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UNIQUENESS THEOREMS FOR STURM-LIOUVILLE
OPERATORS WITH INTERIOR TWIN-DENSE NODAL SET

YU PING WANG

Abstract. We study Inverse problems for the Sturm-Liouville operator with

Robin boundary conditions. We establish two uniqueness theorems from the

twin-dense nodal subset WS([ 1−ε
2

, 1
2

]), 0 < ε ≤ 1, together with parts of

either one spectrum, or the minimal nodal subset {x1
n}∞n=1 on the interval

[0, 1
2

]. In particular, if one spectrum is given a priori, then the potential q on

the whole interval [0, 1] can be uniquely determined by WS([ 1−ε
2

, 1
2

]) for any

S and arbitrarily small ε.

1. Introduction

Consider the Sturm-Liouville operator L := L(q, h,H) defined by

− u′′ + q(x)u = λu, x ∈ (0, 1) (1.1)

with boundary conditions

U0(u) := u′(0, λ)− hu(0, λ) = 0, (1.2)

U1(u) := u′(1, λ) +Hu(1, λ) = 0, (1.3)

where h,H∈ R, q(x) is a real-valued function and q ∈ L1[0, 1].
The inverse nodal problem is to reconstruct this operator from the given nodal

points(zeros) of its eigenfunctions. Inverse nodal problems for differential operators
have many applications in many areas, such as mathematics, physics, engineering,
etc (see [1, 2, 3, 4, 5, 8, 11, 15, 16, 18, 21, 22, 25, 27, 28, 29, 30] and the references
therein). Inverse spectral problems for (1.1)-(1.3) consist in recovering this operator
from the given data (refer to [6, 7, 10, 12, 13, 14, 17, 19, 20, 23, 24, 26, 31] and
other works). In particular, McLaughlin [18] discussed the inverse nodal problem
for (1.1)-(1.3) and showed that a dense subset of nodal points of its eigenfunctions is
sufficient to determine the potential q up to its mean value and coefficients h,H of
boundary conditions. From the physical point of view this corresponds to finding,
e.g., the density of a string or a beam from the zero-amplitude positions of their
eigenvibrations. Later, X.F. Yang [29] presented an interesting theorem for (1.1)-
(1.3) and showed that the s-dense nodal subset on the interval [0, b], 1

2 < b ≤ 1,
is sufficient to determine the potential q up to its mean value and coefficients h,H
of boundary conditions by the Gesztesy-Simon theorem [7]. Then Cheng et al [4]
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improved the Yang’s theorem by the twin-dense nodal subset (Similar to definition
2.1) instead of the s-dense nodal subset. Yang [27] presented a counterexample,
which illustrates that two operators have the same spectrum and in the subinterval
[0, 1−α

2 ] ∪ [ 1+α
2 , 1] for any α, 0 < α < 1, their nodal points are the same, but

q(x) 6= q̃(x) on the interval ( 1−α
2 , 1+α

2 ). In [8, 9], Guo and Wei showed that only
the twin-dense nodal data on a small interval [a, b] containing the midpoint 1

2 suffices
to determine the differential operator (potential functions plus boundary constants
h and H) uniquely. Their method is inspired by analysis of Weyl m-functions in
the work of Gesztesy-Simon[7]. The result of Guo-Wei is a big step forward from
those in [29, 4], where nodal data on more that half of the interval are needed.

In this note, we plan to follow the method of Guo-Wei to show two uniqueness
results. We shall concentrate on the situation when only information of the twin-
dense nodal subset WS([a, 1

2 ]) on the left portion [a, 1
2 ], still an interior subinterval.

As discussed in [8], this is not enough. We add some more information (part of the
eigenvalues λn, or the sequence of first nodal point x1

nk
). They suffice to guarantee

the uniqueness of the potential function. There are four types of boundary condi-
tions, we shall only concentrate on Case IV: h,H ∈ R in [8]. Moreover we shall
simplify part of their proof (cf. proof of Lemma 3.1 below).

This article is organized as follows. In Section 2, we present preliminaries. We
introduce our main results in Section 3, which will be proved in Section 4.

2. Preliminaries

Let S(x, λ), C(x, λ), u−(x, λ) and u+(x, λ) be solutions of (1.1) with the initial
conditions:

S(0, λ) = 0, S′(0, λ) = 1, C(0, λ) = 1, C ′(0, λ) = 0,

u−(0, λ) = 1, u′−(0, λ) = h, u+(1, λ) = 1, u′+(1, λ) = −H.

Clearly, U0(u−) = U1(u+) = 0 and

u−(x, λ) = C(x, λ) + hS(x, λ),

u+(x, λ) = U1(S)C(x, λ)− U1(C)S(x, λ).

Denote λ = ρ2 and τ = |Imρ|. We have the asymptotic formulae (see [31]).

u−(x, λ) = cos ρx+
(
h+

1
2

∫ x

0

q(t)dt
) sin ρx

ρ
+ o
(eτx

ρ

)
, 0 ≤ x ≤ 1 (2.1)

u′−(x, λ) = −ρ sin ρx+O(eτx), 0 ≤ x ≤ 1, (2.2)

u+(x, λ) = cos ρ(1− x) +
(
H +

1
2

∫ 1

x

q(t)dt
) sin ρ(1− x)

ρ
+ o
(eτ(1−x)

ρ

)
,

for 0 ≤ x ≤ 1

u′+(x, λ) = ρ sin ρ(1− x) +O(eτ(1−x)), 0 ≤ x ≤ 1.

The following formula is called the Green’s formula∫ 1

0

(yL(z)− zL(y)) = [y, z](1)− [y, z](0), (2.3)

where [y, z](x) := y(x)z′(x)− y′(x)z(x) is the Wronskian of y and z.
Denote

∆(λ) := [u+, u−](x, λ).
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Then ∆(λ) does not depend on x and

∆(λ) = U1(u−) = −U0(u+),

which is called the characteristic function of L. Hence

∆(λ) = −ρ sin ρ+O(eτ ). (2.4)

Let σ(L) := {λn}∞n=0 be the set of all eigenvalues of (1.1)-(1.3). It is well known
that all zeros λn of ∆(λ) are real and simple. For sufficiently large n, we have
asymptotic formula for eigenvalues λn of (1.1)-(1.3)√

λn = nπ +
ω

nπ
+ o
( 1
n

)
, (2.5)

where ω = h + H + 1
2

∫ 1

0
q(t)dt. Denote Gδ := {ρ : |ρ − kπ| > δ, k ∈ Z}. For

sufficiently small δ, then there exists a constant Cδ such that for sufficiently large
|λ|,

|∆(λ)| ≥ Cδ|ρ|eτ , ∀ρ ∈ Gδ. (2.6)
We define the Weyl m-function m±(x, λ) by

m±(x, λ) = ±
u′±(x, λ)
u±(x, λ)

.

From [17, 7], we get the following asymptotic formulae:

m±(x, λ) = iρ+ o(1),
1

m±(x, λ)
= − i

ρ
+ o
( 1
ρ2

)
(2.7)

uniformly in x ∈ [0, 1 − δ] for m+(x, λ) (resp., x ∈ [δ, 1] for m−(x, λ)), δ > 0 as
|λ| → ∞ in any sector ε < arg(λ) < π − ε for ε > 0.

Let u−(x, λn) be the eigenfunction corresponding to the n-th eigenvalue λn of
eqrefE1.1-(1.3) and xjn be the nodal points of the eigenfunction u−(x, λn), i.e.,
u−(xjn, λn) = 0, where 0 < x1

n < x2
n < · · · < xjn < · · · < xnn < 1, n ≥ 1. Denote

x0
n = 0 and xn+1

n = 1. Additionally, for j = 0, n, let Ijn be the nodal interval by
Ijn = (xjn, x

j+1
n ) and ljn be the nodal length of the interval Ijn by ljn = xj+1

n − xjn.
Denote X := {xjn} be the set of nodal points of (1.1)-(1.3), where j = j(n), j = 0, n.

For sufficiently large n, we have asymptotic formulae for zeros xjn of the eigen-
function u−(x, λn) of (1.1)-(1.3) (see [22])

xjn =
j − 1

2

n
+

1
2(nπ)2

(
2h+

∫ xj
n

0

q(t)dt
)

−
j − 1

2

2n3π2

(
2ω −

∫ 1

0

q(t) cos(2nπt)dt
)

+ o
( 1
n2

)
.

(2.8)

Let N0 = N∪{0}, N2 = N\{1}, and S := {nk ∈ N2 : nk < nk+1, k = 1, 2, . . . ,∞}.

Definition 2.1. Take a ∈ [0, 1
2 ). We call WS([a, 1

2 ]) a left twin-dense nodal subset
on the interval [a, 1

2 ] if
(1) WS([a, 1

2 ]) ⊆ X ∩ [a, 1
2 ].

(2) For all nk ∈ S, there exists jk such that both xjknk
, xjk+1
nk

∈WS([a, 1
2 ]).

(3) The set WS([a, 1
2 ]) is dense on [a, 1

2 ], i.e. WS([a, 1
2 ]) = [a, 1

2 ].

In the same way, we define a right twin-dense nodal subset WS([ 1
2 , b]) on the

interval [ 1
2 , b] for some b, 1

2 < b ≤ 1.
The following two lemmas are important for proofs of our main results.
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Lemma 2.2 ([17]). Let m+(α, λ) (resp.,m−(1− α, λ)), α ∈ [0, 1), be the Weyl m-
function of the problem (1.1)-(1.3). Then m+(α, λ) (resp. m−(1− α, λ)) uniquely
determines coefficient H (resp. h) of the boundary condition as well as q on the
interval [α, 1] (resp. [0, 1− α]).

Lemma 2.3 ([19, Proposition B.6]). Let f(z) be an entire function such that
(1) sup|z|=Rk

|f(z)| ≤ C1exp(C2R
α
k ) for some 0 < α < 1, some sequence Rk →

∞ as k →∞ and C1, C2 > 0.
(2) lim|x|→∞ |f(ix)| = 0, x ∈ R.

Then f ≡ 0.

3. Main results

With L we consider here and in the sequel a boundary value problem L̃ =
L(q̃, h̃, H̃) of the same form but with different coefficients. If a certain symbol γ
denotes an object related to L, then the corresponding symbol γ̃ with tilde denotes
the analogous object related to L̃, and γ̂ = γ − γ̃. The so-called WS([a, b]) =
W̃eS([a, b]) means that for any xjknk

∈WS([a, b]), then at least one of (3.1) and (3.2)
holds. i.e.

xjknk
= x̃

ejkenk
and xjk+1

nk
= x̃

ejk+1enk
, or (3.1)

xjknk
= x̃

ejkenk
and xjk−1

nk
= x̃

ejk−1enk
, (3.2)

where xjk+j
nk

∈ WS([a, b]) and x̃
ejk+jenk

∈ W̃eS([a, b]) in this paper. i.e., for each fixed
(nk, jk), there exists (ñk, j̃k) such that (3.1), or (3.2). Next, we present the following
Lemma 3.1 (see [29, 4, 8]), however we prove it by an improved method.

Lemma 3.1. If WS([ 1−ε
2 , 1

2 ]) = W̃eS([ 1−ε
2 , 1

2 ]), then

q(x)− q̃(x) = 2ω̂ a.e. on [
1− ε

2
,

1
2

], (3.3)

λnk
− λ̃enk

= 2ω̂ for all nk ∈ S,
nk = ñk except for a finite number of natural numbers k.

(3.4)

Adding the condition (3.6), we establish the following uniqueness theorem.

Theorem 3.2. Suppose that the following two conditions are satisfied:
(1) WS([ 1−ε

2 , 1
2 ]) = W̃eS([ 1−ε

2 , 1
2 ]), and

]{nk ∈ S : nk ≤ n} ≥ (1− ε)n+
3ε− 1

2
(3.5)

for sufficiently large integer n > 0.
(2) For the infinite set N0\S,

λn = λ̃n, n ∈ N0\S. (3.6)

Then
q(x) = q̃(x) a.e. on [0, 1], h = h̃ and H = H̃.

Remark 3.3. (1) For either case (h,H) = (∞, H), or (h,∞), or (∞,∞), if we
modify the condition (3.5) suitably, then one obtains a similar results.

(2) We obtain an analogous results with the right twin-dense nodal subset on
the interval [ 1

2 ,
1+ε

2 ] instead of the left twin-dense nodal subset in Theorem 3.2.
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We have the following corollary from Theorem 3.2, i.e. if one spectrum is given
a priori, then potential q on the whole interval [0, 1] can be uniquely determined by
WS([ 1−ε

2 , 1
2 ]) for any S and any arbitrarily small ε.

Corollary 3.4. If one spectrum σ(L) is given a priori, then the potential q and
coefficients h,H can be uniquely determined by the left twin-dense nodal subset
WS([ 1−ε

2 , 1
2 ]) for any S and arbitrarily small ε.

For any n ∈ N, let x1
n and xnn be the minimal and maximal nodal point of the

corresponding eigenvalue λn, respectively. From the Sturm’s oscillation theorem
(see [29, Lemma 1.1.4, pp. 18]), we see that if 0 < x1

1 ≤ 1
2 , then 0 < x1

n ≤ 1
2 for

all n > 1 and if 1
2 ≤ x1

1 < 1, then 1
2 ≤ xnn < 1 for all n > 1. Adding the condition

0 < x1
1 ≤ 1

2 and (3.7), we obtain the following uniqueness theorem.

Theorem 3.5. If the following three conditions are satisfied:
(1) H = H̃ and 0 < x1

1 ≤ 1
2 ,

(2) WS([ 1−ε
2 , 1

2 ]) = W̃eS([ 1−ε
2 , 1

2 ]) and (3.5) holds.
(3) For all n ∈ N\S,

x1
n = x̃1en, (3.7)

then

q(x)−
∫ 1

0

q(t)dt = q̃(x)−
∫ 1

0

q̃(t)dt a.e. on [0, 1], and h = h̃.

4. Proofs of main results

In this section, we present proofs of our main results. Firstly, we prove Lemma
3.1 by the improved method.

Proof of Lemma 3.1. For each fixed x ∈ [ 1−ε
2 , 1

2 ], we choose xjknk
∈ WS([ 1−ε

2 , 1
2 ])

such that limk→∞ xjknk
= x. From (2.8), we have

lim
k→∞

jk − 1
2

nk
= x.

By using the Riemann-Lebesgue lemma together with (2.8), we get

f(x) := lim
k→∞

[
2(nkπ)2xjknk

− 2nkπ2
(
jk −

1
2
)]

= lim
k→∞

[
2h+

∫ x
jk
nk

0

q(t)dt−
jk − 1

2

nk

(
2ω −

∫ 1

0

q(t) cos(2nkπt)dt
)

+ o(1)
]

=
∫ x

0

q(t)dt+ 2h− 2ωx, x ∈ [
1− ε

2
,

1
2

].

(4.1)

Since
∫ x

0
q(t)dt+2h−x

∫ 1

0
q(t)dt (a.e. on x ∈ [ 1−ε

2 , 1
2 ]) with respect to x is differen-

tiable, f(x) with respect to x is also differentiable. By taking derivatives for (4.1),
we obtain

f ′(x) = q(x)− 2ω a.e. on [
1− ε

2
,

1
2

].

Since
WS

(
[
1− ε

2
,

1
2

]
)

= W̃eS([ 1− ε2
,

1
2

]
)
,
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it follows that f(x) = f̃(x) for x ∈ [ 1−ε
2 , 1

2 ]. Therefore

f ′(x) = f̃ ′(x) a.e. on [
1− ε

2
,

1
2

].

This implies

q(x)− q̃(x) = 2ω̂ a.e. on [
1− ε

2
,

1
2

]. (4.2)

Consider two Dirichlet boundary value problems defined on the interval [xjknk
, xjk+1
nk

] ⊆
[ 1−ε

2 , 1
2 ],

−u′′−(x, λnk
) + q(x)u−(x, λnk

) = λnk
u−(x, λnk

), (4.3)

u−(xjknk
, λnk

) = u−(xjk+1
nk

, λnk
) = 0, (4.4)

and

−ũ′′−(x, λ̃enk
) + q̃(x)ũ−(x, λ̃enk

) = λ̃enk
ũ−(x, λ̃enk

), (4.5)

ũ−(xjknk
, λ̃enk

) = ũ−(xjk+1
nk

, λ̃enk
) = 0. (4.6)

Multiplying (4.3) by ũ−(x, λ̃enk
) and (4.5) by u−(x, λnk

), subtracting and inte-
grating it from xjknk

to xjk+1
nk

together (4.4) and (4.6), we have∫ x
jk+1
nk

x
jk
nk

[(q(x)− q̃(x))− (λnk
− λ̃enk

)]u−(x, λnk
)ũ−(x, λ̃enk

)dx = 0. (4.7)

By (4.7) and q(x)− q̃(x) = 2ω̂ a.e. on [ 1−ε
2 , 1

2 ], this yields

[2ω̂ − (λnk
− λ̃enk

)]
∫ x

jk+1
nk

x
jk
nk

u−(x, λnk
)ũ−(x, λ̃enk

)dx = 0. (4.8)

Since both u−(x, λnk
) and ũ−(x, λ̃enk

) have no zero in the interval (xjknk
, xjk+1
nk

), we
get

u−(x, λnk
)ũ−(x, λ̃enk

) > 0 or u−(x, λnk
)ũ−(x, λ̃enk

) < 0 for x ∈ (xjknk
, xjk+1
nk

).

This implies ∫ x
jk+1
nk

x
jk
nk

u−(x, λnk
)ũ−(x, λ̃enk

)dx 6= 0. (4.9)

Therefore,
λnk

= λ̃enk
+ 2ω̂, ∀nk ∈ S. (4.10)

By (4.10) and (2.5), for sufficiently large k, this yields nk = ñk. Thus, the proof of
Lemma 3.1 is complete. �

Next we show that Theorem 3.2 holds.

Proof of Theorem 3.2. Denote Λ = {λn : n ∈ S, λn ∈ σ(L)} and NΛ(t) = ]{λn :
λn ∈ Λ, λn ≤ t, λn ∈ σ(L)} for all sufficiently large t ∈ R. By calculating NΛ(t),
we have

NΛ(t) ≥ (1− ε)Nσ(L)(t)−
1− ε

2
, (4.11)

By the assumption in Theorem 3.2, Lemma 3.1 yields

q(x)− q̃(x) = 2ω̂ a.e. on [
1− ε

2
,

1
2

], (4.12)
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λnk
− λ̃enk

= 2ω̂, ∀nk ∈ S. (4.13)

Since the set N0\S is an infinite set , from (4.13), (3.6) and (2.5), we get

ω̂ = 0. (4.14)

By (4.12)-(4.14), we have

q(x)− q̃(x) = 0 a.e. on [
1− ε

2
,

1
2

] and λn − λen = 0, ∀ n ∈ N, (4.15)

Denote
F (u−, ũ−, x, λ) = [u−, ũ−](x, λ).

Let us prove

F
(
u−, ũ−,

1− ε
2

, λnk

)
= 0, ∀nk ∈ S.

Indeed, since WS([ 1−ε
2 , 1

2 ]) = W̃eS([ 1−ε
2 , 1

2 ]) is a left twin-dense nodal subset, we

choose x
jnk
nk ∈WS([ 1−ε

2 , 1
2 ]). By the Green’s formula, we obtain

F
(
u−, ũ−,

1− ε
2

, λnk

)
= −

∫ x
jnk
nk

1−ε
2

q̂(x)u−(x, λnk
)ũ−(x, λnk

)dx. (4.16)

By (4.16) and q̂(x) = 0 a.e. on [1−ε
2 , 1

2 ], we get

F
(
u−, ũ−,

1− ε
2

, λnk

)
= 0, ∀nk ∈ S. (4.17)

Next we prove q(x)− q̃(x) = 0 a.e. on [0, 1], h = h̃ and H = H̃.
Without loss of generality, we assume that λn 6= 0 for all n ∈ σ(L). Define the

functions GS(λ) and K1(λ) by

GS(λ) =
∏
nk∈S

(
1− λ

λnk

)
, (4.18)

K1(λ) =
F
(
u−, ũ−,

1−ε
2 , λ

)
GS(λ)

. (4.19)

Hence (4.17), (4.18) and (4.19) imply that K1(λ) is an entire function in λ. Note
that

F
(
u−, ũ−,

1− ε
2

, λ
)

= u−
(1− ε

2
, λ
)
ũ′−
(1− ε

2
, λ
)
− u′−

(1− ε
2

, λ
)
ũ−
(1− ε

2
, λ
)

= u′−
(1− ε

2
, λ
)
ũ′−
(1− ε

2
, λ
)(
m−1
−
(1− ε

2
, λ
)
− m̃−1

−
(1− ε

2
, λ
))
.

(4.20)

From (2.2), (2.7) and (4.20), we have∣∣F (u−, ũ−, 1− ε
2

, λ
)∣∣ = o

(
e(1−ε)τ)

as |λ| → ∞ in any sector ε < arg(λ) < π − ε. This implies∣∣F (u−, ũ−, 1− ε
2

, iy
)∣∣ = o

(
e(1−ε)Im

√
i|y|1/2)

(4.21)
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for sufficiently large y ∈ R. We analogously calculate GS(iy) from (4.11) and get
the following formula (see [7])

|GS(iy)| ≥ c|y|1/2e(1−ε)Im
√
i|y|1/2

,

where c is a constant. Therefore

|K1(iy)| = o
(
|y|−1/2

)
. (4.22)

It is easy to prove the following formula (see [7]):

sup
|z|=Rk

|K1(z)| ≤ C1 exp(C2R
α
k ) (4.23)

for some 0 < α < 1, some sequence Rk →∞ as k →∞ and C1, C2 > 0.
By Lemma 2.3, (4.22) and (4.23), we have K1(λ) = 0 for all λ ∈ C. Therefore,

F
(
u−, ũ−,

1− ε
2

, λ
)

= 0, ∀λ ∈ C. (4.24)

This implies

m−
(1− ε

2
, λ
)

= m̃−
(1− ε

2
, λ
)
, ∀λ ∈ C. (4.25)

From Lemma 2.2 and (4.25), we obtain

q(x)− q̃(x) = 0 a.e. on [0,
1− ε

2
] and h = h̃.

Therefore,

q(x)− q̃(x) = 0 a.e. on [0,
1
2

], h = h̃, λn = λn, n ∈ N0. (4.26)

By the Hochstadt-Lieberman theorem [13] and (4.26), we get

q(x)− q̃(x) = 0 a.e. on [0, 1], and H = H̃.

Thus the proof of Theorem 3.2 is complete. �

Proof of Theorem 3.5. From Lemma 3.1, we have

q(x)− q̃(x) = 2ω̂ a.e. on [
1− ε

2
,

1
2

] (4.27)

λnk
− λ̃enk

= 2ω̂, ∀nk ∈ S. (4.28)

Define the potential q̃1(x) by q̃1(x) = q̃(x) + 2ω̂. This implies

q(x)− q̃1(x) = 0 a.e. on [
1− ε

2
,

1
2

] and λnk
− λ̃1,enk

= 0, ∀nk ∈ S, (4.29)

where λ̃1,enk
= λ̃enk

+ 2ω̂, which is the eigenvalue of equation (1.1) corresponding to
q̃1 with boundary conditions (1.2) and (1.3). Analogous to the proof in Theorem
3.2, we have

q(x)− q̃1(x) = 0 a.e. on [0,
1
2

], and h = h̃. (4.30)

Next, we prove λn = λ̃1,enk
, n ≥ 1. From the assumption of Theorem 3.5, there

exists the nodal point x1
nk

of the corresponding eigenvalue λnk
such that

x1
nk

= x̃1enk
, ∀nk ∈ N\S, 0 < x1

nk
≤ 1

2
.

Let us consider two boundary value problems defined on the interval [0, x1
nk

],

−u′′−(x, λnk
) + q(x)u−(x, λnk

) = λnk
u−(x, λnk

), x ∈ (0, x1
nk

) (4.31)
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u′−(0, λnk
)− hu−(0, λnk

) = u−(x1
nk
, λnk

) = 0, (4.32)

and

−ũ′′−(x, λ̃1,enk
) + q̃1(x)ũ−(x, λ̃1,enk

) = λenk
ũ−(x, λ̃1,enk

), x ∈ (0, x1
nk

) (4.33)

ũ′−(0, λ̃1,enk
)− hu−(0, λenk

) = ũ−(x1
nk
, λ̃1,enk

) = 0. (4.34)

Multiplying equation (4.31) by ũ−(x, λenk
) and equation (4.33) by u−(x, λnk

), sub-
tracting and integrating it from 0 to x1

nk
together with (4.32) and (4.34), we have∫ x1

nk

0

[(q(x)− q̃1(x))− (λnk
− λ̃1,enk

)]u−(x, λnk
)ũ−(x, λ̃1,enk

)dx = 0. (4.35)

By (4.35) and q(x)− q̃1(x) = 0 a.e. on the interval [0, 1
2 ], this yields

(λnk
− λ̃1,enk

)
∫ x1

nk

0

u−(x, λnk
)ũ−(x, λ̃1,enk

)dx = 0. (4.36)

Since both u−(x, λnk
) and ũ−(x, λ̃1,enk

) have no zero in the interval (0, x1
nk

), we get

u−(x, λnk
)ũ−(x, λ̃1,enk

) > 0 for x ∈ (0, x1
nk

).

This implies ∫ x1
nk

0

u−(x, λnk
)ũ−(x, λ̃1,enk

)dx > 0. (4.37)

By (4.36) and (4.37), this yields λnk
= λ̃1,enk

for all nk ∈ N\S. Thus we obtain

λn = λ̃1,enk
, n = 1, 2, . . . . (4.38)

By [26, Theorem 2.1], or the related Theorem in [19, Section 4] together with (4.30),
(4.38), and given coefficients H = H̃, we have

q(x)− q̃1(x) = 0 a.e. on [
1
2
, 1].

Therefore,
q(x)− q̃1(x) = 0 a.e. on [0, 1], and h = h̃.

This completes the proof of Theorem 3.5. �

In the remainder of this section, we present an example for reconstructing the
potential q from the twin-dense nodal subset. Let ε = 1/4 and

S0 := {2n : n ≥ 10, n ∈ N} ∪ {2ki − 1 : 2ki − 1 > 10, ki ∈ N}10
i=1. (4.39)

Example 4.1. Let WS0([ 1
4 ,

1
2 ]) = W̃eS0

([ 1
4 ,

1
2 ]) ⊆ X = {xjn}, n ∈ N, j = 1, 2, . . . , n,

be the left twin-dense nodal subset of the operator L(q, h, 1), where

xjn =
j − 1

2

n
+

1
2n2π2

(
2 +

(j − 1
2

n

)2)− 5(j − 1
2 )

2n3π2
+ o
( 1
n2

)
, ∀n ∈ S0 (4.40)

and
x1
n =

1
2n

+
1

2n2π2

(
2 +

1
4n2

)
− 5

4n3π2
+ o
( 1
n2

)
<

1
2

(4.41)

for all n ∈ N\S0. By (4.1) together with (4.40), we have

f1(x) := lim
k→∞

[
2(nkπ)2xjknk

− 2nkπ2
(
jk −

1
2
)]

=x2 + 2− 5x, x ∈
[1
4
,

1
2
]
.

(4.42)
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By (4.1) and (4.42) again, this yields

h = 1 and ω =
5
2
. (4.43)

By the given condition H = 1 and (4.43), we get∫ 1

0

q(t)dt = 1. (4.44)

By taking derivatives for (4.42) together with (4.44), we obtain

q(x) = 2x a.e. on [
1
4
,

1
2

]. (4.45)

By (4.39)-(4.41), (4.45) and WS0([ 1
4 ,

1
2 ]) = W̃eS0

([ 1
4 ,

1
2 ]), we see that all assumptions

in Theorem 3.5 hold. Thus we have

q(x) = 2x a.e. on [0, 1], and h = 1.
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