb{Z}$. Secondly, arguing as in the proof of [24, Claim 3.4], we obtain that u_{n} is a critical point of J_{λ} in X, and so is a solution of problem 3.3). This proves Claim 3.3 .
Claim 3.4. For every $n \in \mathbb{N}$, we have $J_{\lambda}\left(u_{n}\right)<0$ and $\lim _{n \rightarrow+\infty} J_{\lambda}\left(u_{n}\right)=0$.
Firstly, we assume that $B=B_{ \pm}$. Without loss of generality we can assume that $B=B_{+}$. We begin with $B=+\infty$. Then there exists a number $\sigma>\frac{1}{\lambda p}$, a sequence of positive integers $\left\{k_{n}\right\}$ and a sequence of positive numbers $\left\{t_{n}\right\}$ which tends to 0 , such that

$$
\begin{equation*}
F\left(k_{n}, t_{n}\right)>\sigma\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p} \tag{3.4}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Up to extracting a subsequence, we may assume that $t_{n} \leq d_{n}$ for all $n \in \mathbb{N}$. Define in X a sequence $\left\{w_{n}\right\}$ such that, for every $n \in \mathbb{N}, w_{n}\left(k_{n}\right)=t_{n}$ and $w_{n}(k)=0$ for every $k \in \mathbb{Z} \backslash\left\{k_{n}\right\}$. It is clear that $w_{n} \in W_{n}$. One then has

$$
J_{\lambda}\left(w_{n}\right)
$$

$$
=\frac{1}{p} \sum_{k \in \mathbb{Z}}\left(a(k)\left|\Delta w_{n}(k-1)\right|^{p}+b(k)\left|w_{n}(k)\right|^{p}\right)-\lambda \sum_{k \in \mathbb{Z}} F\left(k, w_{n}(k)\right)
$$

$$
<\frac{1}{p}\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)\right) t_{n}^{p}+\frac{1}{p} b\left(k_{n}\right) t_{n}^{p}-\lambda \sigma\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p}
$$

$$
=\left(\frac{1}{p}-\lambda \sigma\right)\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p}<0
$$

which gives $J_{\lambda}\left(u_{n}\right) \leq J_{\lambda}\left(w_{n}\right)<0$. Next, assume that $B<+\infty$. Since $\lambda>\frac{1}{B p}$, we can fix $\varepsilon<B-\frac{1}{\lambda p}$. Therefore, also taking $\left\{k_{n}\right\}$ a sequence of positive integers and $\left\{t_{n}\right\}$ a sequence of positive numbers with $\lim _{n \rightarrow+\infty} t_{n}=0$ and $t_{n} \leq d_{n}$ for all $n \in \mathbb{N}$ such that

$$
\begin{equation*}
F\left(k_{n}, t_{n}\right)>(B-\varepsilon)\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p} \tag{3.5}
\end{equation*}
$$

for all $n \in \mathbb{N}$, choosing $\left\{w_{n}\right\}$ in W_{n} as above, one has

$$
J_{\lambda}\left(w_{n}\right)<\left(\frac{1}{p}-\lambda(B-\varepsilon)\right)\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p}
$$

So, also in this case, $J_{\lambda}\left(u_{n}\right)<0$.
Now, assume that $B=B_{0}$. We begin with $B=+\infty$. Then there exists a number $\sigma>\frac{1}{\lambda p}$ and an index $k_{0} \in \mathbb{Z}$ such that

$$
\limsup _{t \rightarrow 0^{+}} \frac{F\left(k_{0}, t\right)}{\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right)|t|^{p}}>\sigma
$$

Then, there exists a sequence of positive numbers $\left\{t_{n}\right\}$ such that $\lim _{n \rightarrow+\infty} t_{n}=0$ and

$$
\begin{equation*}
F\left(k_{0}, t_{n}\right)>\sigma\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t_{n}^{p} \tag{3.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Up to considering a subsequence, we may assume that $t_{n} \leq d_{n}$ for all $n \in \mathbb{N}$. Thus, take in X a sequence $\left\{w_{n}\right\}$ such that, for every $n \in \mathbb{N}, w_{n}\left(k_{0}\right)=t_{n}$ and $w_{n}(k)=0$ for every $k \in \mathbb{Z} \backslash\left\{k_{0}\right\}$. Then, one has $w_{n} \in W_{n}$ and

$$
\begin{aligned}
& J_{\lambda}\left(w_{n}\right) \\
& =\frac{1}{p} \sum_{k \in \mathbb{Z}}\left(a(k)\left|\Delta w_{n}(k-1)\right|^{p}+b(k)\left|w_{n}(k)\right|^{p}\right)-\lambda \sum_{k \in \mathbb{Z}} F\left(k, w_{n}(k)\right) \\
& <\frac{1}{p}\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)\right) t_{n}^{p}+\frac{1}{p} b\left(k_{0}\right) t_{n}^{p}-\lambda \sigma\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t_{n}^{p} \\
& =\left(\frac{1}{p}-\lambda \sigma\right)\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t_{n}^{p}<0
\end{aligned}
$$

which gives $J_{\lambda}\left(u_{n}\right)<0$. Next, assume that $B<+\infty$. Since $\lambda>\frac{1}{B p}$, we can fix $\varepsilon>0$ such that $\varepsilon<B-\frac{1}{\lambda p}$. Therefore, there exists an index $k_{0} \in \mathbb{Z}$ such that

$$
\limsup _{t \rightarrow 0^{+}} \frac{F\left(k_{0}, t\right)}{\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t^{p}}>B-\varepsilon .
$$

and taking $\left\{t_{n}\right\}$ a sequence of positive numbers with $\lim _{n \rightarrow+\infty} t_{n}=0$ and $t_{n} \leq d_{n}$ for all $n \in \mathbb{N}$ and

$$
\begin{equation*}
F\left(k_{0}, t_{n}\right)>(B-\varepsilon)\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t_{n}^{p} \tag{3.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$, choosing $\left\{w_{n}\right\}$ in W_{n} as above, one has

$$
J_{\lambda}\left(w_{n}\right)<\left(\frac{1}{p}-\lambda(B-\varepsilon)\right)\left(a\left(k_{0}+1\right)+a\left(k_{0}\right)+b\left(k_{0}\right)\right) t_{n}^{p}<0
$$

So, also in this case, $J_{\lambda}\left(u_{n}\right)<0$.
Moreover, by Claim 3.3, for every $k \in \mathbb{N}$ one has

$$
\begin{equation*}
\left|F\left(k, u_{n}(k)\right)\right| \leq \int_{0}^{c_{n}}|\tilde{f}(k, t)| d t \leq c_{n} \max _{t \in\left[0, c_{n}\right]}|\tilde{f}(k, t)| \leq c_{n} \max _{t \in\left[0, T_{0}\right]}|\tilde{f}(k, t)| \tag{3.8}
\end{equation*}
$$

Then

$$
0>J_{\lambda}\left(u_{n}\right) \geq-\sum_{k \in \mathbb{Z}} F\left(k, u_{n}(k)\right) \geq-c_{n}\left\|\max _{t \in\left[0, T_{0}\right]}|\tilde{f}(\cdot, t)|\right\|_{1}
$$

Since the sequence $\left\{c_{n}\right\}$ tends to zero, then $J_{\lambda}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. This proves Claim 3.4.

Now we are ready to end the proof of Theorem 3.1. With Proposition 2.2, Claims 3.3 3.4 up to a subsequence, we have infinitely many pairwise distinct non-negative homoclinic solutions u_{n} of (3.3). Moreover, due to (3.8), we have

$$
\frac{1}{p}\left\|u_{n}\right\|^{p}=J_{\lambda}\left(u_{n}\right)+\sum_{k \in \mathbb{Z}} F\left(k, u_{n}(k)\right)<c_{n}\left\|\max _{t \in\left[0, T_{0}\right]}|\tilde{f}(\cdot, t)|\right\|_{1}
$$

which proves that $\left\|u_{n}\right\|^{p} \rightarrow 0$ as $n \rightarrow+\infty$. This concludes our proof.
We remark that Theorem 1.1 follows now from Theorem 3.1.

4. Proof of Theorem 1.2

Our main tool is a general critical points theorem due to Bonanno and Molica Bisci (see [4]) that is a generalization of a result of Ricceri [22]. Here we state it in a smooth version for the reader's convenience.

Theorem 4.1. Let $(E,\|\cdot\|)$ be a reflexive real Banach space, let $\Phi, \Psi: E \rightarrow \mathbb{R}$ be two continuously differentiable functionals with Φ coercive, i.e. $\lim _{\|u\| \rightarrow \infty} \Phi(u)=$ $+\infty$, and a sequentially weakly lower semicontinuous functional and Ψ a sequentially weakly upper semicontinuous functional. For every $r>\inf _{E} \Phi$, let us put

$$
\begin{gathered}
\varphi(r):=\inf _{u \in \Phi^{-1}((-\infty, r))} \frac{\left(\sup _{v \in \Phi^{-1}((-\infty, r))} \Psi(v)\right)-\Psi(u)}{r-\Phi(u)} \\
\delta:=\liminf _{r \rightarrow\left(\inf _{E} \Phi\right)^{+}} \varphi(r)
\end{gathered}
$$

Let $J_{\lambda}:=\Phi(u)-\lambda \Psi(u)$ for all $u \in E$. If $\delta<+\infty$ then, for each $\lambda \in(0,1 / \delta)$, the following alternative holds: either
(a) there is a global minimum of Φ which is a local minimum of J_{λ}, or
(b) there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of J_{λ}, with $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=\inf _{E} \Phi$, which weakly converges to a global minimum of Φ.

Now we formulate and prove a stronger form of Theorem 1.2, Let

$$
A:=\liminf _{t \rightarrow 0^{+}} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq t} F(k, \xi)}{t^{p}}
$$

Set $B:=\max \left\{B_{ \pm}, B_{0}\right\}$, where $B_{ \pm}$and B_{0} are given by (3.1) and (3.2), respectively. For convenience we put $\frac{1}{0^{+}}=+\infty$ and $\frac{1}{+\infty}=0$.
Theorem 4.2. Assume that (A1), (A2), (A5) are satisfied and assume that the following inequality holds $A<\alpha B$. Then, for each $\lambda \in\left(\frac{1}{B p}, \frac{\alpha}{A p}\right)$, problem 1.1) admits a sequence of solutions in X whose norms tend to zero.

Proof. To apply Proposition 2.2, we need to have a nonlinearity which satisfies condition (2.1). Let $T_{0}>0$ be a number satisfying (A2). Define the truncation function

$$
\bar{f}(k, s)= \begin{cases}f\left(x,-T_{0}\right), & s \leq-T_{0} \text { and } k \in \mathbb{Z}, \\ f(x, s), & -T_{0} \leq s \leq T_{0} \text { and } k \in \mathbb{Z}, \\ f\left(x, T_{0}\right), & s \geq T_{0} \text { and } k \in \mathbb{Z} .\end{cases}
$$

and consider the problem

$$
\begin{gather*}
-\Delta\left(a(k) \phi_{p}(\Delta u(k-1))\right)+b(k) \phi_{p}(u(k))=\lambda \bar{f}(k, u(k)) \tag{4.1}\\
u(k) \rightarrow 0 .
\end{gather*}
$$

Clearly, if u is a solution of problem (4.1) with $\|u\|_{\infty} \leq T_{0}$, then it is also a solution of the problem (1.1), so it is enough to show that problem (4.1) admits a nonzero sequence of solutions in X whose norms tend to zero.

It is clear that $A \geq 0$. Put $\lambda \in\left(\frac{1}{B p}, \frac{\alpha}{A p}\right)$ and put Φ, Ψ, J_{λ} as above. Our aim is to apply Theorem 4.1 to function J_{λ}. By Lemma 2.2 , the functional Φ is the continuously differentiable and sequentially weakly lower semicontinuous functional and Ψ is the continuously differentiable and sequentially weakly upper semicontinuous functional. We will show that $\delta<+\infty$. Let $\left\{c_{m}\right\} \subset\left(0, T_{0}\right)$ be a sequence such that $\lim _{m \rightarrow \infty} c_{m}=0$ and

$$
\lim _{m \rightarrow+\infty} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq c_{m}} F(k, \xi)}{c_{m}^{p}}=A
$$

Set

$$
r_{m}:=\frac{\alpha}{p} c_{m}^{p}
$$

for every $m \in \mathbb{N}$. Then, if $v \in X$ and $\Phi(v)<r_{m}$, one has

$$
\|v\|_{\infty} \leq \alpha^{-\frac{1}{p}}\|v\| \leq \alpha^{-\frac{1}{p}}(p \Phi(v)) 1 / p<c_{m}
$$

which gives

$$
\begin{equation*}
\Phi^{-1}\left(\left(-\infty, r_{m}\right)\right) \subset\left\{v \in X:\|v\|_{\infty} \leq c_{m}\right\} \tag{4.2}
\end{equation*}
$$

From this and $\Phi(0)=\Psi(0)=0$ we have

$$
\begin{aligned}
\varphi\left(r_{m}\right) & \leq \frac{\sup _{\Phi(v)<r_{m}} \sum_{k \in \mathbb{Z}} F(k, v(k))}{r_{m}} \leq \frac{\sum_{k \in \mathbb{Z}} \max _{|t| \leq c_{m}} F(k, t)}{r_{m}} \\
& =\frac{p}{\alpha} \cdot \frac{\sum_{k \in \mathbb{Z}} \max _{|t| \leq c_{m}} F(k, t)}{c_{m}^{p}}
\end{aligned}
$$

for every $m \in \mathbb{N}$. This gives

$$
\delta \leq \lim _{m \rightarrow+\infty} \varphi\left(r_{m}\right) \leq \frac{p}{\alpha} \cdot A<\frac{1}{\lambda}<+\infty
$$

Now, we show that the point (a) in Theorem 4.1 does not hold, i.e. we show that the global minimum θ of Φ is not a local minimum of J_{λ}. Arguing as in the proof of Claim 3.4 we can find a sequence $\left\{w_{n}\right\}$ in X with $\left\|w_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow+\infty$, such that $J_{\lambda}\left(w_{n}\right)<0$ for $n \in \mathbb{N}$. We have to show that $\left\|w_{n}\right\| \rightarrow 0$. Note that

$$
\left\|w_{n}\right\|=\left(\left(a\left(k_{n}+1\right)+a\left(k_{n}\right)+b\left(k_{n}\right)\right) t_{n}^{p}\right) 1 / p
$$

where $\left\{k_{n}\right\}$ is a sequence divergent to $+\infty$ or $-\infty$, as in (3.4) and (3.5) or $\left\{k_{n}\right\}$ is a constant sequence, as in (3.6) and (3.7) and $\left\{t_{n}\right\}$ is a sequence convergent to 0^{+} from relevant (3.4), (3.5), (3.6) or (3.7). From this

$$
\left\|w_{n}\right\| \leq \gamma F\left(k_{n}, t_{n}\right)
$$

for some positive constant γ and all $n \in \mathbb{N}$. Since

$$
\lim _{m \rightarrow+\infty} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq c_{m}} F(k, \xi)}{c_{m}^{p}}<+\infty
$$

and $\lim _{m \rightarrow+\infty} c_{m}=0$, we have

$$
\lim _{m \rightarrow+\infty} \sum_{k \in \mathbb{Z}} \max _{|\xi| \leq c_{m}} F(k, \xi)=0
$$

and, as $\max _{|\xi| \leq c_{m}} F(k, \xi) \geq 0$, we obtain $\lim _{m \rightarrow+\infty}\left(\max _{|\xi| \leq c_{m}} F(k, \xi)\right)=0$ uniformly for all $k \in \mathbb{Z}$. This and $F\left(k_{n}, t_{n}\right)>0$ easily gives $\lim _{n \rightarrow+\infty} F\left(k_{n}, t_{n}\right)=0$ and so $\lim _{n \rightarrow+\infty}\left\|w_{n}\right\|=0$.

From the above it follows that θ is not a local minimum of J_{λ} and, by (b), there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points of J_{λ} with $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=$
$\inf _{E} \Phi$. This means that $0=\inf _{E} \Phi=\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=\frac{1}{p}\left\|u_{n}\right\|^{p}$, and so $\left\{u_{n}\right\}$ strongly converges to zero. The proof is complete.

We remark that Theorem 1.2 follows now from Theorem 4.2,

5. Examples

Consider the problem

$$
\begin{gather*}
-\Delta\left(\phi_{p}(\Delta u(k-1))\right)+|k| \phi_{p}(u(k))=\lambda f(k, u(k)) \text { for all } k \in \mathbb{Z} \\
u(k) \rightarrow 0 \quad \text { as }|k| \rightarrow \infty \tag{5.1}
\end{gather*}
$$

where $p>1$ and $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
f(k, s)=\sum_{m \in \mathbb{N}} e_{m}\left(d_{m}-c_{m}-2\left|s-\frac{1}{2}\left(c_{m}+d_{m}\right)\right|\right) \cdot \mathbf{1}_{\{m\} \times\left[c_{m}, d_{m}\right]}(k, s) \tag{5.2}
\end{equation*}
$$

with sequences $\left\{c_{m}\right\},\left\{d_{m}\right\},\left\{e_{m}\right\},\left\{h_{m}\right\}$ defined by

$$
\begin{gather*}
c_{m}=1 / 2^{2^{2 m}} \quad \text { for } m \in \mathbb{N} \\
d_{m}=1 / 2^{2^{2 m-1}} \quad \text { for } m \in \mathbb{N} \tag{5.3}\\
h_{m}=1 / 2^{(p+1) 2^{2 m-2}} \quad \text { for } m \in \mathbb{N} \\
e_{m}=2 h_{m} /\left(d_{m}-c_{m}\right)^{2} \quad \text { for } m \in \mathbb{N}
\end{gather*}
$$

Here $\mathbf{1}_{A \times B}$ is the indicator of $A \times B$. It is easily seen that f is continuous and conditions (A2), (A3) are satisfied. Set $F(k, t):=\int_{0}^{t} f(k, s) d s$ for every $t \in \mathbb{R}$ and $k \in \mathbb{Z}$. Then $F\left(k, d_{k}\right)=\int_{c_{k}}^{d_{k}} f(k, t) d t=h_{k}$ and

$$
\begin{align*}
\liminf _{t \rightarrow 0^{+}} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq t} F(k, \xi)}{t^{p}} & \leq \lim _{m \rightarrow+\infty} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq c_{m}} F(k, \xi)}{c_{m}^{p}} \\
& =\lim _{m \rightarrow+\infty} \frac{\sum_{k=m+1}^{\infty} F\left(k, d_{k}\right)}{c_{m}^{p}} \tag{5.4}\\
& =\lim _{m \rightarrow+\infty} \frac{\sum_{k=m+1}^{\infty} h_{k}}{c_{m}^{p}} \\
& \leq \lim _{m \rightarrow+\infty} \frac{2 h_{m+1}^{p}}{c_{m}^{p}}=0
\end{align*}
$$

and

$$
\begin{align*}
\limsup _{(k, t) \rightarrow\left(+\infty, 0^{+}\right)} \frac{F(k, t)}{(2+k) t^{p}} & \geq \lim _{m \rightarrow+\infty} \frac{F\left(m, d_{m}\right)}{(2+m) d_{m}^{p}} \tag{5.5}\\
& =\lim _{m \rightarrow+\infty} \frac{h_{m}}{(2+m) d_{m}^{p}}=+\infty
\end{align*}
$$

So, conditions (A4)-(A6) are satisfied and so for any $\lambda>0$, problem 5.1) admits a sequence of non-negative solutions in X whose norms tend to zero, by Theorem 1.1 or Theorem 1.2. Note also that f does not satisfy (A8).

Remark 5.1. For a fixed $k_{0} \in \mathbb{Z}$, if we define $\tilde{f}: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\tilde{f}(k, s)=\sum_{m \in \mathbb{N}} e_{m}\left(d_{m}-c_{m}-2\left|s-\frac{1}{2}\left(c_{m}+d_{m}\right)\right|\right) \cdot \mathbf{1}_{\left\{k_{0}\right\} \times\left[c_{m}, d_{m}\right]}(k, s)
$$

with sequences $\left\{c_{m}\right\},\left\{d_{m}\right\},\left\{e_{m}\right\},\left\{h_{m}\right\}$ defined as above, then \tilde{f} satisfies conditions (A2)-(A5) and (A8), but does not satisfy conditions (A6) and (A7).

Remark 5.2. Theorems 1.1 and 1.2 are independent of each other. Indeed, let us replace h_{m} in 5.3) by

$$
h_{m}=1 / 2^{p 2^{2 m-2}} \quad \text { for } m \in \mathbb{N}
$$

Then, the function f given by (5.2) is continuous if $p>2$. It can be seen that the first inequality in (5.4) is in fact equality. Then, an easy computation shows that

$$
\begin{aligned}
& \liminf _{t \rightarrow 0^{+}} \frac{\sum_{k \in \mathbb{Z}} \max _{|\xi| \leq t} F(k, \xi)}{t^{p}} \geq 1, \\
& B_{+}=\limsup _{(k, t) \rightarrow\left(+\infty, 0^{+}\right)} \frac{F(k, t)}{(2+k) t^{p}}=+\infty
\end{aligned}
$$

This means that we can not apply Theorem 1.2, but Theorem 1.1 works. On the other hand, it is easy to see that we can modify f in the way, that for some (or even infinitely many) k we have $f(k, t)>0$ for all $t>0$ and the limits (5.4, 5.5) do not change. Therefore, such an f does not satisfy (A4) and can not be used in Theorem 1.1 .

References

[1] R. P. Agarwal, K. Perera, D. O'Regan; Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Analysis, 58 (2004), 69-73.
[2] G. Bonanno, P. Candito; Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal., 88 (2009), 605-616.
[3] G. Bonanno, A. Chinně; Existence results of infinitely many solutions for $p(x)$-Laplacian elliptic Dirichlet problems. Complex Var. Elliptic Equ., 57 (2012), no. 11, 1233-1246.
[4] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), 1-20.
[5] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a Dirichlet problem involving the p-Laplacian, Proceedings of the Royal Society of Edinburgh, 140A (2010), 737-752.
[6] G. Bonanno, G. Molica Bisci, V. Rădulescu; Variational analysis for a nonlinear elliptic problem on the Sierpi nski gasket, ESAIM Control Optim. Calc. Var., 18 (2012), no. 4, 941-953.
[7] G. Bonanno, G. Molica Bisci, V. Rădulescu; Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces. Nonlinear Anal., 75 (2012), no. 12, 4441-4456.
[8] B. E. Breckner, D. Repovs, C. Varga; Infinitely many solutions for the Dirichlet problem on the Sierpinski gasket, Anal. Appl., 9 (2011), no. 3, 235-248.
[9] A. Cabada, A. Iannizzotto, S. Tersian; Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418-428.
[10] P. Candito, G. Molica Bisci; Existence of two solutions for a second-order discrete boundary value problem, Adv. Nonlinear Studies, 11 (2011), 443-453.
[11] F. Faraci, A. Kristály; One-dimensional scalar field equations involving an oscillatory nonlinear term, Discrete Contin. Dyn. Syst., 18 (2007), no. 1, 107-120.
[12] A. Iannizzotto, V. Radulescu; Positive homoclinic solutions for the discrete p-Laplacian with a coercive weight function, Differential Integral Equations, 27 (2014), no. 1-2, 35-44.
[13] A. Iannizzotto, S. Tersian; Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.
[14] L. Kong; Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), no.1, 124-146.
[15] A. Kristály, M. Mihăilescu, V. Rădulescu; Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, Journal of Difference Equations and Applications 17 (2011), 1431-1440
[16] A. Kristály, G. Morosanu, S. Tersian; Quasilinear elliptic problems in \mathbb{R}^{n} involving oscillatory nonlinearities, J. Differential Equations, 235 (2007), 366-375.
[17] A. Kristály, V. Rǎdulescu, C. Varga; Variational principles in mathematical physics, geometry, and economics. Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010.
[18] M. Ma, Z. Guo; Homoclinic orbits for second order self-adjont difference equations, J. Math. Anal. Appl., 323 (2005), 513-521.
[19] G. Molica Bisci, D. Repovš; Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput., 242 (2014), 454-461.
[20] G. Molica Bisci, D. Repovš; On sequences of solutions for discrete anisotropic equations, Expo. Math. 32 (2014), no. 3, 284-295.
[21] V. Radulescu, D. Repovš; Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
[22] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 133 (2000), 401-410.
[23] R. Stegliński; On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., (2016), 2016:38.
[24] R. Stegliński; On sequences of large homoclinic solutions for a difference equation on the integers involving oscillatory nonlinearities. Electron. J. Qual. Theory Differ. Equ., 2016, No. 35, 11 pp.
[25] G. Sun, A. Mai; Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian, The Scientific World Journal, (2014).

Robert Stegliński
Institute of Mathematics, Lodz University of Technology, Wolczanska 215, 90-924
Lodz, Poland
E-mail address: robert.steglinski@p.lodz.pl

[^0]: 2010 Mathematics Subject Classification. 39A10, 47J30, 35B38.
 Key words and phrases. Difference equations; discrete p-Laplacian; variational methods; infinitely many solutions.
 (C) 2017 Texas State University.

 Submitted July 18, 2017. Published September 22, 2017.

