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SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR
DIFFERENCE EQUATIONS ON INTEGERS

ROBERT STEGLIŃSKI

Communicated by Vicentiu D. Radulescu

Abstract. In this article, we determine a concrete interval of positive pa-

rameters λ, for which we prove the existence of infinitely many homoclinic
solutions for a discrete problem

−∆
`
a(k)φp(∆u(k − 1))

´
+ b(k)φp(u(k)) = λf(k, u(k)), k ∈ Z,

where the nonlinear term f : Z×R→ R has an appropriate oscillatory behavior

at zero. We use both the general variational principle of Ricceri and the direct

method introduced by Faraci and Kristály [11].

1. Introduction

In this article we study the nonlinear second-order difference equation
−∆ (a(k)φp(∆u(k − 1))) + b(k)φp(u(k)) = λf(k, u(k)) for all k ∈ Z

u(k)→ 0 as |k| → ∞.
(1.1)

Here p > 1 is a real number, λ is a positive real parameter, φp(t) = |t|p−2t for all
t ∈ R, a, b : Z→ (0,+∞), while f : Z×R→ R is a continuous function. Moreover,
the forward difference operator is defined as ∆u(k − 1) = u(k)− u(k − 1). We say
that a solution u = {u(k)} of (1.1) is homoclinic if lim|k|→∞ u(k) = 0.

Difference equations represent the discrete counterpart of ordinary differential
equations and are usually studies in connection with numerical analysis. We may
regard (1.1) as being a discrete analogue of the following second order differential
equation

−(a(t)φp(x′(t)))′ + b(t)φp(x(t)) = f(t, x(t)), t ∈ R.
The case p = 2 in (1.1) has been motivated in part by searching standing waves for
the nonlinear Schrodinger equation

iψ̇k + ∆2ψk − νkψk + f(k, ψk) = 0, k ∈ Z.
Boundary value problems for difference equations can be studied in several ways.

It is well known that variational method in such problems is a powerful tool. Many
authors have applied different results of critical point theory to prove existence
and multiplicity results for the solutions of discrete nonlinear problems. Studying
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such problems on bounded discrete intervals allows for the search for solutions in a
finite-dimensional Banach space (see [1, 2, 9, 10, 19, 20, 21]). The issue of finding
solutions on unbounded intervals is more delicate. To study such problems directly
by variational methods, [13] and [18] introduced coercive weight functions which
allow for preservation of certain compactness properties on lp-type spaces. That
method was used in the following papers [12, 14, 23, 24, 25].

The goal of the present paper is to establish the existence of a sequence of ho-
moclinic solutions for problem (1.1), which has been studied recently in several
papers. Infinitely many solutions were obtained in [25] by employing Nehari mani-
fold methods, in [14] by applying a variant of the fountain theorem, in [23] by use of
the Ricceri’s theorem (see [4, 22]) and in [24] by applying a direct argumentation.
In the two latter papers the nonlinearity f has a suitable oscillatory behavior at
infinity. In this article we will prove that results analogous to [23] and [24] can be
obtained assuming that the nonlinearity f has a suitable oscillatory behavior at
zero.

A special case of our contributions reads as follows. For b : Z → R and the
continuous mapping f : Z× R→ R define the following conditions:

(A1) b(k) ≥ α > 0 for all k ∈ Z, b(k)→ +∞ as |k| → +∞;
(A2) there is T0 > 0 such that sup|t|≤T0

|f(·.t)| ∈ l1;
(A3) f(k, 0) = 0 for all k ∈ Z;
(A4) there are sequences {cm}, {dm} such that 0 < dm+1 < cm < dm,

limm→∞ dm = 0 and f(k, t) ≤ 0 for every k ∈ Z and t ∈ [cm, dm],m ∈ N;
(A5) lim inft→0+

P
k∈Z max|ξ|≤t F (k,ξ)

tp = 0;
(A6) lim sup(k,t)→(+∞,0+)

F (k,t)
[a(k+1)+a(k)+b(k)]tp = +∞;

(A7) lim sup(k,t)→(−∞,0+)
F (k,t)

[a(k+1)+a(k)+b(k)]tp = +∞;

(A8) supk∈Z
(

lim supt→0+
F (k,t)

[a(k+1)+a(k)+b(k)]tp

)
= +∞,

where F (k, t) is the primitive function of f(k, t), i. e. F (k, t) =
∫ t

0
f(k, s) ds

for every t ∈ R and k ∈ Z .
The solutions are found in the normed space (X, ‖ · ‖), where

X =
{
u : Z→ R :

∑
k∈Z

[a(k)|∆u(k − 1)|p + b(k)|u(k)|p] <∞},

‖u‖ =
(∑
k∈Z

[a(k)|∆u(k − 1)|p + b(k)|u(k)|p]
)1/p

.

Theorem 1.1. Assume that (A1)–(A4) are satisfied. Moreover, assume that at
least one of the conditions (A6)–(A8), is satisfied. Then, for any λ > 0, problem
(1.1) admits a sequence of non-negative solutions in X whose norms tend to zero.

Theorem 1.2. Assume that (A1), (A2), (A5) are satisfied. Moreover, assume that
at least one of the conditions (A6)–(A8) is satisfied. Then, for any λ > 0, problem
(1.1) admits a sequence of solutions in X whose norms tend to zero.

The issue of multiplicity of solutions can be investigated through variational
methods, which consist in seeking solutions of a difference equation as critical points
of an energy functional defined on a convenient Banach space. In the proof for the
first theorem a direct variational approach is used, introduced in [11] and then used
in such papers as [8, 15, 16, 17, 24]. In the proof for the second theorem the general
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variational principle of Ricceri is used, which was applied in [2, 3, 5, 6, 7, 23]. To
obtain the differentiability of the energy functional associated with problem (1.1),
so far in the literature the following condition has been used

lim
t→0

|f(k, t)|
|t|p−1

= 0 uniformly for all k ∈ Z,

following [13, 18] and then used in [23, 24, 25].
We cannot use the condition, as it contradicts each of the conditions (A6)–(A8).
We obtain our results due to a suitable oscillatory behavior of the nonlinearity

f . Let us observe that to satisfy the condition (A8) it suffices that a suitable
oscillatory behavior is present for just one k ∈ Z, while for satisfying conditions
(A6) or (A7) a suitable behavior of the nonlinearity f needs to be maintained for
an infinite number of k ∈ Z.

The plan of the paper is as follows: Section 2 is devoted to our abstract frame-
work, in Section 3 and Section 4 we prove more general versions of Theorems 1.1
and 1.2 respectively. In Section 5 we give examples and we show that Theorem 1.1
and Theorem 1.2 are independent.

2. Abstract framework

For all 1 ≤ p < +∞, we denote by `p the set of all functions u : Z→ R such that

‖u‖pp =
∑
k∈Z
|u(k)|p < +∞.

Moreover, we denote by `∞ the set of all functions u : Z→ R such that

‖u‖∞ = sup
k∈Z
|u(k)| < +∞

Lemma 2.1. Let a continuous function f : Z× R→ R satisfies

sup
|t|≤T

|f(·, t)| ∈ l1 for all T > 0. (2.1)

Then the functional Ψ : lp → R defined by

Ψ(u) :=
∑
k∈Z

F (k, u(k)) for all u ∈ lp, (2.2)

where F (k, s) =
∫ s

0
f(k, t)dt for s ∈ R and k ∈ Z, is continuously differentiable.

Proof. Let us fix u, v ∈ lp. We will prove that

lim
τ→0+

Ψ(u+ τv)−Ψ(u)
τ

=
∑
k∈Z

f(k, u(k))v(k). (2.3)

Put r = ‖u‖∞ + ‖v‖∞ and q(k) = sup|t|≤r |f(k, t)| for all k ∈ Z. We have q ∈ l1,
by (2.1).

Let us fix arbitrarily ε > 0. Then, there exists h ∈ N such that∑
|k|>h

|q(k)| < ε

3‖v‖∞
.

We can find 0 < τ0 < 1 such that for all 0 < τ ≤ τ0,∑
|k|≤h

∣∣F (k, u(k) + τv(k))− F (k, u(k))
τ

− f(k, u(k))v(k)
∣∣ < ε

3
.
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Now fix 0 < τ < τ0. For all |k| > h we can find 0 ≤ τk ≤ τ such that
F (k, u(k) + τv(k))− F (k, u(k))

τ
= f(k, u(k) + τkv(k))v(k).

We define w ∈ lp by putting w(k) = 0 for all |k| ≤ h and w(k) = u(k) + τkv(k) for
all |k| > h. So ‖w‖∞ ≤ r and∣∣Ψ(u+ τv)−Ψ(u)

τ
−
∑
k∈Z

f(k, u(k))v(k)
∣∣

≤ ε

3
+
∑
|k|>h

|f(k,w(k))v(k)|+
∑
|k|>h

|f(k, u(k))v(k)|

≤ ε

3
+ 2‖v‖∞

∑
|k|>h

q(k) < ε,

which proves (2.3). From (2.1) and the continuity of the embeddings lp ↪→ l∞ and
l1 ↪→ lp

′
, the linear operator on the right-hand side of (2.3) lies in lp

′
, 1
p + 1

p′ = 1,
so Ψ is Gateaux differentiable and

〈Ψ′(u), v〉 =
∑
k∈Z

f(k, u(k))v(k).

It remains to prove that Ψ′ : lp → lp
′
is continuous. Let (un) be a sequence such that

un → u in lp. Put R = max{‖u‖∞, supn∈N ‖un‖∞} and Q(k) = sup|t|≤R |f(k, t)|
for all k ∈ Z. We have Q ∈ l1, by (2.1). Fix an ε > 0 arbitrarily. There exists
h ∈ N such that ∑

|k|>h

|Q(k)| < ε

3
(2.4)

and there exists N ∈ N such that for all n > N we have∑
|k|≤h

|f(k, un(k))− f(k, u(k))| < ε

3
. (2.5)

Applying (2.4) and (2.5), for every n > N and v ∈ lp one has

|〈Ψ′(un)−Ψ′(u), v〉|

≤ ‖v‖∞
∑
k∈Z
|f(k, un(k))− f(k, u(k))|

≤ ‖v‖p
( ∑
|k|≤h

|f(k, un(k))− f(k, u(k))|+
∑
|k|>h

|f(k, un(k))|+
∑
|k|>h

|f(k, u(k))|
)

≤ ‖v‖p
( ε

3
+ 2

∑
|k|>h

Q(k)
)

< ε‖v‖p,

thus, ‖Ψ′(un)−Ψ′(u)‖ < ε. So, Ψ′ is continuous and Ψ ∈ C1(lp). �

Now, we set

X =
{
u : Z→ R :

∑
k∈Z

[a(k)|∆u(k − 1)|p + b(k)|u(k)|p] <∞
}

and
‖u‖ =

(∑
k∈Z

[a(k)|∆u(k − 1)|p + b(k)|u(k)|p]
)

1/p.
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Clearly we have
‖u‖∞ ≤ ‖u‖p ≤ α−1/p‖u‖ for all u ∈ X. (2.6)

As is shown in [13, Propositions 3], (X, ‖ · ‖) is a reflexive Banach space and the
embedding X ↪→ lp is compact. See also [14, Lemma 2.2].

Let Jλ : X → R be the functional associated with problem (3.3) defined by

Jλ(u) = Φ(u)− λΨ(u),

where

Φ(u) :=
1
p

∑
k∈Z

[a(k)|∆u(k − 1)|p + b(k)|u(k)|p] for all u ∈ X

and Ψ is given by (2.2).

Proposition 2.2. Assume that (A1) and (2.1) are satisfied. Then
(a) Ψ ∈ C1(lp) and Ψ ∈ C1(X);
(b) Φ ∈ C1(X);
(c) Jλ ∈ C1(X) and every critical point u ∈ X of Jλ is a homoclinic solution

of problem (1.1);
(d) Jλ is sequentially weakly lower semicontinuous functional on X.

Proof. Part (a) follows from Lemma 2.1. Parts (b) and (c) can be proved essentially
by the same way as [13, Propositions 5 and 7], where a(k) ≡ 1 on Z and the norm
on X is slightly different. See also [14, Lemmas 2.4 and 2.6]. The proof of part
(d) is based on the following facts: Φ = 1

p‖ · ‖
p, Ψ ∈ C(lp) and the compactness of

X ↪→ lp and it is standard. �

3. Proof of Theorem 1.1

Now we will formulate and prove a stronger form of Theorem 1.1. Let

B± := lim sup
(k,t)→(±∞,0+)

F (k, t)
[a(k + 1) + a(k) + b(k)]tp

, (3.1)

B0 := sup
k∈Z

(
lim sup
t→0+

F (k, t)
[a(k + 1) + a(k) + b(k)]tp

)
. (3.2)

Set B = max{B±, B0}. For convenience we put 1/+∞ = 0.

Theorem 3.1. Assume that (A1)–(A4) are satisfied and assume that B > 0. Then,
for any λ > 1

Bp , problem (1.1) admits a nonzero sequence of non-negative solutions
in X whose norms tend to zero.

Proof. To apply Proposition 2.2, we need to have a nonlinearity which satisfies
condition (2.1). Let T0 > 0 be a number satisfying (A2). Define the truncation
function

f̃(k, s) =


0, s ≤ 0 and k ∈ Z,
f(x, s), 0 ≤ s ≤ T0 and k ∈ Z,
f(x, T0), s ≥ T0 and k ∈ Z.

and consider the problem

−∆ (a(k)φp(∆u(k − 1))) + b(k)φp(u(k)) = λf̃(k, u(k))

u(k)→ 0.
(3.3)
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Clearly, if u is a non-negative solution of problem (3.3) with ‖u‖∞ ≤ T0, then it is
also a non-negative solution of problem (1.1), so it is enough to show that problem
(3.3) admits a nonzero sequence of non-negative solutions in X whose norms tend
to zero.

Put λ > 1
Bp and put Φ,Ψ and Jλ as in the previous section. By Proposition 2.2

we need to find a nontrivial sequence {un} of critical points of Jλ with non-negative
terms whose norms tend to zero.

Let {cn}, {dn} be sequences satisfying conditions (A4). Up to subsequence, we
may assume that d1 < T0. For every n ∈ N define the set

Wn = {u ∈ X : ‖u‖∞ ≤ dn for every k ∈ Z}.
Claim 3.2. For every n ∈ N, the functional Jλ is bounded from below on Wn and
its infimum on Wn is attained.

The proof of this Claim is essentially the same as the proof of [24, Claim 3.2].

Claim 3.3. For every n ∈ N, let un ∈ Wn be such that Jλ(un) = infWn Jλ. Then,
un is a solution of problem (3.3) with 0 ≤ un(k) ≤ cn for all k ∈ Z.

Firstly, arguing as in the proof of [24, Claim 3.3], we obtain that if un ∈ Wn is
such that Jλ(un) = infWn

Jλ, then 0 ≤ un(k) ≤ cn for all k ∈ Z. Secondly, arguing
as in the proof of [24, Claim 3.4], we obtain that un is a critical point of Jλ in X,
and so is a solution of problem (3.3). This proves Claim 3.3.

Claim 3.4. For every n ∈ N, we have Jλ(un) < 0 and limn→+∞ Jλ(un) = 0.

Firstly, we assume that B = B±. Without loss of generality we can assume that
B = B+. We begin with B = +∞. Then there exists a number σ > 1

λp , a sequence
of positive integers {kn} and a sequence of positive numbers {tn} which tends to
0, such that

F (kn, tn) > σ(a(kn + 1) + a(kn) + b(kn))tpn (3.4)
for all n ∈ N. Up to extracting a subsequence, we may assume that tn ≤ dn for all
n ∈ N. Define in X a sequence {wn} such that, for every n ∈ N, wn(kn) = tn and
wn(k) = 0 for every k ∈ Z\{kn}. It is clear that wn ∈Wn. One then has

Jλ(wn)

=
1
p

∑
k∈Z

(a(k)|∆wn(k − 1)|p + b(k)|wn(k)|p)− λ
∑
k∈Z

F (k,wn(k))

<
1
p

(a(kn + 1) + a(kn)) tpn +
1
p
b(kn)tpn − λσ(a(kn + 1) + a(kn) + b(kn))tpn

=
(1
p
− λσ

)
(a(kn + 1) + a(kn) + b(kn))tpn < 0

which gives Jλ(un) ≤ Jλ(wn) < 0. Next, assume that B < +∞. Since λ > 1
Bp ,

we can fix ε < B − 1
λp . Therefore, also taking {kn} a sequence of positive integers

and {tn} a sequence of positive numbers with limn→+∞ tn = 0 and tn ≤ dn for all
n ∈ N such that

F (kn, tn) > (B − ε)(a(kn + 1) + a(kn) + b(kn))tpn (3.5)

for all n ∈ N, choosing {wn} in Wn as above, one has

Jλ(wn) <
(1
p
− λ(B − ε)

)
(a(kn + 1) + a(kn) + b(kn))tpn.
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So, also in this case, Jλ(un) < 0.
Now, assume that B = B0. We begin with B = +∞. Then there exists a number

σ > 1
λp and an index k0 ∈ Z such that

lim sup
t→0+

F (k0, t)
(a(k0 + 1) + a(k0) + b(k0))|t|p

> σ.

Then, there exists a sequence of positive numbers {tn} such that limn→+∞ tn = 0
and

F (k0, tn) > σ(a(k0 + 1) + a(k0) + b(k0))tpn (3.6)
for all n ∈ N. Up to considering a subsequence, we may assume that tn ≤ dn for all
n ∈ N. Thus, take in X a sequence {wn} such that, for every n ∈ N, wn(k0) = tn
and wn(k) = 0 for every k ∈ Z\{k0}. Then, one has wn ∈Wn and

Jλ(wn)

=
1
p

∑
k∈Z

(a(k)|∆wn(k − 1)|p + b(k)|wn(k)|p)− λ
∑
k∈Z

F (k,wn(k))

<
1
p

(a(k0 + 1) + a(k0)) tpn +
1
p
b(k0)tpn − λσ(a(k0 + 1) + a(k0) + b(k0))tpn

=
(1
p
− λσ

)
(a(k0 + 1) + a(k0) + b(k0))tpn < 0

which gives Jλ(un) < 0. Next, assume that B < +∞. Since λ > 1
Bp , we can fix

ε > 0 such that ε < B − 1
λp . Therefore, there exists an index k0 ∈ Z such that

lim sup
t→0+

F (k0, t)
(a(k0 + 1) + a(k0) + b(k0))tp

> B − ε.

and taking {tn} a sequence of positive numbers with limn→+∞ tn = 0 and tn ≤ dn
for all n ∈ N and

F (k0, tn) > (B − ε) (a(k0 + 1) + a(k0) + b(k0))tpn (3.7)

for all n ∈ N, choosing {wn} in Wn as above, one has

Jλ(wn) <
(1
p
− λ(B − ε)

)
(a(k0 + 1) + a(k0) + b(k0))tpn < 0.

So, also in this case, Jλ(un) < 0.
Moreover, by Claim 3.3, for every k ∈ N one has

|F (k, un(k))| ≤
∫ cn

0

|f̃(k, t)|dt ≤ cn max
t∈[0,cn]

|f̃(k, t)| ≤ cn max
t∈[0,T0]

|f̃(k, t)| (3.8)

Then
0 > Jλ(un) ≥ −

∑
k∈Z

F (k, un(k)) ≥ −cn‖ max
t∈[0,T0]

|f̃(·, t)|‖1

Since the sequence {cn} tends to zero, then Jλ(un) → 0 as n → +∞. This proves
Claim 3.4.

Now we are ready to end the proof of Theorem 3.1. With Proposition 2.2, Claims
3.3–3.4, up to a subsequence, we have infinitely many pairwise distinct non-negative
homoclinic solutions un of (3.3). Moreover, due to (3.8), we have

1
p
‖un‖p = Jλ(un) +

∑
k∈Z

F (k, un(k)) < cn‖ max
t∈[0,T0]

|f̃(·, t)|‖1,
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which proves that ‖un‖p → 0 as n→ +∞. This concludes our proof. �

We remark that Theorem 1.1 follows now from Theorem 3.1.

4. Proof of Theorem 1.2

Our main tool is a general critical points theorem due to Bonanno and Molica
Bisci (see [4]) that is a generalization of a result of Ricceri [22]. Here we state it in
a smooth version for the reader’s convenience.

Theorem 4.1. Let (E, ‖ · ‖) be a reflexive real Banach space, let Φ,Ψ : E → R be
two continuously differentiable functionals with Φ coercive, i.e. lim‖u‖→∞ Φ(u) =
+∞, and a sequentially weakly lower semicontinuous functional and Ψ a sequen-
tially weakly upper semicontinuous functional. For every r > infE Φ, let us put

ϕ(r) := inf
u∈Φ−1((−∞,r))

(
supv∈Φ−1((−∞,r)) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

δ := lim inf
r→(infE Φ)+

ϕ(r).

Let Jλ := Φ(u) − λΨ(u) for all u ∈ E. If δ < +∞ then, for each λ ∈ (0, 1/δ), the
following alternative holds: either

(a) there is a global minimum of Φ which is a local minimum of Jλ, or
(b) there is a sequence {un} of pairwise distinct critical points (local minima)

of Jλ, with limn→+∞ Φ(un) = infE Φ, which weakly converges to a global
minimum of Φ.

Now we formulate and prove a stronger form of Theorem 1.2. Let

A := lim inf
t→0+

∑
k∈Z max|ξ|≤t F (k, ξ)

tp
.

Set B := max{B±, B0}, where B± and B0 are given by (3.1) and (3.2), respectively.
For convenience we put 1

0+ = +∞ and 1
+∞ = 0.

Theorem 4.2. Assume that (A1), (A2), (A5) are satisfied and assume that the
following inequality holds A < αB. Then, for each λ ∈ ( 1

Bp ,
α
Ap ), problem (1.1)

admits a sequence of solutions in X whose norms tend to zero.

Proof. To apply Proposition 2.2, we need to have a nonlinearity which satisfies
condition (2.1). Let T0 > 0 be a number satisfying (A2). Define the truncation
function

f̄(k, s) =


f(x,−T0), s ≤ −T0 and k ∈ Z,
f(x, s), −T0 ≤ s ≤ T0 and k ∈ Z,
f(x, T0), s ≥ T0 and k ∈ Z.

and consider the problem

−∆ (a(k)φp(∆u(k − 1))) + b(k)φp(u(k)) = λf̄(k, u(k))

u(k)→ 0.
(4.1)

Clearly, if u is a solution of problem (4.1) with ‖u‖∞ ≤ T0, then it is also a solution
of the problem (1.1), so it is enough to show that problem (4.1) admits a nonzero
sequence of solutions in X whose norms tend to zero.
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It is clear that A ≥ 0. Put λ ∈
(

1
Bp ,

α
Ap

)
and put Φ,Ψ, Jλ as above. Our aim is

to apply Theorem 4.1 to function Jλ. By Lemma 2.2, the functional Φ is the contin-
uously differentiable and sequentially weakly lower semicontinuous functional and
Ψ is the continuously differentiable and sequentially weakly upper semicontinuous
functional. We will show that δ < +∞. Let {cm} ⊂ (0, T0) be a sequence such that
limm→∞ cm = 0 and

lim
m→+∞

∑
k∈Z max|ξ|≤cm F (k, ξ)

cpm
= A.

Set
rm :=

α

p
cpm

for every m ∈ N. Then, if v ∈ X and Φ(v) < rm, one has

‖v‖∞ ≤ α−
1
p ‖v‖ ≤ α−

1
p
(
pΦ(v)

)
1/p < cm

which gives
Φ−1

(
(−∞, rm)

)
⊂
{
v ∈ X : ‖v‖∞ ≤ cm

}
. (4.2)

From this and Φ(0) = Ψ(0) = 0 we have

ϕ(rm) ≤
supΦ(v)<rm

∑
k∈Z F (k, v(k))
rm

≤
∑
k∈Z max|t|≤cm F (k, t)

rm

=
p

α
·
∑
k∈Z max|t|≤cm F (k, t)

cpm

for every m ∈ N. This gives

δ ≤ lim
m→+∞

ϕ(rm) ≤ p

α
·A <

1
λ
< +∞.

Now, we show that the point (a) in Theorem 4.1 does not hold, i.e. we show that
the global minimum θ of Φ is not a local minimum of Jλ. Arguing as in the proof
of Claim 3.4, we can find a sequence {wn} in X with ‖wn‖∞ → 0 as n → +∞,
such that Jλ(wn) < 0 for n ∈ N. We have to show that ‖wn‖ → 0. Note that

‖wn‖ =
(
(a(kn + 1) + a(kn) + b(kn))tpn

)
1/p,

where {kn} is a sequence divergent to +∞ or −∞, as in (3.4) and (3.5) or {kn} is
a constant sequence, as in (3.6) and (3.7) and {tn} is a sequence convergent to 0+

from relevant (3.4), (3.5), (3.6) or (3.7). From this

‖wn‖ ≤ γF (kn, tn)

for some positive constant γ and all n ∈ N. Since

lim
m→+∞

∑
k∈Z max|ξ|≤cm F (k, ξ)

cpm
< +∞

and limm→+∞ cm = 0, we have

lim
m→+∞

∑
k∈Z

max
|ξ|≤cm

F (k, ξ) = 0

and, as max|ξ|≤cm F (k, ξ) ≥ 0, we obtain limm→+∞
(
max|ξ|≤cm F (k, ξ)

)
= 0 uni-

formly for all k ∈ Z. This and F (kn, tn) > 0 easily gives limn→+∞ F (kn, tn) = 0
and so limn→+∞ ‖wn‖ = 0.

From the above it follows that θ is not a local minimum of Jλ and, by (b), there
is a sequence {un} of pairwise distinct critical points of Jλ with limn→+∞ Φ(un) =
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infE Φ. This means that 0 = infE Φ = limn→+∞ Φ(un) = 1
p‖un‖

p, and so {un}
strongly converges to zero. The proof is complete. �

We remark that Theorem 1.2 follows now from Theorem 4.2.

5. Examples

Consider the problem
−∆ (φp(∆u(k − 1))) + |k|φp(u(k)) = λf(k, u(k)) for all k ∈ Z

u(k)→ 0 as |k| → ∞,
(5.1)

where p > 1 and f : Z× R→ R is defined by

f(k, s) =
∑
m∈N

em

(
dm − cm − 2|s− 1

2
(cm + dm) |

)
· 1{m}×[cm,dm](k, s) (5.2)

with sequences {cm}, {dm}, {em}, {hm} defined by

cm = 1/222m
for m ∈ N;

dm = 1/222m−1
for m ∈ N;

hm = 1/2(p+1)22m−2
for m ∈ N;

em = 2hm/(dm − cm)2 for m ∈ N.

(5.3)

Here 1A×B is the indicator of A × B. It is easily seen that f is continuous and
conditions (A2), (A3) are satisfied. Set F (k, t) :=

∫ t
0
f(k, s)ds for every t ∈ R and

k ∈ Z. Then F (k, dk) =
∫ dk
ck
f(k, t)dt = hk and

lim inf
t→0+

∑
k∈Z max|ξ|≤t F (k, ξ)

tp
≤ lim
m→+∞

∑
k∈Z max|ξ|≤cm F (k, ξ)

cpm

= lim
m→+∞

∑∞
k=m+1 F (k, dk)

cpm

= lim
m→+∞

∑∞
k=m+1 hk

cpm

≤ lim
m→+∞

2hm+1

cpm
= 0

(5.4)

and

lim sup
(k,t)→(+∞,0+)

F (k, t)
(2 + k)tp

≥ lim
m→+∞

F (m, dm)
(2 +m)dpm

= lim
m→+∞

hm
(2 +m)dpm

= +∞.
(5.5)

So, conditions (A4)–(A6) are satisfied and so for any λ > 0, problem (5.1) admits
a sequence of non-negative solutions in X whose norms tend to zero, by Theorem
1.1 or Theorem 1.2. Note also that f does not satisfy (A8).

Remark 5.1. For a fixed k0 ∈ Z, if we define f̃ : Z× R→ R by

f̃(k, s) =
∑
m∈N

em
(
dm − cm − 2|s− 1

2
(cm + dm)|

)
· 1{k0}×[cm,dm](k, s)

with sequences {cm}, {dm}, {em}, {hm} defined as above, then f̃ satisfies conditions
(A2)–(A5) and (A8), but does not satisfy conditions (A6) and (A7).
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Remark 5.2. Theorems 1.1 and 1.2 are independent of each other. Indeed, let us
replace hm in (5.3) by

hm = 1/2p2
2m−2

for m ∈ N.
Then, the function f given by (5.2) is continuous if p > 2. It can be seen that the
first inequality in (5.4) is in fact equality. Then, an easy computation shows that

lim inf
t→0+

∑
k∈Z max|ξ|≤t F (k, ξ)

tp
≥ 1,

B+ = lim sup
(k,t)→(+∞,0+)

F (k, t)
(2 + k)tp

= +∞.

This means that we can not apply Theorem 1.2, but Theorem 1.1 works. On the
other hand, it is easy to see that we can modify f in the way, that for some (or
even infinitely many) k we have f(k, t) > 0 for all t > 0 and the limits (5.4), (5.5)
do not change. Therefore, such an f does not satisfy (A4) and can not be used in
Theorem 1.1.
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[16] A. Kristály, G. Morosanu, S. Tersian; Quasilinear elliptic problems in Rn involving oscillatory

nonlinearities, J. Differential Equations, 235 (2007), 366-375.
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