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SOLVABILITY OF SOME NEUMANN-TYPE BOUNDARY VALUE
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Abstract. We study some boundary-value problems for inhomogeneous bi-

harmonic equation with periodic boundary conditions. These problems are

generalization to periodic data of the Neumann-type boundary-value prob-
lems considered before by the authors. We obtain existence and uniqueness of

solutions for the problems under consideration.

1. Introduction

Many stationary processes occurring in physics and mechanics are described by
equations of elliptic type. One of the important particular cases of fourth-order
elliptic equations is the biharmonic equation. Solution of the plane deformation
problems in elasticity theory in many cases can be reduced to the integration of bi-
harmonic equations under corresponding boundary conditions. In addition, many
problems of continuous media mechanics can be reduced to the solution of har-
monic and biharmonic equations. However, convenient analytic expressions for the
solutions of these problems are obtained only for domains of particular forms.

Applications of biharmonic problems in mechanics and physics are described in
numerous investigations (see, for example, [1, 7, 28]). Applications of boundary
value problems for biharmonic equations in mechanics and physics stimulate the
study of various boundary value problems for biharmonic equations. One of the well
known boundary value problems for biharmonic equations is the Dirichlet problem
[3, 6, 14, 15, 16, 17, 36]. Recently other types of boundary value problems for
biharmonic equation such as Riquier problem [8, 18, 29], Neumann problem [5, 9,
10, 19, 20, 21, 22, 24, 30, 31], spectral Steklov problem [11], Robin problem [13],
generalized Robin problem [23], as well as fractional analogous of Neumann problem
[4, 32, 33, 34] are begun to investigate intensively.

The theory of polyharmonic (biharmonic) equations and various boundary value
problems for them was described in great detail in [12]. Conditions for the solv-
ability of boundary value problems for elliptic equations and systems of equations
contain the so-called complementing conditions. It was established that all prob-
lems of the given type are Fredholm-type problems. Therefore, the solvability of
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these problems for homogeneous boundary conditions is guaranteed by the orthog-
onality of the right-hand sides of the equation to all solutions of the corresponding
homogeneous conjugate equation. In the considered below particular case (bihar-
monic equation) of the common problem more detailed results can be obtained. In
the present paper a new class of boundary value problems for inhomogeneous bihar-
monic equation ∆2u(x) = f(x) in the unit ball with periodic boundary conditions
is studied.

This article is organized as follows. In Section 2 the statement of the main
problem (2.1)-(2.4) is given. Some preliminary results are cited in Section 3. The
necessary and sufficient conditions for solvability of the Neumann-type boundary
value problems (3.1)-(3.3) are given in Theorems 3.1–3.3. Auxiliary integral equal-
ities are derived in Lemmas 4.1–4.7 In Section 5 uniqueness conditions for the main
problem (2.1)-(2.4) are given: in case of k = 1 in Theorem 5.1 and in case of k = 2
in Theorem 5.2. The necessary and sufficient existence conditions for the problem
(2.1)-(2.4) are obtained in Section 6: in case of k = 1 in Theorem 6.1 and in case
of k = 2 in Theorem 6.2.

2. Statement of the problem

Let Ω = {x ∈ Rn : |x| < 1} be the unit ball, n ≥ 2, and ∂Ω = {x ∈ Rn : |x| = 1}
be the unit sphere. Denote ∂Ω+ = {x ∈ ∂Ω : xn ≥ 0}, ∂Ω− = {x ∈ ∂Ω : xn ≤ 0}
and I = ∩{x ∈ ∂Ω : xn = 0}. To each point x ∈ Ω we associate the“opposite”
point x∗ = ᾱx, where ᾱ = (α1, α2, . . . , αn) with αn = −1 and the other αj ,
j = 1, 2, . . . , n−1 take one of the values ±1. Obviously, if x ∈ ∂Ω+ then x∗ ∈ ∂Ω−.
Further, let ν be the unit normal to ∂Ω and Dm

ν = ∂m

∂νm (m ≥ 1) be the normal
derivative of order m.

In the domain Ω for k = 1, 2 consider the following boundary value problems:

∆2u(x) = f(x), x ∈ Ω, (2.1)

Dm
ν u(x) = g(x), x ∈ ∂Ω, (2.2)

D`1
ν u(x)− (−1)kD`1

ν u(x∗) = g1(x), x ∈ ∂Ω+, (2.3)

D`2
ν u(x) + (−1)kD`2

ν u(x∗) = g2(x), x ∈ ∂Ω+, (2.4)

where 1 ≤ m ≤ 3, 1 ≤ `1 < `2 ≤ 3, `1 6= m, `2 6= m.
By a solution of the problem (2.1)-(2.4) we mean a function u(x) ∈ C4(Ω) ∩

C3(Ω̄), which satisfies the conditions (2.1)-(2.4) in the classical sense.
Let ∂β = ∂|β|

∂x
β1
1 ...∂xβnn

, where β = (β1, . . . , βn) is the multi-index, |β| = β1+ . . .+βn

and ∂0 = I is the unit operator.
It is obvious that the necessary condition for existence of the solution to the

problem (2.1)-(2.4) belonging to the class C3(Ω̄) are the following compatibility
conditions:

∂βg1(x̃, 0) + (−1)k∂βg1(α̃x̃, 0) = 0, |β| ≤ p, (2.5)

∂βg2(x̃, 0)− (−1)k∂βg2(α̃x̃, 0) = 0, |β| ≤ q, (2.6)

where x̃ = (x1, . . . , xn−1), α̃ = (α1, . . . , αn−1), p and q take the values 0, 1, 2, 3 de-
pending on the order of the boundary operators D`1

ν and D`2
ν . Note that analogous

problems for the Poisson equation were investigated in [25, 26, 27, 34].
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3. Preliminary results

In this section we consider the following Neumann-type problems:

∆2u(x) = f(x), x ∈ Ω, (3.1)

Dm1
ν u(x) = g1(x), x ∈ ∂Ω, (3.2)

Dm2
ν u(x) = g2(x), x ∈ ∂Ω, (3.3)

where 1 ≤ m1 < m2 ≤ 3.
Problems (3.1)-(3.3) for different values of m1 and m2 are studied in [5, 9, 10,

19, 20, 21, 22, 24, 30, 31]. The case f(x) = 0, m1 = 1, m2 = 2 was considered by
Bitsadze in [5]. It was established that the necessary and sufficient condition for
solvability of the problem (3.1)-(3.3) have the form∫

∂Ω

[g2(x)− g1(x)]dSx = 0.

Further in [19] the following statement is established.

Theorem 3.1. Let m1 = 1, m2 = 2, f(x) ∈ C(Ω̄), g1(x) ∈ C1(∂Ω), g2(x) ∈
C(∂Ω). Then for solvability of the problem (3.1)-(3.3) it is necessary and sufficient
that the following condition be fulfilled∫

∂Ω

[f2(x)− f1(x)] dSx =
1
2

∫
Ω

(
1− |x|2

)
f(x)dx. (3.4)

If a solution of the problem exists then it is unique up to a constant term.

The case m1 = 2, m2 = 3 is investigated in [30]. The following statement is
proved.

Theorem 3.2. Let m1 = 2, m2 = 3, f(x) ∈ Cλ+1(Ω̄), g1(x) ∈ Cλ+2(∂Ω), g2(x) ∈
Cλ+1(∂Ω). Then for solvability of problem (3.1)-(3.3) it is necessary and sufficient
that the following conditions be fulfilled∫

∂Ω

g2(x) dSx =
n− 1

2

∫
Ω

|x|2f(x) dx− n− 3
2

∫
Ω

f(x) dx, (3.5)∫
∂Ω

xj [g2(x)− g1(x)] dSx =
n− 1

2

∫
Ω

xj |x|2f(x) dx− n− 3
2

∫
Ω

xjf(x) dx (3.6)

for j = 1, . . . , n. If solution of the problem exists, then it is unique up to the first
order polynomials.

In [21] the following statement is obtained.

Theorem 3.3. Let m1 = 1, m2 = 3, f(x) = C(Ω̄), g1(x) ∈ C(∂Ω), g2(x) ∈ C(∂Ω).
Then for solvability of problem (3.1)-(3.3) it is necessary and sufficient that the
following condition be fulfilled∫

∂Ω

g2(x)dSx =
n− 1

2

∫
Ω

|x|2f(x) dx− n− 3
2

∫
Ω

f(x) dx. (3.7)

If a solution of the problem exists, then it is unique up to a constant term.
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4. Auxiliary integral equalities

In what follows we need some integral equalities. Let f(x) ∈ C(Ω̄), g1(x) ∈
C(∂Ω), g2(x) ∈ C(∂Ω). Denote

f±(x) =
f(x)± f(x∗)

2
, g±(x) =

g(x)± g(x∗)
2

,

g̃±(x) =
1
2

{
g(x), x ∈ ∂Ω+,

±g(x∗), x ∈ ∂Ω− .

(4.1)

Lemma 4.1. Let f(x) = C(Ω̄) and g(x) ∈ C(∂Ω). Then∫
Ω

f(x∗) dx =
∫

Ω

f(x) dx, (4.2)∫
∂Ω

g(x∗)dx =
∫
∂Ω

g(x)dx. (4.3)

Proof. Let ᾱ = (α1, α2, . . . , αn), where αn = −1 and the other αj , j = 1, n− 1
take one of the values ±1. Consider the matrix

P =

α1 . . . 0
...

. . .
...

0 · · · αn

 .

It is obvious that PT = P and P · PT = E. Consequently, P is an orthogonal
matrix. It is known (see e.g. [2]), that if P is an orthogonal matrix, then∫

Ω

f(Px)dx =
∫

Ω

f(x)dx,
∫
∂Ω

g(Px)dSx =
∫
∂Ω

g(x)dSx.

Since x∗ = Px then we obtain (4.2) and (4.3). �

Corollary 4.2. Let f(x) ∈ C(Ω̄) and g(x) ∈ C(∂Ω). Then the following equalities
hold: ∫

Ω

f+(x)dx =
∫

Ω

f(x)dx,
∫

Ω

|x|2f+(x)dx =
∫

Ω

|x|2f(x)dx, (4.4)∫
Ω

f−(x)dx =0,
∫

Ω

|x|2f−(x)dx = 0, (4.5)∫
∂Ω

g+(x)dSx =
∫
∂Ω

g(x)dSx, (4.6)∫
∂Ω

g−(x)dSx =0. (4.7)

Proof. By the definition of the functions f±(x) we obtain∫
Ω

f±(x) dx =
1
2

∫
Ω

f(x) dx± 1
2

∫
Ω

f(x∗) dx =
1
2

∫
Ω

f(x)dx± 1
2

∫
Ω

f(x) dx.

Further, since |x| = |x∗| then (4.2) implies equalities (4.4) and (4.5). Equalities
(4.6) and (4.7) can be proved similarly. �

Lemma 4.3. Let g(x) ∈ C(∂Ω). Then the following equality holds∫
∂Ω−

g(x∗) dSx =
∫
∂Ω+

g(x) dSx. (4.8)
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Proof. To prove (4.8) we pass to the spherical coordinate system:

x1 = cos θ1, x2 = sin θ1 cos θ2, . . . , xn−1 = sin θ1 . . . sin θ2 cos θn−1,

xn = sin θ1 sin θ2 . . . sin θn−2 sin θn−1,

where
0 ≤ θj ≤ π, j = 1, 2, . . . , n− 2, 0 ≤ θn−1 ≤ 2π.

The Jacobian of this mapping has the form

J(θ) = sinn−2 θ1sinn−3θ2 . . . sin θn−1.

Furthermore, we use the following elementary equalities:

cos(π ± θ) = − cos θ, sin(π ± θ) = ± sin θ.

Since ∂Ω− = ∂Ω ∩ {x ∈ Rn : xn ≤ 0} if and only if π ≤ θn−1 ≤ 2π, 0 ≤ θj ≤ π,
j = 1, 2, . . . , n− 2, then∫

∂Ω−

g(x∗)dSx =
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ 2π

π

g(α1 cos θ1, α2 sin θ1 cos θ2, . . . ,

− sin θ1 . . . sin θn−1)J(θ)dθn−1.

Let us make the change of variables in the last integral,

θj =

{
π − ξj , αj = −1
ξj , αj = 1, j = 1, 2, . . . , n− 2,

,

θn−1 = π + ξn−1.

Note that under this change of variables we obtain the equality (if αj = −1,
j = 1, 2, . . . , n− 2)

J(ξ) = sinn−2(π − ξ1) sinn−3(π − ξ2) . . . sin(π − ξn−2)

= sinn−2 ξ1 sinn−3 ξ2 . . . sin ξn−2,

i.e. the Jacobian’s sign is not changed. Further, since

− cos θ1 = − cos(π − ξ1) = cos ξ1,

− sin θj = − sin(π − ξj) = − cosπ sin ξj = sin ξj ,

then after the change of variables we have∫
∂Ω−

g(x∗) dSx =
∫ π

0

dξ1 . . .

∫ π

0

dξn−2

∫ π

0

g(cos ξ1, sin ξ1 cos ξ2, . . . ,

sin ξ1 . . . sin ξn−1)J(ξ) dξn−1

=
∫
∂Ω+

g(x) dSx.

�

Corollary 4.4. Let g(x) ∈ C(∂Ω). Then∫
∂Ω

g̃+(x)dSx =
∫
∂Ω+

g(x)dSx, (4.9)∫
∂Ω

g̃−(x)dSx =0. (4.10)
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Proof. Using definition of the function g̃+(x) and the equality (4.8), we have∫
∂Ω

g̃+(x)dSx =
1
2

∫
∂Ω+

g(x)dSx +
1
2

∫
∂Ω−

g(x∗)dSx

=
1
2

∫
∂Ω+

g(x)dSx +
1
2

∫
∂Ω+

g(x)dSx

=
∫
∂Ω+

g(x)dSx.

Similarly, we obtain∫
∂Ω

g̃−(x)dSx =
1
2

∫
∂Ω+

g(x)dSx −
1
2

∫
∂Ω−

g(x∗)dSx

=
1
2

∫
∂Ω+

g(x)dSx −
1
2

∫
∂Ω+

g(x)dSx = 0.

�

Lemma 4.5. Let f(x) ∈ C(∂Ω̄). Then∫
Ω

xjf(x∗)dx = αj

∫
Ω

xjf(x)dx, j = 1, 2, . . . , n (4.11)

Proof. Since x∗ = (α1x1, α2x2, . . . , αn−1xn−1,−xn), it follows that∫
Ω

xjf(x∗)dx =
∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

. . .

∫ √1−x2
1−···−x2

n−1

−
√

1−x2
1−···−x2

n−1

xjf(α1x1, α2x2, . . . ,

αn−1xn−1,−xn)dxn . . . dx1.

In the above integral we make the change of variables yk = αkxk, k = 1, 2, . . . , n,
where αn = −1. Then∫

Ω

xjf(x∗)dx

=
∫ α1

−α1

∫ α2

√
1−y2

1

−α2

√
1−y2

1

. . .

∫ αn
√

1−y2
1−···−y2

n−1

−αn
√

1−y2
1−···−y2

n−1

yj
αj
f(y1, . . . , yn−1, yn)

dyn
αn

. . .
dy1

α1

= αj

∫ 1

−1

∫ √1−y2
1

−
√

1−y2
1

. . .

∫ √1−y2
1−···−y2

n−1

−
√

1−y2
1−···−y2

n−1

yjf(y1, . . . , yn−1, yn)dyn . . . dy1

= αj

∫
Ω

xjf(x)dx.

�

Corollary 4.6. If f(x) ∈ C(Ω̄), then for all j = 1, 2, . . . , n we have∫
Ω

xjf
+(x)dx =

1 + αj
2

∫
Ω

xjf(x)dx, (4.12)∫
Ω

xjf
−(x)dx =

1− αj
2

∫
Ω

xjf(x)dx. (4.13)

Proof. Using (4.10) and according to definition (4.1) of function f+(x) we obtain∫
Ω

xjf
+(x)dx
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=
1
2

∫
Ω

xjf(x) dx+
1
2

∫
Ω

xjf(x∗) dx

=
1
2

∫
Ω

xjf(x) dx+
αj
2

∫
Ω

xjf(x) dx

=
1 + αj

2

∫
Ω

xjf(x) dx.

Similarly we can obtain∫
Ω

xjf
−(x) dx =

1
2

∫
Ω

xjf(x) dx− 1
2

∫
Ω

xjf(x∗) dx =
1− αj

2

∫
Ω

xjf(x) dx.

�

Lemma 4.7. Let g(x) ∈ C(∂Ω). Then for j = 1, 2, . . . , n,∫
∂Ω

xjg(x∗) dSx =αj
∫
∂Ω

xjg(x) dSx, (4.14)∫
∂Ω−

xjg(x∗) dSx =αj
∫
∂Ω+

xjg(x) dSx. (4.15)

Proof. To prove this statement we pass to the spherical coordinate system (see
Lemma 4.3). Then we obtain∫

∂Ω

xjg(x∗) dSx =
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ π

0

sin θ1 . . . sin θj−1 cos θj

× g(α1 cos θ1, . . . ,− sin θ1 . . . sin θn−1)J(θ)dθn−1

+
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ 2π

π

sin θ1 . . . sin θj−1 cos θj

× g(α1 cos θ1, . . . ,− sin θ1 . . . sin θn−1)J(θ)dθn−1.

For the first integral we make the change of variables

θj =

{
π − ξj , αj = −1
ξj , αj = 1, j = 1, 2, . . . , n− 2,

θn−1 = ξn−1 − π,

and use the equality θn−1 = ξn−1 +π for the second integral. Note that under these
changes of variables we have

sin θk = sin(π − ξk) = sinπ cos ξk − cosπ sin ξk = sin ξk, k ≤ n− 2,

sin θn−1 = sin(ξn−1 − π) = sin ξn−1 cosπ − cos ξn−1 sinπ = − sin ξn−1,

or

sin θn−1 = sin(ξn−1 + π) = sin ξn−1 cosπ + cos ξn−1 sinπ = − sin ξn−1,

cos θk = cos(π − ξk) = cosπ cos ξk − sinπ sin ξk = − cos ξk.

Consequently for the monomial xj we obtain:

(a) if αj = −1, then

xj → sin θ1 . . . sin θj−1 cos θj → sin ξ1 . . . sin ξj−1(− cos ξj)→ αjxj ;
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(b) if αj = +1, then

xj → αj sin ξ1 . . . sin ξj−1 cos ξj → αjxj .

Thus we have the equality∫
∂Ω

xjg(x∗) dSx

=
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ π

0

sin θ1 . . . sin θj−1 cos θj

× g(α1 cos θ1, . . . ,− sin θ1 . . . sin θn−1)J(θ)dθn−1

+
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ 2π

π

sin θ1 . . . sin θj−1 cos θj

× g(α1 cos θ1, . . . ,− sin θ1 . . . sin θn−1)J(θ)dθn−1

=
∫ π

0

dξ1 . . .

∫ π

0

dξn−2

∫ 2π

π

sin ξ1 . . . sin ξj−1 · cos ξj

× g(cos ξ1, . . . , sin ξ1 . . . sin ξn−1)J(ξ)dξn−1

+ αj

∫ π

0

dξ1 . . .

∫ π

0

dξn−2

∫ π

0

sin ξ1 . . . sin ξj−1 · cos ξjg(cos ξ1, . . . ,

sin ξ1 . . . sin ξn−1)J(ξ)dξn−1

= αj

∫
∂Ω

xjg(x) dSx.

Thus the equality (4.14) is proved. Consider the equality (4.15). In this case we
have ∫

∂Ω−

xjg(x∗) dSx

=
∫ π

0

dθ1 . . .

∫ π

0

dθn−2

∫ 2π

π

sin θ1 . . . sin θj−1 cos θj

× g(α1 cos θ1, . . . ,− sin θ1 . . . sin θn−1)J(θ)dθn−1

= αj

∫ π

0

dξ1 . . .

∫ π

0

dξn−2

∫ 2π

π

sin ξ1 . . . sin ξj−1 cos ξj

× g(α1 cos ξ1, . . . ,− sin ξ1 . . . sin ξn−1)J(ξ)dξn−1 = αj

∫
∂Ω+

xjg(x) dSx.

�

Corollary 4.8. Let g(x) ∈ C(∂Ω). Then for j = 1, 2, . . . , n the following equalities
hold: ∫

∂Ω

xjg
±(x)dSx =

1± αj
2

∫
∂Ω

xjg(x) dSx, (4.16)∫
∂Ω

xj g̃
±(x)dSx =

1± αj
2

∫
∂Ω+

xjg(x) dSx. (4.17)

Proof. According to Lemma 4.7 we have∫
∂Ω

xjg(x∗) dSx = αj

∫
∂Ω

xjg(x) dSx.
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Therefore, using (4.1) we obtain∫
∂Ω

xjg
±(x) dSx =

1
2

[∫
∂Ω

xjg(x) dSx ±
∫
∂Ω

xjg(x∗) dSx
]

=
1
2

[∫
∂Ω

xjg(x) dSx ± αj
∫
∂Ω

xjg(x) dSx
]

=
1± αj

2

∫
∂Ω

xjg(x) dSx.

Similarly we can get∫
∂Ω

xj g̃
±(x) dSx =

1
2

[∫
∂Ω+

xjg(x) dSx ±
∫
∂Ω−

xjg(x∗) dSx
]

=
1
2

[∫
∂Ω+

xjg(x) dSx ± αj
∫
∂Ω+

xjg(x) dSx
]

=
1± αj

2

∫
∂Ω+

xjg(x) dSx.

�

Remark 4.9. Since αn = −1, ti follows that (4.16) and (4.17) imply∫
∂Ω

xng
+(x)dSx = 0,

∫
∂Ω

xng
−(x)dSx =

∫
∂Ω

xng(x)dSx,∫
∂Ω

xng̃
+(x)dSx = 0,

∫
∂Ω

xng̃
−(x)dSx =

∫
∂Ω+

xng(x)dSx.

5. Uniqueness conditions

In this section we study uniqueness of solutions of the problems (2.1)-(2.4).

Theorem 5.1. Let k = 1 and solution of problem (2.1)-(2.4) exist. Then
(1) in the case m = 1, `1 = 2, `2 = 3, the solution of problem (2.1)-(2.4) is

unique up to constant term;
(2) if m = 2, `1 = 1, `2 = 3, or m = 3, `1 = 1, `2 = 2, then the following cases

are possible:
(a) if for all 1 ≤ j ≤ 1, αj = −1, then the solution of homogeneous problem

(2.1)-(2.4) is a function of the form

u(x) = c0 +
n∑
j=1

cjxj ;

(b) if for some j0 ∈ {1, 2, . . . , n − 1} the equality αj0 = 1 holds, then solution
of the homogeneous problem (2.1)-(2.4) is a function of the form

u(x) = c0 +
n∑

j=1,j 6=j0

cjxj .

In particular, if αj = 1, 1 ≤ j ≤ n− 1 then u(x) = c0 + cnxn.

Proof. Let k = 1 and function u(x) is a solution of the homogeneous problem
(2.1)-(2.4). Then u(x) is a biharmonic function that satisfies boundary conditions:

Dm
ν u(x) = 0, x ∈ ∂Ω, (5.1)
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D`1
ν u(x) = −D`1

ν u(x∗), x ∈ ∂Ω+, (5.2)

D`2
ν u(x) = D`2

ν u(x∗), x ∈ ∂Ω+. (5.3)

If x ∈ ∂Ω− then x∗ ∈ ∂Ω+ and therefore from the conditions (5.2) and (5.3) it
follows that

D`1
ν u(x∗) = −D`1

ν u(x), x ∈ ∂Ω−, D`2
ν u(x∗) = D`2

ν u(x), x ∈ ∂Ω−.

Then for all x ∈ ∂Ω the following equalities hold

D`1
ν u(x) = −D`1

ν u(x∗), x ∈ ∂Ω, (5.4)

D`2
ν u(x) = D`2

ν u(x∗), x ∈ ∂Ω. (5.5)

On the other hand differentiating (5.4) along the normal ν give us

D`2
ν u(x) = −D`2

ν u(x∗), x ∈ ∂Ω. (5.6)

Then from the equalities (5.5) and (5.6) it follows that

D`2
ν u(x) = 0, x ∈ ∂Ω.

Thereby the function u(x) is a solution of the problem

∆2u(x) = 0, x ∈ Ω, (5.7)

Dm
ν u(x)

∣∣
∂Ω

= 0, D`2
ν u(x)

∣∣
∂Ω

= 0. (5.8)

Furthermore when we use the results of Section 3. The following cases are
possible:

(1) if m = 1, `2 = 3, then by Theorem 3.3, the function u(x) = c0 ≡ const
is a unique solution of the problem (5.7)-(5.8). Obviously, this function satisfies
all conditions of the homogeneous problem (2.1)-(2.4) for k = 1. Consequently, if
m = 1, `1 = 2, `2 = 3 then solution of the homogeneous problem (2.1)-(2.4) is a
function u(x) = c0.

(2) if m = 2, `2 = 3 then according to Theorem 3.2, the unique solution of the
homogeneous problem (5.7)-(5.8) is a function of the form:

u(x) = c0 +
n∑
j=1

cjxj ,

where cj are constants, j = 0, 1, . . . , n. In this case `1 = 1 and for all x ∈ ∂Ω,

D1
νu(x)

∣∣
∂Ω

= r
∂u(x)
∂r

∣∣
∂Ω

=
n∑
i=1

xi
∂u

∂xi
(x).

Since u(x∗) = C0 +
∑n
j=1 cjαjxj , it follows that

0 = D1
νu(x) +D1

νu(x∗)|∂Ω =
n∑
j=1

cjxj +
n∑
j=1

cjαjxj =
n∑
j=1

(1 + αj)cjxj .

Further, if for all 1 ≤ j ≤ n: αj = −1, then cj are arbitrary numbers and if for
some j0 ∈ {1, 2, . . . , n− 1}, αj0 = 1 then for the equality

D1
νu(x) +D1

νu(x∗) = 0
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to be correct it is necessary that cj0 = 0. Hence, if αj = −1, 1 ≤ j ≤ n then the
function

u(x) = c0 +
n∑
j=1

cjxj

is a solution of the homogeneous problem (2.1)-(2.4). If for some j0 ∈ {1, 2, . . . , n−
1}, αj0 = 1, then the solution of the homogeneous problem (2.1)-(2.4) is a function
of the form

u(x) = c0 +
n∑

j=1,j 6=j0

cjxj .

In particular, if αj = 1 for all j = 1, 2, . . . , n− 1, then

u(x) = c0 + cnxn.

(3) Let m = 3, `1 = 1, `2 = 2. Then as in the case (2) the function of the form

u(x) = c0 +
n∑
j=1

cjxj

is a solution of the homogeneous problem (5.7)-(5.8). Making the same arguments
as in the case m = 2, `1 = 1, `2 = 3 we obtain: If αj = −1, 1 ≤ j ≤ n then solution
of the homogeneous problem (2.1)-(2.4) is the function

u(x) = c0 +
n∑
j=1

cjxj .

If for some j0 ∈ {1, 2, . . . , n − 1}, αj0 = 1, then solution of the homogeneous
problem (2.1)-(2.4) is a function of the form

u(x) = c0 +
n∑

j=1,j 6=j0

cjxj .

In particular, if αj = 1 for all 1 ≤ j ≤ n − 1 then the solution has the form
u(x) = c0 + cnxn. �

The following statement can be proved similarly.

Theorem 5.2. Let k = 2 and a solution of problem (2.1)-(2.4) exist. Then
(1) in the case m = 1, `1 = 2, `2 = 3 solution of the problem (2.1)-(2.4) is unique

up to constant term;
(2) if m = 2, `1 = 1, `2 = 3 or m = 3, `1 = 1, `2 = 2, then the following cases

are possible:
(a) if for all 1 ≤ j ≤ n − 1, αj = 1 then the solution of the homogeneous

problem (2.1)-(2.4) is function of the form:

u(x) = c0 +
n−1∑
j=1

cjxj ;

(b) if for some j0 ∈ {1, 2, . . . , n}, αj0 = −1 then solution of the homogeneous
problem (2.1)-(2.4) is a function of the form

u(x) = c0 +
n∑

j=1,j 6=j0

cjxj .
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In particular, if αj = −1, 1 ≤ j ≤ n, then u(x) = c0.

6. Existence conditions

In this section we present results on existence of a solution of problem (2.1)-(2.4).

Theorem 6.1. Let k = 1 and functions f(x), g(x), gj(x) j = 1, 2 be smooth
enough and compatibility conditions (2.5), (2.6) be fulfilled. Then the necessary
and sufficient conditions for solvability of problem (2.1)-(2.4) have the following
form:

(1) if m = 1, `1 = 2, `2 = 3, then
1
2

∫
Ω

(1− |x|2)f(x)dx =
∫
∂Ω+

g1(x)dSx −
∫
∂Ω

g(x)dSx; (6.1)

(2) if m = 2, `1 = 1, `2 = 3, then
1
2

∫
Ω

(1− |x|2)f(x)dx

=
∫
∂Ω

g(x)dSx −
∫
∂Ω+

g1(x)dSx, ,
(6.2)

n− 1
2

∫
Ω

xj |x|2f(x) dx− n− 3
2

∫
Ω

xjf(x) dx

=
∫
∂Ω+

xjg2(x) dSx−
∫
∂Ω

xjg(x) dSx
(6.3)

for all j such that αj = −1;
(3) if m = 3, `1 = 1, `2 = 2, then

n− 1
2

∫
Ω

|x|2f(x) dx− n− 3
2

∫
Ω

f(x) dx =
∫
∂Ω

g(x) dSx, (6.4)

n− 1
2

∫
Ω

xj |x|2f(x) dx− n− 3
2

∫
Ω

xjf(x) dx

=
∫
∂Ω

xjg(x) dSx −
∫
∂Ω+

xjg2(x) dSx,
(6.5)

for all j ∈ {1, 2, . . . , n} such that αj = −1.

Proof. We introduce two auxiliary functions

v(x) =
1
2

[u(x) + u(x∗)], w(x) =
1
2

[u(x)− u(x∗)].

It is obvious that u(x) = v(x) +w(x). It is easy to see that the functions v(x) and
w(x) are solutions of the following Neumann-type problems:

∆2v(x) = f+(x), x ∈ Ω, Dm
ν v(x)

∣∣
∂Ω

= g+(x), D`1
ν v(x)

∣∣
∂Ω

= g̃+
1 (x), (6.6)

∆2w(x) = f−(x), x ∈ Ω, Dm
ν w(x)

∣∣
∂Ω

= g−(x), D`2
ν w(x)

∣∣
∂Ω

= g̃−2 (x). (6.7)

Indeed applying the biharmonic operator ∆2 to the function v(x), we obtain

∆2v(x) =
1
2

[∆2u(x) + ∆2u(x∗)] =
1
2

[f(x) + f(x∗)] = f+(x), x ∈ Ω.

Further, taking the boundary conditions (2.2), (2.3) into account, we have

Dm
ν v(x) =

1
2

[Dm
ν u(x) +Dm

ν u(x∗)] =
1
2

[g(x) + g(x∗)] = g+(x), x ∈ ∂Ω,
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D`1
ν v(x) =

1
2

[Dl1
ν u(x) +D`1

ν u(x∗)] =
1
2
g(x), x ∈ ∂Ω+,

D`1
ν v(x) =

1
2

[D`1
ν u(x) +D`1

ν u(x∗)]

=
1
2

[D`1
ν u(x∗) +D`1

ν u(x)] =
1
2
g(x∗), x ∈ ∂Ω−.

Similarly, for function w(x) we obtain

∆2w(x) =
1
2

[∆2u(x)−∆2u(x∗)] =
1
2

[f(x)− f(x∗)] = f−(x), x ∈ Ω,

Dm
ν w(x) =

1
2

[Dm
ν u(x)−Dm

ν u(x∗)] =
1
2

[g(x)− g(x∗)] = g−(x), x ∈ ∂Ω,

D`2
ν w(x) =

1
2

[D`2
ν u(x)−D`2

ν u(x∗)] =
1
2
g2(x), x ∈ ∂Ω+,

D`2
ν w(x) =

1
2

[D`2
ν u(x)−D`2

ν u(x∗)]

= −1
2

[D`2
ν u(x∗)−D`2

ν u(x)] = −1
2
g̃−2 (x∗), x ∈ ∂Ω−.

Note that if the function f(x) is a smooth enough function defined on the domain
Ω̄, and function g(x) is defined on the sphere ∂Ω, then it is obvious that the
functions f±(x) and g±(x) have the same properties. Moreover, if functions g1(x)
and g2(x) are smooth on ∂Ω+, then because of compatibility conditions (2.5), (2.6)
the functions g̃±1 (x) and g̃±2 (x) have the same properties. Further, to study the
solvability of the problems (6.6) and (6.7) we use the statements of Theorems 3.1,
3.3.

(1) if m = 1, `1 = 2, `2 = 3 then the necessary and sufficient conditions for
solvability of the problems (6.6) and (6.7), respectively, are:

1
2

∫
Ω

(1− |x|2)f+(x) dx =
∫
∂Ω

[g̃+
1 (x)− g+(x)] dSx, (6.8)

1
2

∫
Ω

[(n− 1)|x|2 − (n− 3)]f−(x) dx =
∫
∂Ω

g̃−2 (x) dSx. (6.9)

From equalities (4.4), (4.6) and (4.9) we obtain

1
2

∫
Ω

(1− |x|2)f+(x) dx =
1
2

∫
Ω

(1− |x|2)f(x) dx.

Similarly, from (4.4), (4.6) and (4.9), it follows that

1
2

∫
Ω

(1− |x|2)f+(x) dx =
1
2

∫
Ω

(1− |x|2)f(x) dx,∫
∂Ω

g̃+
1 (x) dSx −

∫
∂Ω

g+(x) dSx =
∫
∂Ω+

g1(x) dSx −
∫
∂Ω

g(x) dSx.

Consequently, condition (6.9) always holds and condition (6.8) can be rewritten in
the form (6.1).

(2) if m = 2, `1 = 1, `2 = 3, then the necessary and sufficient condition for
solvability of the problem (6.6) has the form

1
2

∫
Ω

(1− |x|2)f+(x) dx =
∫
∂Ω

[g+(x)− g̃+
1 (x)] dSx,
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which can be rewritten in the form
1
2

∫
Ω

(1− |x|2)f(x) dx =
∫
∂Ω

g(x)dSx −
∫
∂Ω+

g1(x) dSx.

For problem (6.7) we obtain the conditions:

1
2

∫
Ω

[(n− 1)|x|2 − (n− 3)]f−(x) dx =
∫
∂Ω

g̃−2 (x) dSx, (6.10)

1
2

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f−(x)dx

=
∫
∂Ω

xj [g̃−2 (x)− g−(x)]dSx, j = 1, 2, . . . , n.
(6.11)

From equalities (4.4) and (4.9), the condition (6.10) always holds. Further, using
(4.12), (4.15) and (4.16) we have

1
2

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f−(x)dx =
1− αj

2

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f(x)dx,∫
∂Ω

xj g̃
−
2 (x)dSx =

1− αj
2

∫
∂Ω+

xjg2(x)dSx,∫
∂Ω

xjg
−(x)dSx =

1− αj
2

∫
∂Ω

xjg(x)dSx.

Then equality (6.11) can be rewritten in the form

1− αj
4

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f(x)dx

=
1− αj

2
[
∫
∂Ω+

xjg2(x)dSx −
∫
∂Ω

xjg(x)dSx], j = 1, 2, . . . , n.
(6.12)

If for all 1 ≤ j ≤ n− 1, αj = 1 then condition (6.12) always holds for these indexes
and in this case condition (6.11) for j = n can be rewritten in the form

n− 1
2

∫
Ω

xn|x|2f(x)dx−n− 3
2

∫
∂Ω

xnf(x)dx =
∫
∂Ω+

xng2(x)dSx−
∫
∂Ω

xng(x)dSx.

If for some j0 ∈ {1, 2, . . . , n}, αj0 = −1, then for this j0, condition (6.11) can be
rewritten in the form

n− 1
2

∫
Ω

xj0 |x|
2
f(x)dx−n− 3

2

∫
∂Ω

xj0f(x)dx

=
∫
∂Ω+

xj0g2(x)dSx−
∫
∂Ω

xj0g(x)dSx.

(3) if m = 3, `1 = 1, `2 = 2, then by Theorem 3.3 the problem’s solvability
condition has the form

1
2

∫
Ω

[(n− 1)|x|2 − (n− 3)]f+(x)dx =
∫
∂Ω

g+(x)dSx.

According to (4.3) and (4.5) the last condition can be rewritten in the form

1
2

∫
Ω

[(n− 1)|x|2 − (n− 3)]f(x)dx =
∫
∂Ω

g(x)dSx.
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Further, using Theorem 3.2 the solvability condition of problem (6.7) can be
rewritten in the form

1
2

∫
Ω

[(n− 1)|x|2 − (n− 3)]f−(x)dx =
∫
∂Ω

g−(x)dSx, (6.13)

1
2

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f−(x)dx

=
∫
∂Ω

xj [g−(x)− g̃−2 (x)]dSx, j = 1, 2, . . . , n.
(6.14)

From (4.4) and (4.6) it follows that condition (6.13) always holds. From (4.12),
(4.15) and (6.14) we obtain

1
2

∫
Ω

xj |x|2f−(x)dx =
1− αj

2

∫
Ω

xj |x|2f(x)dx,∫
∂Ω

xjg
−(x)dSx =

1− αj
2

∫
∂Ω

xjg(x)dSx,∫
∂Ω

xj g̃
−
2 (x)dSx =

1− αj
2

∫
∂Ω+

xjg2(x)dSx.

Then (6.14) can be rewritten as follows
1− αj

4

∫
Ω

xj [(n− 1)|x|2 − (n− 3)]f(x)dx

=
1− αj

2

[∫
∂Ω

xjg(x)dSx −
∫
∂Ω+

xjg2(x)dSx
]
, j = 1, 2, . . . , n.

(6.15)

If αj = 1 then (6.15) holds, and if αj = −1 then this condition can be rewritten
in the form

n− 1
2

∫
Ω

xj |x|2f(x)dx−n− 3
2

∫
Ω

xjf(x)dx

=
∫
∂Ω

xjg(x)dSx−
∫
∂Ω+

xjg2(x)dSx, j = 1, 2, . . . , n.

Thus equality (6.5) and, consequently, the theorem are proved. �

The following statement can be proved similarly to Theorem 6.1.

Theorem 6.2. Let k = 2 and the functions f(x), g(x), gj(x), j = 1, 2 be smooth
enough on the domains Ω̄, ∂Ω and ∂Ω+, respectively, and the compatibility condi-
tions (2.5) and (2.6) hold. Then the necessary and sufficient conditions for solv-
ability of problem (2.1)-(2.4) have the form:

(1) if m = 1, `1 = 2, `2 = 3, then
n− 1

2

∫
Ω

|x|2f(x)dx−n− 3
2

∫
Ω

f(x)dx =
∫
∂Ω+

g2(x)dSx;

(2) if m = 2, l1 = 1, l2 = 3, then
n− 1

2

∫
Ω

|x|2f(x)dx−n− 3
2

∫
Ω

f(x)dx =
∫
∂Ω+

g2(x)dSx,

and
n− 1

2

∫
Ω

xj |x|2f(x)dx−n− 3
2

∫
Ω

xjf(x)dx =
∫
∂Ω+

xjg2(x)dSx −
∫
∂Ω

xjg(x)dSx,
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for all j ∈ {1, 2, . . . , n− 1} for which αj = 1;
(3) if m = 3, l1 = 1, l2 = 3, then

n− 1
2

∫
Ω

|x|2f(x)dx−n− 3
2

∫
Ω

f(x)dx =
∫
∂Ω

g(x)dSx,

and
n− 1

2

∫
Ω

xj |x|2f(x)dx−n− 3
2

∫
Ω

xjf(x)dx =
∫
∂Ω

xjg(x)dSx −
∫
∂Ω+

xjg2(x)dSx,

for all j ∈ {1, 2, . . . , n− 1} such that αj = 1.
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