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POSITIVE SOLUTIONS OF DISCRETE BOUNDARY VALUE
PROBLEMS WITH THE (p, q)-LAPLACIAN OPERATOR

ANTONELLA NASTASI, CALOGERO VETRO, FRANCESCA VETRO

Communicated by Mokhtar Kirane

Abstract. We consider a discrete Dirichlet boundary value problem of equa-
tions with the (p, q)-Laplacian operator in the principal part and prove the

existence of at least two positive solutions. The assumptions on the reaction

term ensure that the Euler-Lagrange functional, corresponding to the problem,
satisfies an abstract two critical points result.

1. Introduction

Let N be a positive integer and denote by [1, N ] the discrete set {1, . . . , N}. We
study the discrete boundary value problem
−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z)) = λg(z, u(z)),

for all z ∈ [1, N ],

u(0) = u(N + 1) = 0,
(1.1)

where ∆ru(z−1) := ∆(φr(∆u(z−1))) = φr(∆u(z))−φr(∆u(z−1)) is the discrete
r-Laplacian, φr : R → R is the homomorphism given as φr(u) = |u|r−2u with
u ∈ R (z ∈ [1, N ]), ∆u(z − 1) = u(z)− u(z − 1) is the forward difference operator,
g : [1, N + 1] × R → R is a continuous function with g(N + 1, t) = 0 for all t ∈ R,
α, β : [1, N + 1]→ R, 1 < q < p < +∞ and λ ∈]0,+∞[.

Here, we consider the following hypotheses:
(H1) g(z, 0) ≥ 0 for all z ∈ [1, N ], and g(z, t) = g(z, 0) for all t < 0 and for all

z ∈ [1, N ];
(H2) α(z), β(z) ≥ 0 for all z ∈ [1, N ].
The solvability of general differential problems, with various boundary value con-

ditions, was a maximum interest field of research over the last decades. It attracts
pure and applied mathematicians and has its strong motivation in the possibility to
model the dynamical behaviour of real phenomena in physics, economics, engineer-
ing and so on (see, for example, Diening-Harjulehto-Hästö-Rŭz̆icka [5]). There is a
rich literature on this subject, which collects and explains the principal techniques
of calculus of variations, critical and fixed points theories, Lyapunov-Schmidt re-
duction method, critical groups (Morse theory), and many others. We refer, for
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example, to the book of Motreanu-Motreanu-Papageorgiou [9] (for problems with
the p-Laplacian operator). So, one can solve other abstract types of boundary
value problems, by combining and extending these approaches. For example, the
existence and multiplicity of solutions for problems with the (p, q)-Laplacian opera-
tor are considered in Marano-Mosconi-Papageorgiou [8], Mugnai-Papageorgiou [11]
(equations), and Motreanu-Vetro-Vetro [10] (systems of equations). On the other
hand, the increasing of computer performance has allowed researchers (in applied
mathematics) to focus on the solution of difference equations, and, in particular,
of the discrete version of various continuous differential problems. We refer to the
books of Agarwal [1], Kelly-Peterson [7] (difference equations), and the articles
of Cabada-Iannizzotto-Tersian [3], D’Agùı-Mawhin-Sciammetta [4], Jiang-Zhou [6]
(discrete p-Laplacian operator).

Here, we use the critical point theory to prove the existence of two positive so-
lutions for discrete (p, q)-Laplacian equations subjected to Dirichlet type boundary
conditions. Indeed, the idea is to reduce the problem of existence of solutions in
variational form, which means to consider the problem of finding critical points for
the Euler-Lagrange functional corresponding to problem (1.1). The assumptions
on the reaction term ensure that the involved Euler-Lagrange functional satisfies
an abstract two critical points result of Bonanno-D’Agùı [2].

2. Mathematical background

We fix the notation as follows. By X and X∗ we mean a Banach space and its
topological dual, respectively. Here, we consider the N -dimensional Banach space

Xd = {u : [0, N + 1]→ R such that u(0) = u(N + 1) = 0},
and define the norm

‖u‖r,h :=
(N+1∑
z=1

[|∆u(z − 1)|r + h(z)|u(z)|r]
)1/r

,

where h : [1, N + 1] → R, with h(z) ≥ 0 for all z ∈ [1, N ], and r ∈]1,+∞[. By
‖u‖∞ := maxz∈[1,N ] |u(z)| we denote the usual sup-norm so that we consider the
inequality

‖u‖∞ ≤
(N + 1)

r−1
r

2
‖u‖r,h for all u ∈ Xd (2.1)

(see [4] and [6, Lemma 2.2]).

Proposition 2.1. Let h =
∑N
z=1 h(z). The following inequalities hold

2
N + 1

‖u‖∞ ≤ ‖u‖r,h ≤ (2rN + h)1/r‖u‖∞.

Proof. The left inequality follows by (2.1). On the other hand, since

‖u‖rr,h =
N+1∑
z=1

[|∆u(z − 1)|r + h(z)|u(z)|r]

≤ 2‖u‖r∞ +
N∑
z=2

2r‖u‖r∞ + ‖u‖r∞
N∑
z=1

h(z)

= [2r(N − 1) + 2 + h]‖u‖r∞ ≤ [2rN + h]‖u‖r∞,
we deduce easily the right inequality. �
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Now, let Xd be endowed with the norm

‖u‖ = ‖u‖p,α + ‖u‖q,β ,
where α and β (satisfying (H2)) are the coefficients of φp and φq in (1.1), respec-
tively.

We consider the function G : [1, N + 1]× R→ R given as

G(z, t) =
∫ t

0

g(z, ξ)dξ, for all t ∈ R, z ∈ [1, N + 1],

and the functional B : Xd → R given as

B(u) =
N+1∑
z=1

G(z, u(z)), for all u ∈ Xd.

It is clear that B ∈ C1(Xd,R) and

〈B′(u), v〉 =
N+1∑
z=1

g(z, u(z))v(z), for all u, v ∈ Xd.

Also, define the functionals A1, A2 : Xd → R by

A1(u) =
1
p
‖u‖pp,α and A2(u) =

1
q
‖u‖qq,β , for all u ∈ Xd.

Clearly, A1, A2 ∈ C1(Xd,R) and (by the summation by parts formula) we have the
following Gâteaux derivatives at the point u ∈ Xd:

〈A′1(u), v〉 =
N+1∑
z=1

φp(∆u(z − 1))∆v(z − 1) + α(z)φp(u(z))v(z),

〈A′2(u), v〉 =
N+1∑
z=1

φq(∆u(z − 1))∆v(z − 1) + β(z)φq(u(z))v(z),

for all u, v ∈ Xd. Now, for r ∈]1,+∞[, we obtain
N+1∑
z=1

φr(∆u(z − 1))∆v(z − 1)

=
N+1∑
z=1

[φr(∆u(z − 1))v(z)− φr(∆u(z − 1))v(z − 1)]

=
N∑
z=1

φr(∆u(z − 1))v(z)−
N∑
z=1

φr(∆u(z))v(z)

= −
N+1∑
z=1

∆φr(∆u(z − 1))v(z).

Then, we have

〈A′1(u), v〉 =
N+1∑
z=1

[−∆φp(∆u(z − 1)) + α(z)φp(u(z))]v(z),

〈A′2(u), v〉 =
N+1∑
z=1

[−∆φq(∆u(z − 1)) + β(z)φq(u(z))]v(z),
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for all u, v ∈ Xd. Next, we consider the functional Iλ : Xd → R given as

Iλ(u) = A1(u) +A2(u)− λB(u), for all u ∈ Xd.

We point out that Iλ(0) = 0. Also, we have

〈I ′λ(u), v〉 =
N+1∑
z=1

[−∆φp(∆u(z − 1))−∆φq(∆u(z − 1))

+ α(z)φp(u(z)) + β(z)φq(u(z))− λg(z, u(z))]v(z),

for all u, v ∈ Xd. Thus, u ∈ Xd is a solution of problem (1.1) if and only if u is a
critical point of Iλ.

We recall the following notion.

Definition 2.2. Let X be a real Banach space and X∗ its topological dual. Then,
Iλ : X → R satisfies the Palais-Smale condition if any sequence {un} such that

(i) {Iλ(un)} is bounded;
(ii) limn→+∞ ‖I ′λ(un)‖X∗ = 0,

has a convergent subsequence.

Our first result is the following auxiliary lemma, which characterizes the func-
tional Iλ.

Lemma 2.3. Let m∞(z) := lim inft→+∞
G(z,t)
tp and m∞ := minz∈[1,N ]m∞(z).

If m∞ > 0, and (H1)-(H2) hold, then Iλ satisfies the (PS)-condition and it is
unbounded from below for all λ ∈ Λ :=] (2

p+2q)N+α+β
qm∞

,+∞[, where α =
∑N
z=1 α(z)

and β =
∑N
z=1 β(z).

Proof. As m∞ > 0, let λ > (2p+2q)N+α+β
qm∞

and m ∈ R such that m∞ > m >
(2p+2q)N+α+β

qλ . We consider a sequence {un} ⊂ Xd such that Iλ(un) → c ∈ R and
I ′λ(un) → 0 in X∗d , as n → +∞. Let u+

n = max{un, 0} and u−n = max{−un, 0} for
all n ∈ N. We show that the sequence {u−n } is bounded. So, we have

|∆u−n (z − 1)|p ≤ |∆u−n (z − 1)|p−2∆u−n (z − 1)∆u−n (z − 1)

≤ −|∆un(z − 1)|p−2∆un(z − 1)∆u−n (z − 1)

= −φp(∆un(z − 1))∆u−n (z − 1),

for all z ∈ [1, N + 1]. Also, we obtain

α(z)|u−n (z)|p = −α(z)|un(z)|p−2un(z)u−n (z) = −α(z)φp(un(z))u−n (z),

for all z ∈ [1, N + 1]. Consequently, we have

‖u−n ‖pp,α =
N+1∑
z=1

[|∆u−n (z − 1)|p + α(z)|u−n (z)|p]

≤ −
N+1∑
z=1

[φp(∆un(z − 1))∆u−n (z − 1) + α(z)φp(un(z))u−n (z)]

= −〈A′1(un), u−n 〉.
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In a similar fashion, one has ‖u−n ‖
q
q,β ≤ −〈A′2(un), u−n 〉. On the other hand, we

obtain

〈B′(un), u−n 〉 =
N+1∑
z=1

g(z, un(z))u−n (z) ≥ 0 (by (H1)).

So, we obtain

‖u−n ‖pp,α ≤ ‖u−n ‖pp,α + ‖u−n ‖
q
q,β

≤ −〈A′1(un), u−n 〉 − 〈A′2(un), u−n 〉+ λ〈B′(un), u−n 〉
= −〈I ′λ(un), u−n 〉,

for all n ∈ N, which leads to ‖u−n ‖p−1
p,α → 0 as n→ +∞. Similarly, we deduce that

‖u−n ‖
q−1
q,β → 0 as n→ +∞, and hence ‖u−n ‖ → 0 as n→ +∞. It follows that there

exists ρ > 0 such that

‖u−n ‖ ≤ ρ ⇒ ‖u−n ‖∞ ≤
ρ+ ρN

2
:= γ, for all n ∈ N.

Next, we suppose that the sequence {un} is unbounded, which means that {u+
n }

is unbounded. We may suppose without any loss of generality (passing to a sub-
sequence if necessary) that ‖un‖ → +∞ as n → +∞. By the assumption on m∞
at the beginning of the proof, we deduce that there is δz ≥ max{γ, 1} such that
G(z, t) > mtp for all t > δz. Now, for all z ∈ [1, N ], as G(z, ·) is a continuous
function, there exists a constant C(z) ≥ 0 such that G(z, t) ≥ m|t|p − C(z) for all
t ∈ [−γ, δz]. This implies that G(z, t) ≥ m|t|p − C(z) for all t ≥ −γ, all z ∈ [1, N ].
It follows easily that

B(un) =
N+1∑
z=1

G(z, un(z)) ≥
N∑
z=1

m|un(z)|p − C ≥ m‖un‖p∞ − C, for all n ∈ N,

where C =
∑N
z=1 C(z). For all un such that ‖un‖∞ ≥ 1, we conclude that

Iλ(un) = A1(un) +A2(un)− λB(un)

=
1
p
‖un‖pp,α +

1
q
‖un‖qq,β − λB(un)

≤
(2pN + α

p
+

2qN + β

q

)
‖un‖p∞ − λm‖un‖p∞ + λC

≤
[ (2p + 2q)N + α+ β

q
− λm

]
‖un‖p∞ + λC .

So, since (2p+2q)N+α+β
q − λm < 0, we obtain Iλ(un) → −∞ as n → +∞ (‖un‖ →

+∞ ⇒ ‖un‖∞ → +∞). This is an absurd sentence and so {un} is a bounded
sequence. This ensures that Iλ satisfies the (PS)-condition.

On the other hand, again reasoning on a sequence {un} ⊂ Xd such that {u−n }
is bounded and ‖un‖ → +∞ as n→ +∞, we deduce easily that Iλ(un)→ −∞ as
n→ +∞ and hence Iλ is unbounded from below. �

As in D’agùı-Mawhin-Sciammetta [4], our key-theorem is the following two non-
zero critical points result of Bonanno-D’Agùı [2], which we arrange according to
our notation and further use.
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Theorem 2.4. Let Xd = {u : [0, N + 1] → R such that u(0) = u(N + 1) = 0}
and A1, A2, B ∈ C1(Xd,R) three functionals such that infu∈Xd

(A1(u) + A2(u)) =
A1(0) +A2(0) = B(0) = 0. Assume that

(i) there are s ∈ R and û ∈ Xd, with 0 < A1(û) +A2(û) < s, such that

B(û)
A1(û) +A2(û)

>
supu∈(A1+A2)−1(]−∞,s])B(u)

s
;

(ii) the functional Iλ : Xd → R given as Iλ(u) = A1(u) +A2(u)−λB(u) for all
u ∈ Xd satisfies the (PS)-condition and it is unbounded from below for all
λ ∈ Λ :=

]A1(bu)+A2(bu)
B(bu) , s

supu∈(A1+A2)−1(]−∞,s]) B(u)

[
.

Then Iλ admits two non-zero critical points uλ,1, uλ,2 ∈ Xd such that Iλ(uλ,1) <
0 < Iλ(uλ,2), for all λ ∈ Λ.

3. Main results

We start this section with an useful observation. Let h : [0, N + 1] → [0,+∞[
and r ∈]1,+∞[. If −∆(φr(∆u(z − 1))) + h(z)φr(u(z)) ≥ 0 and u(z) ≤ 0, then

∆u(z)

{
≤ 0 if ∆u(z − 1) ≤ 0;
< 0 if ∆u(z − 1) < 0.

(3.1)

Indeed, if u(z) ≤ 0 then φr(u(z)) ≤ 0 and hence −∆(φr(∆u(z − 1))) ≥ 0. So, we
have φr(∆u(z)) ≤ φr(∆u(z − 1)), which implies that (3.1) holds.

We denote by C+ := {u ∈ Xd : u(z) > 0 for all z ∈ [1, N ]}. A solution u of
problem (1.1) is positive if u ∈ C+. Now, we are ready to establish the following
strong maximum principle result type.

Theorem 3.1. Let u ∈ Xd be fixed so that one of the following inequalities holds
for each z ∈ [1, N ]:

(a) u(z) > 0;
(b) −∆(φp(∆u(z − 1))) + α(z)φp(u(z)) ≥ 0;
(c) −∆(φq(∆u(z − 1))) + β(z)φq(u(z)) ≥ 0.

Then, either u ∈ C+ or u ≡ 0, provided that (H2) holds too.

Proof. Let u ∈ Xd \ {0} and J = {z ∈ [1, N ] : u(z) ≤ 0}. If J = ∅, then u ∈ C+.
Proceeding by absurd, we assume that J 6= ∅. Now, if min J = 1, then from (3.1)
we deduce that ∆u(1) ≤ 0, which implies u(2) ≤ 0. By iterating this argument, we
obtain easily

0 = u(N + 1) ≤ u(N) ≤ · · · ≤ u(2) ≤ u(1) ≤ 0,
which leads to contradiction (i.e., u ≡ 0). On the other hand, if min J = j ∈ [2, N ],
then ∆u(j − 1) = u(j)− u(j − 1) < 0 (note that u(j − 1) > 0). By (3.1), we obtain

∆u(j) < 0 ⇒ u(j + 1) < u(j) ≤ 0.

By iterating this argument, we obtain easily

u(N + 1) < u(N) < · · · < u(j + 1) < u(j) ≤ 0,

which leads to a contradiction (i.e., u(N + 1) < 0). Then, J = ∅ and hence
u ∈ C+. �

In the sequel, let ξ+ = max{0, ξ} and we denote with g+ : [1, N + 1] × R → R
the function defined by g+(z, ξ) = g(z, ξ+) for all z ∈ [1, N ], all ξ ∈ R.
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Remark 3.2. If the function g : [1, N + 1]×R→ R is such that g(z, 0) ≥ 0 for all
z ∈ [1, N ], then g+ satisfies the condition (H1).

Now, consider the function G+ : [1, N + 1]× R→ R given as

G+(z, t) =
∫ t

0

g+(z, ξ)dξ, for all t ∈ R, z ∈ [1, N + 1],

and the functional B+ : Xd → R defined by

B+(u) =
N+1∑
z=1

G+(z, u(z)), for all u ∈ Xd.

It is clear that B+ ∈ C1(Xd,R). Also, the functional I+
λ : Xd → R given as

I+
λ (u) = A1(u) +A2(u)− λB+(u), for all u ∈ Xd,

has as critical points the solutions of the problem

−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z))

= λg+(z, u(z)), for all z ∈ [1, N ],

u(0) = u(N + 1) = 0.
(3.2)

Remark 3.3. It is immediate to check that Lemma 2.3 holds for the functional
I+
λ , if we assume that g(z, 0) ≥ 0 for all z ∈ [1, N ]. In fact, this ensures that (H1)

holds for g+ (by Remark 3.2).

The proof of the following proposition is an immediate consequence of Theorem
3.1 (see also [4]).

Proposition 3.4. If the function g : [1, N + 1] × R → R is such that g(z, 0) ≥ 0
for all z ∈ [1, N ], then each non-zero critical point of I+

λ is a positive solution of
(1.1), provided that (H2) holds.

Proof. We note that each positive solution u ∈ Xd of (3.2) is a positive solution
of (1.1), since g+(z, u(z)) = g(z, u(z)) for all z ∈ [1, N ]. So, we prove that the
non-zero solutions of (3.2) are positive. Assume that u ∈ Xd \ {0} is a solution of
(3.2). If for some z ∈ [1, N ] we have u(z) ≤ 0, then

−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z))

= λg(z, u+(z)) = λg(z, 0) ≥ 0.

This ensures that either (b) or (c) holds for each z ∈ [1, N ] such that u(z) ≤ 0. So,
by an application of Theorem 3.1, we conclude that u ∈ C+. It follows that the
non-zero solutions of (3.2) are positive and hence are positive solutions of (1.1). �

Invoking Theorem 2.4, we have the following result concerning problem (1.1).
We establish it with respect to the functional I+

λ .

Theorem 3.5. Let g : [1, N + 1] × R → R be a continuous function such that
g(z, 0) ≥ 0 for all z ∈ [1, N ] and g(N + 1, t) = 0 for all t ∈ R. Assume that (H2)
holds, and there exist c, d ∈]0,+∞[ with c > d such that the following inequality is
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satisfied:

c−p
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ)

<
(N + 1)1−p

p
min

{ ∑N+1
z=1 G(z, d)

dpp−1(2 + α) + dqq−1(2 + β)
,

q m∞
(2p + 2q)N + α+ β

}
,

(3.3)

where m∞ > 0 is as in Lemma 2.3. Then problem (1.1) has at least two positive
solutions, for each λ ∈ Λ∗ with Λ∗ being the open interval]

max
{dpp−1(2 + α) + dqq−1(2 + β)∑N+1

z=1 G(z, d)
,

(2p + 2q)N + α+ β

qm∞

}
,

p−1(N + 1)1−pcp∑N+1
z=1 max0≤ξ≤cG(z, ξ)

[
.

Proof. We show that there are s ∈ R and û ∈ Xd, with 0 < A1(û) + A2(û) < s,
such that

B+(û)
A1(û) +A2(û)

>
supu∈(A1+A2)−1(]−∞,s])B

+(u)
s

.

Let
s :=

cp

p(N + 1)p−1
.

For all u ∈ (A1 +A2)−1(]−∞, s]), we have
1
p
‖u‖pp,α +

1
q
‖u‖qq,β ≤ s,

⇒ 1
p
‖u‖pp,α ≤ s,

⇒ ‖u‖p,α ≤ (ps)
1
p ,

⇒ ‖u‖∞ ≤
(N + 1)

p−1
p

2
‖u‖p,α ≤

(N + 1)
p−1

p

2
(ps)1/p < c (by (2.1)).

Since G+(z, t) ≤ G+(z, 0) = G(z, 0) for all t < 0 and z ∈ [1, N ], we have

B+(u) =
N+1∑
z=1

G+(z, u(z)) ≤
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ),

for all u ∈ Xd with u ∈ (A1 +A2)−1(]−∞, s]), and hence

supu∈(A1+A2)−1(]−∞,s])B
+(u)

s
≤ p(N + 1)p−1

∑N+1
z=1 max0≤ξ≤cG(z, ξ)

cp
. (3.4)

Next, let û ∈ Xd be given as û(z) = d for all z ∈ [1, N ]. We have

A1(û) +A2(û) =
(2 + α)dp

p
+

(2 + β)dq

q
= dpp−1(2 + α) + dqq−1(2 + β)

implies

B+(û)
A1(û) +A2(û)

=
∑N+1
z=1 G(z, d)

dpp−1(2 + α) + dqq−1(2 + β)

> p(N + 1)p−1

∑N+1
z=1 max0≤ξ≤cG(z, ξ)

cp
,
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which implies

B+(û)
A1(û) +A2(û)

>
supu∈(A1+A2)−1(]−∞,s])B

+(u)
s

by (3.4). We observe that 0 < d < c implies

N+1∑
z=1

G(z, d) ≤
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ).

So, by (3.3), we obtain

0 < dpp−1(2 + α) + dqq−1(2 + β) <
cp

p(N + 1)p−1
.

Also, we have

0 < A1(û) +A2(û) = dpp−1(2 + α) + dqq−1(2 + β) <
cp

p(N + 1)p−1
= s.

By an application of Theorem 2.4, since the functional I+
λ satisfies Lemma 2.3, we

conclude that the problem (3.2) has at least two non-zero solutions, for each λ ∈ Λ∗.
Finally, Proposition 3.4 implies that the two solutions are positive and hence they
are positive solutions of the problem (1.1). �

Now, we assume that g : [1, N + 1]× R → R is a continuous function such that
g(z, 0) ≥ 0 for all z ∈ [1, N ], g(N + 1, t) = 0 for all t ∈ R, and

lim sup
ξ→0+

G(z, ξ)
ξp

= +∞, lim
ξ→+∞

G(z, ξ)
ξp

= +∞ for all z ∈ [1, N ]. (3.5)

Note that the second limit in (3.5) ensures that m∞ = +∞. On the other hand,
the first limit in (3.5) ensures that

max
0≤ξ≤c

G(z, ξ) > 0 for all z ∈ [1, N ], all c > 0.

So, we put

λ =
1

p(N + 1)p−1
sup
c>0

cp∑N+1
z=1 max0≤ξ≤cG(z, ξ)

> 0.

It follows that for all λ < λ there exists c > 0 such that

λ <
1

p(N + 1)p−1

cp∑N+1
z=1 max0≤ξ≤cG(z, ξ)

> 0.

By the first limit in (3.5), we obtain that there is d ∈]0, c[ such that∑N+1
z=1 G(z, d)

dpp−1(2 + α) + dqq−1(2 + β)
>

1
λ
.

Consequently

c−p
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) <
1

p(N + 1)p−1

∑N+1
z=1 G(z, d)

dpp−1(2 + α) + dqq−1(2 + β)
.

By using Theorem 3.5, we obtain the following corollary.
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Corollary 3.6. Let g : [1, N + 1] × R → R be a continuous function such that
g(z, 0) ≥ 0 for all z ∈ [1, N ] and g(N + 1, t) = 0 for all t ∈ R. Also, assume that
(H2), (3.5) hold. Then problem (1.1) has at least two positive solutions, for each
λ ∈]0, λ[.

Along the lines of Theorem 3.5, in the case c, d ∈]0, 1], we have the following
result.

Corollary 3.7. Let g : [1, N+1]×R→ R be a continuous function with g(N+1, t) =
0 for all t ∈ R. Assume also that (H1)–(H2) hold, and there exist c, d ∈]0, 1] with
c > d such that the following inequality is satisfied:

c−q
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) < 2q(N + 1)1−q min
{∑N+1

z=1 G(z, d)
(4 + α+ β)dq

,
m∞

(2p + 2q)N + α+ β

}
,

(3.6)
where m∞ > 0 is as in Lemma 2.3. Then problem (1.1) has at least two positive
solutions, for each λ ∈ Λ

∗
with Λ

∗
being the open interval]

max
{4 + α+ β

q

dq∑N+1
z=1 G(z, d)

,
(2p + 2q)N + α+ β

qm∞

}
,

2qq−1(N + 1)1−qcq∑N+1
z=1 max0≤ξ≤cG(z, ξ)

[
.

Proof. Arguing as in the proof of Theorem 3.5, we can show that there are s ∈ R
and û ∈ Xd, with 0 < A1(û) +A2(û) < s, such that

B(û)
A1(û) +A2(û)

>
supu∈(A1+A2)−1(]−∞,s])B(u)

s
.

Let

s =
2qcq

q(N + 1)q−1
.

For all u ∈ (A1 +A2)−1(]−∞, s]), we have

1
p
‖u‖pp,α +

1
q
‖u‖qq,β ≤ s,

⇒ 1
q
‖u‖qq,β ≤ s,

⇒ ‖u‖q,β ≤ (qs)
1
q ,

⇒ ‖u‖∞ ≤
(N + 1)

q−1
q

2
‖u‖q,β ≤

(N + 1)
q−1

q

2
(qs)

1
q ≤ c (by (2.1)).

Since G(z, t) ≤ G(z, 0) for all t < 0, we obtain

B(u) =
N+1∑
z=1

G(z, u(z)) ≤
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ),

for all u ∈ Xd with u ∈ (A1 +A2)−1(]−∞, s]). Then, we have

supu∈(A1+A2)−1(]−∞,s])B(u)
s

≤ q(N + 1)q−1

2q

∑N+1
z=1 max0≤ξ≤cG(z, ξ)

cq
. (3.7)

Moreover, let û ∈ Xd be given as û(z) = d for all z ∈ [1, N ]. So, we obtain that

A1(û) +A2(û) =
(2 + α)dp

p
+

(2 + β)dq

q
<

(4 + α+ β)dq

q
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implies

B(û)
A1(û) +A2(û)

≥
q
∑N+1
z=1 G(z, d)

(4 + α+ β)dq
>
q(N + 1)q−1

2q

∑N+1
z=1 max0≤ξ≤cG(z, ξ)

cq
,

which implies

B(û)
A1(û) +A2(û)

>
supu∈(A1+A2)−1(]−∞,s])B(u)

s
(by (3.7)).

Now, 0 < d < c implies
∑N+1
z=1 G(z, d) ≤

∑N+1
z=1 max0≤ξ≤cG(z, ξ), and by (3.6) we

obtain
0 < d <

2c

[(4 + α+ β)(N + 1)q−1]
1
q

,

and hence we deduce that 0 < A1(û) + A2(û) < s. By an application of Theorem
2.4 we conclude that problem (1.1) has at least two non-zero solutions, for each
λ ∈ Λ

∗
. Now, the assumption that (H1) holds for the function g, ensures that the

solutions of problem (1.1) are also solutions of problem (3.2). By Proposition 3.4,
problem (1.1) has at least two positive solutions, for each λ ∈ Λ

∗
. �

The next result is a particular case of Theorem 3.5. That is, we deal with the
problem
−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z)) = λω(z)f(u(z)),

for all z ∈ [1, N ],

u(0) = u(N + 1) = 0,
(3.8)

where f : R → [0,+∞[, and ω : [1, N + 1] → [0,+∞[ with ω(z) > 0 for all
z ∈ [1, N ], and w(N + 1) = 0. Let W =

∑N
z=1 ω(z), F (t) =

∫ t
0
f(ξ)dξ for all t ∈ R

and m∗∞ := minz∈[1,N ] ω(z) lim inft→+∞
F (t)
tp > 0. Then, we have the following

result.

Corollary 3.8. Let f : R→ [0,+∞[ be a continuous function. Assume that (H2)
holds, and that there exist c, d ∈]0,+∞[ with c > d such that the following inequality
is satisfied:

c−pF (c)W

<
(N + 1)1−p

p
min

{ F (d)W
dpp−1(2 + α) + dqq−1(2 + β)

,
qm∗∞

(2p + 2q)N + α+ β

}
.

Then problem (3.8) has at least two positive solutions, for each λ ∈ Λ∗ with Λ∗

being the open interval]
max

{dpp−1(2 + α) + dqq−1(2 + β)
F (d)W

,
(2p + 2q)N + α+ β

qm∗∞

}
,
p−1(N + 1)1−pcp

F (c)W

[
.

Proof. Consider the function g : [1, N + 1]× R→ R given as

g(z, ξ) = ω(z)f(ξ), for all z ∈ [1, N + 1], all ξ ∈ R,

so that
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) = F (c)W and
N+1∑
z=1

G(z, d) = F (d)W

Then, all the assumptions of Theorem 3.5 hold and so we conclude that problem
(3.8) has at least two positive solutions, for each λ ∈ Λ

∗
. �
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