EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA
Communicated by Zhaosheng Feng

Abstract

In this article we study radial solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius $R>0, B_{R}$, centered at the origin in \mathbb{R}^{N} with $u=0$ on ∂B_{R} where f is odd with $f<0$ on $(0, \beta), f>0$ on (β, ∞), $f(u) \sim u^{p}$ with $0<p<1$ for large u and $K(r) \sim r^{-\alpha}$ for large r. We prove that if $N>2$ and $K(r) \sim r^{-\alpha}$ with $2<\alpha<2(N-1)$ then there are no solutions with $\lim _{r \rightarrow \infty} u(r)=0$ for sufficiently large $R>0$. On the other hand, if $2<N-p(N-2)<\alpha<2(N-1)$ and k, n are nonnegative integers with $0 \leq k \leq n$ then there exist solutions, u_{k}, with k zeros on (R, ∞) and $\lim _{r \rightarrow \infty} u_{k}(r)=0$ if $R>0$ is sufficiently small.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \mathbb{R}^{N} \backslash B_{R}, \tag{1.1}\\
u=0 \quad \text { on } \partial B_{R} \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where B_{R} is the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} and $K(r)>0$. We assume:
(H1) f is odd and locally Lipschitz, $f<0$ on $(0, \beta), f>0$ on (β, ∞), and $f^{\prime}(0)<0$.
(H2) There exists p with $0<p<1$ such that $f(u)=|u|^{p-1} u+g(u)$ where $\lim _{u \rightarrow \infty} \frac{\mid g(u)^{\mid}}{|u|^{p}}=0$.
We let $F(u)=\int_{0}^{u} f(s) d s$. Since f is odd it follows that F is even and from (H1) it follows that F is bounded below by $-F_{0}<0, F$ has a unique positive zero, γ, with $0<\beta<\gamma$, and

$$
\text { (H3) }-F_{0}<F<0 \text { on }(0, \gamma), F>0 \text { on }(\gamma, \infty) .
$$

When f grows superlinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty, \Omega=\mathbb{R}^{N}$, and $K(r) \equiv 1$ then the problem (1.1), (1.3) has been extensively studied [1]-3, [10, 12, 14].

[^0]Interest in the topic for this paper comes from recent papers [5, 11, 13] about solutions of differential equations on exterior domains. In [7]-9] we studied (1.1)1.3) with $K(r) \sim r^{-\alpha}, f$ superlinear, and $\Omega=\mathbb{R}^{N} \backslash B_{R}$ with various values for α. In those papers we proved existence of an infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \rightarrow 0$ as $|x| \rightarrow \infty$ for all $R>0$. In 6 we studied (1.1)-(1.3) with $K(r) \sim r^{-\alpha}$, f bounded, and $\Omega=\mathbb{R}^{N} \backslash B_{R}$. In this paper we consider the case where f grows sublinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u^{p}}=c_{0}>0$ with $0<p<1$.

Since we are interested in radial solutions of (1.1)-1.3) we assume that $u(x)=$ $u(|x|)=u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that u solves

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0 \tag{1.4}\\
u(R)=0, u^{\prime}(R)=b \in \mathbb{R} \tag{1.5}
\end{gather*}
$$

We will also assume that
(H4) there exist constants $k_{1}>0, k_{2}>0$, and α with $0<\alpha<2(N-1)$ such that

$$
\begin{equation*}
k_{1} r^{-\alpha} \leq K(r) \leq k_{2} r^{-\alpha} \quad \text { on }[R, \infty) \tag{1.6}
\end{equation*}
$$

(H5) K is differentiable, on $[R, \infty), \lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$, and $\frac{r K^{\prime}}{K}+2(N-1)>0$. Note that (H5) implies $r^{2(N-1)} K(r)$ is increasing. In this article we prove the following result.
Theorem 1.1. Let $N>2,0<p<1$, and $2<N-p(N-2)<\alpha<2(N-1)$. Assuming (H1)-(H5) then given nonnegative integers k, n with $0 \leq k \leq n$ then there exist solutions, u_{k}, of (1.4)-(1.5) with k zeros on (R, ∞) and $\lim _{r \rightarrow \infty} u_{k}(r)=0$ if $R>0$ is sufficiently small.

In addition we also prove:
Theorem 1.2. Let $N>2,0<p<1$ and $2<\alpha<2(N-1)$. Assuming (H1)(H5), there are no solutions of 1.4 -1.5 such that $\lim _{r \rightarrow \infty} u(r)=0$ if $R>0$ is sufficiently large.

Note that for the superlinear problems studied in [7]-9] we were able to prove existence for any $R>0$ whereas in the sublinear case and in [6] we only get solutions if R is sufficiently small.

2. Preliminaries and proof of Theorem 1.2

From the standard existence-uniqueness theorem for ordinary differential equations [4] it follows there is a unique solution of 1.4$]-1.5]$ on $[R, R+\epsilon)$ for some $\epsilon>0$. We then define

$$
\begin{equation*}
E=\frac{1}{2} \frac{u^{2}}{K}+F(u) \tag{2.1}
\end{equation*}
$$

Using (H5) we see that

$$
\begin{equation*}
E^{\prime}=-\frac{u^{\prime 2}}{2 r K}\left(2(N-1)+\frac{r K^{\prime}}{K}\right) \leq 0 \quad \text { for } 0<\alpha<2(N-1) \tag{2.2}
\end{equation*}
$$

Thus E is nonincreasing. Hence it follows that

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)=E(r) \leq E(R)=\frac{1}{2} \frac{b^{2}}{K(R)} \text { for } r \geq R \tag{2.3}
\end{equation*}
$$

and so we see from (H2)-(H4) that u and u^{\prime} are uniformly bounded wherever they are defined from which it follows that the solution of (1.4)-1.5) is defined on $[R, \infty)$.

Lemma 2.1. Let $N>2,0<p<1$, and $0<\alpha<2(N-1)$. Assume (H1)-(H5) and suppose u satisfies (1.4)-(1.5) with $b>0$. If u has a zero, z_{b}, with $u>0$ on $\left(R, z_{b}\right)$ or if $u>0$ for $r>R$ and $\lim _{r \rightarrow \infty} u=0$ then u has a local maximum, M_{b}, with $R<M_{b}, u^{\prime}>0$ on $\left(R, M_{b}\right), M_{b} \rightarrow \infty$ as $b \rightarrow \infty$, and $u\left(M_{b}\right) \rightarrow \infty$ as $b \rightarrow \infty$.

Proof. Since $u(R)=0$ and $u^{\prime}(R)=b>0$ we see that u gets positive for $r>R$ and if u has a zero, z_{b}, or if $u>0$ and $\lim _{r \rightarrow \infty} u(r)=0$ then u has a critical point, M_{b}, such that $u^{\prime}>0$ on $\left(R, M_{b}\right)$. Then $u^{\prime}\left(M_{b}\right)=0$ and $u^{\prime \prime}\left(M_{b}\right) \leq 0$. By uniqueness of solutions of initial value problems it follows that $u^{\prime \prime}\left(M_{b}\right)<0$ and thus M_{b} is a local maximum. Next suppose there exists $M_{0}>R$ such that $M_{b} \leq M_{0}$ for all $b>0$. Letting $v_{b}(r)=\frac{u(r)}{b}$ then from (1.5) we have $v_{b}(R)=0, v_{b}^{\prime}(R)=1$ and

$$
\begin{equation*}
v_{b}^{\prime \prime}(r)+\frac{N-1}{r} v_{b}^{\prime}(r)+K(r) \frac{f\left(b v_{b}(r)\right)}{b}=0 \quad \text { for } r \geq R . \tag{2.4}
\end{equation*}
$$

It follows from (2.1-2.2 that

$$
\left(\frac{1}{2} \frac{v_{b}^{\prime 2}}{K}+\frac{F\left(b v_{b}\right)}{b^{2}}\right)^{\prime} \leq 0 \quad \text { for } r \geq R
$$

and thus

$$
\begin{equation*}
\frac{1}{2} \frac{v_{b}^{\prime 2}}{K}+\frac{F\left(b v_{b}\right)}{b^{2}} \leq \frac{1}{2 K(R)} \quad \text { for } r \geq R \tag{2.5}
\end{equation*}
$$

It then follows from 2.5 and (H2)-(H4) that $\left|v_{b}^{\prime}\right|$ is uniformly bounded for large $b>0$ on $[R, \infty)$. So there is a constant $C_{1}>0$ such that

$$
\begin{equation*}
\left|v_{b}^{\prime}\right| \leq C_{1} \text { for large } b>0 \quad \text { and all } r \geq R . \tag{2.6}
\end{equation*}
$$

We now fix a compact set $\left[R, R_{0}\right]$. Then on $\left[R, R_{0}\right]$ we have by 2.6

$$
\left|v_{b}\right|=\left|(r-R)+\int_{R}^{r} v_{b}^{\prime}(t) d t\right| \leq\left(1+C_{1}\right)\left(R_{0}-R\right)
$$

so we see that $\left|v_{b}\right|$ is uniformly bounded for large b on $\left[R, R_{0}\right]$.
In addition from (H1)-(H2) it follows there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
|f(u)| \leq C_{2}|u|^{p} \quad \text { for all } u \tag{2.7}
\end{equation*}
$$

and therefore since the v_{b} are uniformly bounded on $\left[R, R_{0}\right]$ and $0<p<1$ it follows that

$$
\begin{equation*}
\left|\frac{f\left(b v_{b}\right)}{b}\right| \leq \frac{C_{2}\left|v_{b}\right|^{p}}{b^{1-p}} \rightarrow 0 \quad \text { as } b \rightarrow \infty \tag{2.8}
\end{equation*}
$$

Then from (2.4) and 2.8 we see that $\left|v_{b}^{\prime \prime}\right|$ is uniformly bounded on $\left[R, R_{0}\right]$. So by the Arzela-Ascoli theorem there is a subsequence of v_{b} (still denoted v_{b}) such that $v_{b} \rightarrow v_{0}$ and $v_{b}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on $\left[R, R_{0}\right]$ as $b \rightarrow \infty$. It then follows from (2.4) that $v_{b}^{\prime \prime}$ converges uniformly to $v_{0}^{\prime \prime}$ on $\left[R, R_{0}\right]$ and $v_{0}^{\prime \prime}+\frac{N-1}{r} v_{0}^{\prime}=0$. Since R_{0} is arbitrary we see that $v_{0}^{\prime \prime}+\frac{N-1}{r} v_{0}^{\prime}=0$ on $[R, \infty)$. Thus, $r^{N-1} v_{0}^{\prime}=R^{N-1}$ and $v_{0}=\frac{R^{N-1}\left[R^{2-N}-r^{2-N}\right]}{N-2}$. Now since $M_{b} \leq M_{0}$ for all $b>0$ then a subsequence of M_{b} converges to some M and since $v_{b}^{\prime}\left(M_{b}\right)=0$ it follows that $v_{0}^{\prime}(M)=0$. However this contradicts that $v_{0}^{\prime}=\frac{R^{N-1}}{r^{N-1}}>0$. Therefore our assumption that the M_{b} are bounded is false and so we see $M_{b} \rightarrow \infty$ as $b \rightarrow \infty$.

Next we see that since $M_{b} \rightarrow \infty$ then $M_{b}>2 R$ if b is sufficiently large and since u is increasing on $\left[R, M_{b}\right]$ then $\frac{u\left(M_{b}\right)}{b} \geq \frac{u(2 R)}{b}=v_{b}(2 R) \rightarrow v_{0}(2 R)>0$ for
sufficiently large b. Thus $u\left(M_{b}\right)>\frac{v_{0}(2 R)}{2} b$ for sufficiently large b and so we see that $u\left(M_{b}\right) \rightarrow \infty$ as $b \rightarrow \infty$. This completes the proof.

Lemma 2.2. Let $N>2,0<p<1,2<\alpha<2(N-1)$, and assume (H1)-(H5). If $u\left(z_{b}\right)=0$ with $u>0$ on $\left(R, z_{b}\right)$ or $u>0$ on (R, ∞) with $\lim _{r \rightarrow \infty} u=0$ then

$$
\begin{equation*}
\left[u\left(M_{b}\right)\right]^{\frac{1-p}{2}} M_{b}^{\frac{\alpha}{2}-1} \leq \frac{k_{2}}{\frac{\alpha}{2}-1} \sqrt{\frac{1}{p+1}+\frac{F_{0}}{\gamma^{p+1}}} \tag{2.9}
\end{equation*}
$$

Proof. We first show that if $u\left(z_{b}\right)=0$ with $u>0$ on $\left(M_{b}, z_{b}\right)$ then $u^{\prime}<0$ on $\left(M_{b}, z_{b}\right)$ and if $u>0$ on $\left(M_{b}, \infty\right)$ with $\lim _{r \rightarrow \infty} u(r)=0$ then $u^{\prime}<0$ on $\left(M_{b}, \infty\right)$. In the first case, if u has a positive local minimum, m_{b}, with $M_{b}<m_{b}<z_{b}$ then $u^{\prime}\left(m_{b}\right)=0$, $u^{\prime \prime}\left(m_{b}\right) \leq 0$, so $f\left(u\left(m_{b}\right)\right) \geq 0$ which implies $0<u\left(m_{b}\right) \leq \beta$. On the other hand, since E is nonincreasing $0>F\left(u\left(m_{b}\right)\right)=E\left(m_{b}\right) \geq E\left(z_{b}\right)=\frac{1}{2} \frac{u^{\prime 2}\left(z_{b}\right)}{K\left(z_{b}\right)} \geq 0$ which is impossible. Secondly, suppose $u>0$ on (R, ∞) and $\lim _{r \rightarrow \infty} u(r)=0$. Since E is nonincreasing it follows that $\lim _{r \rightarrow \infty} E(r)$ exists and since $\frac{1}{2} \frac{u^{\prime 2}}{K} \geq 0$ and $F(u(r)) \rightarrow 0$ as $r \rightarrow \infty$ we see that $\lim _{r \rightarrow \infty} E(r) \geq 0$. Thus $E(r) \geq 0$ for all $r \geq R$. On the other hand, if u has a positive local minimum, m_{b}, then $0<u\left(m_{b}\right) \leq \beta$ and $E\left(m_{b}\right)=F\left(u\left(m_{b}\right)\right)<0$ again yielding a contradiction.

Next, it follows from (2.1)-2.2) that $E(t) \leq E\left(M_{b}\right)$ for $t \geq M_{b}$. Rewriting this inequality we obtain

$$
\begin{equation*}
\frac{\left|u^{\prime}(t)\right|}{\sqrt{2} \sqrt{F\left(u\left(M_{b}\right)\right)-F(u(t))}} \leq \sqrt{K} \text { for } t \geq M_{b} \tag{2.10}
\end{equation*}
$$

If $u\left(z_{b}\right)=0$ then integrating 2.10 on $\left(M_{b}, z_{b}\right)$ and using that $u^{\prime}<0$ on $\left(M_{b}, z_{b}\right)$ gives

$$
\begin{align*}
\int_{0}^{u\left(M_{b}\right)} \frac{d t}{\sqrt{F\left(u\left(M_{b}\right)\right)-F(t)}} & =\int_{M_{b}}^{z_{b}} \frac{-u^{\prime}(t)}{\sqrt{2} \sqrt{F\left(u\left(M_{b}\right)\right)-F(u(t))}} d t \\
& \leq \int_{M_{b}}^{z_{b}} \sqrt{K} d t \tag{2.11}\\
& \leq \frac{k_{2}}{\frac{\alpha}{2}-1}\left(M_{b}^{1-\frac{\alpha}{2}}-z_{b}^{1-\frac{\alpha}{2}}\right) \\
& \leq \frac{k_{2}}{\frac{\alpha}{2}-1} M_{b}^{1-\frac{\alpha}{2}}
\end{align*}
$$

Similarly if $u(r)>0$ and $\lim _{r \rightarrow \infty} u=0$ then integrating 2.10) on $\left(M_{b}, \infty\right)$ and using that $u^{\prime}<0$ on $\left(M_{b}, \infty\right)$ we again obtain

$$
\int_{0}^{u\left(M_{b}\right)} \frac{d t}{\sqrt{F\left(u\left(M_{b}\right)\right)-F(t)}} \leq \frac{k_{2}}{\frac{\alpha}{2}-1} M_{b}^{1-\frac{\alpha}{2}}
$$

Next from (H2), (H3) and 2.7) it follows that $-F_{0} \leq F(u) \leq \frac{C_{2}|u|^{p+1}}{p+1}$ for all u. Therefore estimating the left-hand side of (2.11) gives

$$
\begin{equation*}
\int_{0}^{u\left(M_{b}\right)} \frac{d t}{\sqrt{F\left(u\left(M_{b}\right)\right)-F(t)}} \geq \frac{u\left(M_{b}\right)}{\sqrt{\frac{C_{2}\left[u\left(M_{b}\right)\right]^{p+1}}{p+1}+F_{0}}}=\frac{\left[u\left(M_{b}\right)\right]^{\frac{1-p}{2}}}{\sqrt{\frac{C_{2}}{p+1}+\frac{F_{0}}{\left[u\left(M_{b}\right)\right]^{p+1}}}} . \tag{2.12}
\end{equation*}
$$

Also from 2.1-2.2 if $u\left(z_{b}\right)=0$ then we have $F\left(u\left(M_{b}\right)\right)=E\left(M_{b}\right) \geq E\left(z_{b}\right)=$ $\frac{1}{2} \frac{u^{\prime 2}\left(z_{b}\right)}{K\left(z_{b}\right)} \geq 0$ and so $u\left(M_{b}\right) \geq \gamma$. On the other hand, if $u>0$ and $\lim _{r \rightarrow \infty} u=0$
then as we saw earlier $E(r) \geq 0$ for all $r \geq R$. Thus $F\left(u\left(M_{b}\right)\right)=E\left(M_{b}\right) \geq 0$ and again we see $u\left(M_{b}\right) \geq \gamma$. Now using (2.12) in 2.11) and rewriting gives

$$
\begin{align*}
\frac{1-p}{2} M_{b}^{\frac{\alpha}{2}-1} & \leq \frac{k_{2}}{\frac{\alpha}{2}-1} \sqrt{\frac{C_{2}}{p+1}+\frac{F_{0}}{\left[u\left(M_{b}\right)\right]^{p+1}}} \tag{2.13}\\
& \leq \frac{k_{2}}{\frac{\alpha}{2}-1} \sqrt{\frac{C_{2}}{p+1}+\frac{F_{0}}{\gamma^{p+1}}} .
\end{align*}
$$

This completes the proof.
Proof of Theorem 1.2. If u has a zero, z_{b}, with $u>0$ on $\left(R, z_{b}\right)$ or $u>$ on (R, ∞) with $\lim _{r \rightarrow \infty} u(r)=0$ then by Lemmas 2.1 and 2.2 we know that u has a local maximum, M_{b}, with $R<M_{b}$ and $u^{\prime}>0$ on $\left(R, M_{b}\right)$. In addition, from the proof of Lemma 2.2 we have $u\left(M_{b}\right) \geq \gamma$. Combining this with 2.13) and the fact that $\alpha>2$ and $0<p<1$ we obtain

$$
\begin{equation*}
\gamma^{\frac{1-p}{2}} R^{\frac{\alpha}{2}-1} \leq\left[u\left(M_{b}\right)\right]^{\frac{1-p}{2}} M_{b}^{\frac{\alpha}{2}-1} \leq \frac{k_{2}}{\frac{\alpha}{2}-1} \sqrt{\frac{1}{p+1}+\frac{F_{0}}{\gamma^{p+1}}} \tag{2.14}
\end{equation*}
$$

Thus we see that if R is sufficiently large then 2.14 is violated and so we obtain a contradiction. This completes the proof of Theorem 1.2 .

3. Proof of Theorem 1.1

We now turn to the proof of existence for $N>2,0<p<1,2<N-p(N-2)<$ $\alpha<2(N-1)$ and $R>0$ sufficiently small. First we make the change of variables:

$$
u(r)=u_{1}\left(r^{2-N}\right)
$$

Using (1.4) we see that u_{1} satisfies

$$
\begin{equation*}
u_{1}^{\prime \prime}+h(t) f\left(u_{1}\right)=0 \tag{3.1}
\end{equation*}
$$

where it follows from (H4)-(H5) that:

$$
\begin{gather*}
0<h(t)=\frac{t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right)}{(N-2)^{2}} \quad \text { and } \quad h^{\prime}(t)<0 \text { for } t>0 \tag{3.2}\\
u_{1}\left(R^{2-N}\right)=0 \quad \text { and } \quad u_{1}^{\prime}\left(R^{2-N}\right)=-\frac{b R^{N-1}}{N-2}<0 \tag{3.3}
\end{gather*}
$$

In addition, from (H4) we have

$$
\begin{equation*}
\frac{k_{1}}{(N-2)^{2} t^{q}} \leq h(t) \leq \frac{k_{2}}{(N-2)^{2} t^{q}} \quad \text { for all } t>0, \quad \text { where } q=\frac{2(N-1)-\alpha}{N-2} \tag{3.4}
\end{equation*}
$$

Note: Since $2<\alpha<2(N-1), N>2$, and $q=\frac{2(N-1)-\alpha}{N-2}$ it follows that $0<q<2$.

Now instead of considering (3.1) with (3.3) we consider (3.1) with

$$
\begin{equation*}
u_{1}(0)=0, \quad u_{1}^{\prime}(0)=b_{1}>0 . \tag{3.5}
\end{equation*}
$$

Integrating (3.1) twice on $(0, t)$ and using (3.5) we see that a solution of (3.1), 3.5) is equivalent to a solution of:

$$
\begin{equation*}
u_{1}=b_{1} t-\int_{0}^{t} \int_{0}^{s} h(x) f\left(u_{1}\right) d x d s \tag{3.6}
\end{equation*}
$$

Letting $u_{1}=t v_{1}$ we see that a solution of (3.6) is equivalent to a solution of

$$
\begin{equation*}
v_{1}=b_{1}-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f\left(x v_{1}\right) d x d s \tag{3.7}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
T v_{1}=b_{1}-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f\left(x v_{1}\right) d x d s \tag{3.8}
\end{equation*}
$$

Let $0<\epsilon<1$. Denoting $\|w\|=\sup _{[0, \epsilon]}|w(x)|$ we let

$$
B=\left\{v \in C[0, \epsilon] \mid\left\|v-b_{1}\right\| \leq 1\right\}
$$

where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$. It follows from (H1)-(H2) that there exists $L>0$ such that

$$
\begin{equation*}
|f(u)| \leq L|u| \quad \text { for all } u \tag{3.9}
\end{equation*}
$$

Then by (3.4), (3.8)-(3.9$)$, and since $q<2$ as well as $\left|v_{1}\right| \leq 1+b_{1}$:

$$
\begin{aligned}
\left|T v_{1}-b_{1}\right| & \leq \frac{L k_{2}}{(N-2)^{2} t} \int_{0}^{t} \int_{0}^{s} x^{-q} x\left|v_{1}\right| d x d s \\
& \leq \frac{L k_{2}\left(1+b_{1}\right) t^{2-q}}{(2-q)(3-q)(N-2)^{2}} \\
& \leq \frac{L k_{2}\left(1+b_{1}\right) \epsilon^{2-q}}{(2-q)(3-q)(N-2)^{2}}
\end{aligned}
$$

Thus for sufficiently small $\epsilon>0$ we have $T: B \rightarrow B$. Next we see by the mean value theorem, (3.4), and (3.9) that we have

$$
\begin{aligned}
\left|T v_{1}-T v_{2}\right| & =\left|\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left[f\left(x v_{1}\right)-f\left(x v_{2}\right)\right] d x d s\right| \\
& \leq \frac{L}{t} \int_{0}^{t} \int_{0}^{s} x h(x)\left|v_{1}-v_{2}\right| d x d s \\
& \leq \frac{L k_{2}}{(N-2)^{2}}\left\|v_{1}-v_{2}\right\| \frac{1}{t} \int_{0}^{t} \int_{0}^{s} x x^{-q} d x d s \\
& \leq \frac{L k_{2} \epsilon^{2-q}}{(2-q)(3-q)(N-2)^{2}}\left\|v_{1}-v_{2}\right\|
\end{aligned}
$$

Thus for small enough $\epsilon>0$ we see that T is a contraction for any $b_{1}>0$ and so by the contraction mapping principle there is a solution of (3.7) and hence of (3.1), (3.5) on $[0, \epsilon]$ for some $\epsilon>0$.

Next from (3.7) and (3.9) we have

$$
\begin{align*}
\left|\frac{u_{1}}{t}\right| & =\left|v_{1}\right| \leq b_{1}+\frac{L}{t} \int_{0}^{t} \int_{0}^{s} x h(x)\left|v_{1}(x)\right| d x d s \tag{3.10}\\
& \leq b_{1}+\frac{L k_{2}}{(N-2)^{2} t} \int_{0}^{t} \int_{0}^{s} x^{1-q}\left|v_{1}(x)\right| d x d s \\
& \leq b_{1}+\frac{k_{2} L}{(N-2)^{2}} \int_{0}^{t} x^{1-q}\left|v_{1}(x)\right| d x \tag{3.11}
\end{align*}
$$

Now let $w_{1}=\int_{0}^{t} s^{1-q}\left|v_{1}(s)\right| d s$. Then

$$
\begin{equation*}
w_{1}^{\prime}=t^{1-q}\left|v_{1}(t)\right|=t^{-q}\left|u_{1}(t)\right| \tag{3.12}
\end{equation*}
$$

and from 3.10- 3.12 we obtain

$$
\begin{equation*}
w_{1}^{\prime}-\frac{k_{2} L}{(N-2)^{2}} t^{1-q} w_{1} \leq b_{1} t^{1-q} \tag{3.13}
\end{equation*}
$$

Multiplying 3.13 by $\mu(t)=e^{-\frac{k_{2} L t^{2-q}}{(2-q)(N-2)^{2}}} \leq 1$, integrating on $[0, t]$, and rewriting gives

$$
\begin{equation*}
w_{1} \leq \frac{b_{1}}{\mu(t)} \int_{0}^{t} s^{1-q} \mu(s) d s \leq \frac{b_{1}}{(2-q)} \frac{t^{2-q}}{\mu(t)} \tag{3.14}
\end{equation*}
$$

Then from 3.12 - (3.14) we obtain

$$
\begin{equation*}
u_{1} \leq\left(\frac{k_{2} L}{(2-q)(N-2)^{2}}\right) \frac{b_{1} t^{3-q}}{\mu(t)}+b_{1} t=b_{1}\left(t+B(t) t^{3-q}\right) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
B(t)=\left(\frac{k_{2} L}{(2-q)(N-2)^{2}}\right) \frac{1}{\mu(t)} \tag{3.16}
\end{equation*}
$$

Note that $\mu(t)$ is decreasing and continuous hence $B(t)$ is increasing and continuous.
Next it follows from (3.6) that

$$
\begin{equation*}
u_{1}^{\prime}=b_{1}-\int_{0}^{t} h(x) f\left(u_{1}\right) d x \tag{3.17}
\end{equation*}
$$

and thus from 3.4, 3.15, 3.17, and since $B(t)$ is increasing:

$$
\begin{align*}
\left|u_{1}^{\prime}\right| & \leq b_{1}+\frac{k_{2} L}{(N-2)^{2}} \int_{0}^{t} x^{-q} b_{1}\left(x+B(x) x^{3-q}\right) d x \tag{3.18}\\
& \leq b_{1}+\frac{k_{2} L b_{1}}{2(N-2)^{2}(2-q)}\left(2 t^{2-q}+B(t) t^{4-2 q}\right)
\end{align*}
$$

Thus from 3.15) and (3.18) we see that u_{1} and u_{1}^{\prime} are bounded on $[0, t]$ and so it follows that the solution of $(3.1),(3.5)$ exists on $[0, t]$. Since t is arbitrary it follows that the solution of 3.1, ,3.5) exists on $[0, \infty)$.
Lemma 3.1. Let $N>2,0<p<1$, and $2<\alpha<2(N-1)$. Assuming (H1)-(H5) and that u_{1} solves (3.1), (3.5) then there exists $t_{b_{1}}>0$ such that $u_{1}\left(t_{b_{1}}\right)=\beta$ and $0<u_{1}<\beta$ on $\left(0, t_{b_{1}}\right)$. In addition, $u_{1}^{\prime}(t)>0$ on $\left[0, t_{b_{1}}\right]$.

Proof. Since $u_{1}^{\prime}(0)=b_{1}>0$ we see that u_{1} is initially increasing, positive, and less than β. On this set $f\left(u_{1}\right)<0$ and so by 3.1 we have $u_{1}^{\prime \prime}>0$. Thus by 3.5 we have $u_{1}^{\prime}>b_{1}>0$ when $0<u_{1}<\beta$ and so on this set we have $u_{1}>b_{1} t$. Since $b_{1} t$ exceeds β for sufficiently large t we see then that there exists $t_{b_{1}}>0$ such that $u_{1}\left(t_{b_{1}}\right)=\beta$ and $0<u_{1}<\beta$ on $\left(0, t_{b_{1}}\right)$. This completes the proof.

Lemma 3.2. Let $N>2,0<p<1$, and $2<\alpha<2(N-1)$. Assuming (H1)-(H5) and that u_{1} solves (3.1), (3.5) then $t_{b_{1}} \rightarrow \infty$ as $b_{1} \rightarrow 0^{+}$.
Proof. Evaluating 3.15 at $t=t_{b_{1}}$ gives:

$$
\begin{equation*}
\beta=u_{1}\left(t_{b_{1}}\right) \leq b_{1}\left(t_{b_{1}}+B\left(t_{b_{1}}\right) t_{b_{1}}^{3-q}\right) \tag{3.19}
\end{equation*}
$$

Since $2<\alpha<2(N-1)$ it then follows from the note after (3.4) that $0<q<2$. Now if $t_{b_{1}}$ is bounded as $b_{1} \rightarrow 0^{+}$then the right-hand side of (3.19) goes to 0 as $b_{1} \rightarrow 0^{+}$which violates (3.19). Thus we obtain a contradiction and so we see that $t_{b_{1}} \rightarrow \infty$ as $b_{1} \rightarrow 0^{+}$. This completes the proof.

Lemma 3.3. Let $N>2,0<p<1$, and $N-p(N-2)<\alpha<2(N-1)$. Assuming (H1)-(H5) and that u_{1} solves (3.1), (3.5) then u_{1} has a local maximum, $M_{b_{1}}$, on $(0, \infty)$.

Proof. From Lemma 3.1 it follows that there exists $t_{b_{1}}>0$ such that $u_{1}\left(t_{b_{1}}\right)=\beta$ and $u_{1}^{\prime}>0$ on $\left[0, t_{b_{1}}\right]$. Now if u_{1} does not have a local maximum then $u_{1}^{\prime} \geq 0$ for $t>t_{b_{1}}$ and so $u_{1} \geq u_{1}\left(t_{b_{1}}+\delta\right)>\beta>0$ for $t>t_{b_{1}}+\delta$ and some $\delta>0$. Then from (H2) we see that there is a $C_{3}>0$ such that $f\left(u_{1}\right) \geq C_{3}$ on $\left[t_{b_{1}}+\delta, \infty\right)$. Thus

$$
\begin{equation*}
-u_{1}^{\prime \prime}=h(t) f\left(u_{1}\right) \geq C_{3} h(t) \text { for } t>t_{b_{1}}+\delta \tag{3.20}
\end{equation*}
$$

We now divide the rest of the proof into 3 cases.
Case 1: $N<\alpha<2(N-1)$ In this case we see from 3.4 that $0<q<1$ so integrating (3.20) on $\left(t_{b_{1}}+\delta, t\right)$ and using (3.4) gives

$$
u_{1}^{\prime} \leq u_{1}^{\prime}\left(t_{b_{1}}+\delta\right)-\frac{k_{1} C_{3}}{(1-q)(N-2)^{2}}\left(t^{1-q}-\left(t_{b_{1}}+\delta\right)^{1-q}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

Thus u_{1}^{\prime} gets negative which contradicts that $u_{1}^{\prime} \geq 0$ for $t>0$ and so u_{1} must have a local maximum.
Case 2: $\alpha=N$ In this case we have $q=1$ by (3.4) and so again integrating 3.20) on $\left(t_{b_{1}}+\delta, t\right)$ we obtain

$$
u_{1}^{\prime} \leq u_{1}^{\prime}\left(t_{b_{1}}+\delta\right)-\frac{k_{1} C_{3}}{(N-2)^{2}}\left(\ln (t)-\ln \left(t_{b_{1}}+\delta\right)\right) \rightarrow-\infty \text { as } t \rightarrow \infty
$$

which again contradicts that $u_{1}^{\prime} \geq 0$ for $t>0$. Thus u_{1} must have a local maximum.

Case 3: $N-p(N-2)<\alpha<N$ We denote

$$
\begin{equation*}
E_{1}=\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right) \tag{3.21}
\end{equation*}
$$

and observe from (3.1)-(3.2) that

$$
\begin{equation*}
E_{1}^{\prime}=\left(\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right)\right)^{\prime}=-\frac{u_{1}^{\prime 2} h^{\prime}}{2 h^{2}} \geq 0 \tag{3.22}
\end{equation*}
$$

In addition we see from (3.4) that $E_{1}(0)=0$ and so $E_{1}(t) \geq 0$ for $t \geq 0$.
We suppose now that u_{1} is increasing for $t>t_{b_{1}}$. We first show that there exists $t_{b_{2}}>t_{b_{1}}$ such that $u\left(t_{b_{2}}\right)=\gamma$. So we suppose by the way of contradiction that $0<u_{1}<\gamma$ and $u_{1}^{\prime} \geq 0$ for $t>t_{b_{1}}$.

Then from (3.1)-(3.2) and (H3) we have

$$
\begin{equation*}
\left(\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right)\right)^{\prime}=h^{\prime}(t) F\left(u_{1}\right) \geq 0 \quad \text { when } 0 \leq u_{1} \leq \gamma \tag{3.23}
\end{equation*}
$$

Now we recall from (H1) that $\lim _{u_{1} \rightarrow 0} \frac{F\left(u_{1}\right)}{u_{1}^{2}}=\frac{f^{\prime}(0)}{2}$. Also since $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=b_{1}$ then $\lim _{t \rightarrow 0^{+}} \frac{u_{1}}{t}=b_{1}$. Therefore for small positive t and (3.4) we have

$$
\begin{equation*}
0 \leq h(t)\left|F\left(u_{1}\right)\right|=t^{2} h(t) \frac{\left|F\left(u_{1}\right)\right|}{u_{1}^{2}} \frac{u_{1}^{2}}{t^{2}} \leq \frac{\left|f^{\prime}(0)\right| k_{2} b_{1}^{2} t^{2-q}}{(N-2)^{2}} \rightarrow 0 \tag{3.24}
\end{equation*}
$$

as $t \rightarrow 0^{+}$since $q<2$. Therefore, integrating 3.23 on $(0, t)$ and using 3.24 we obtain

$$
\begin{equation*}
\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right) \geq \frac{1}{2} b_{1}^{2} \quad \text { when } 0 \leq u_{1} \leq \gamma \tag{3.25}
\end{equation*}
$$

In addition, since $0 \leq u_{1} \leq \gamma$ it follows that $h(t) F\left(u_{1}\right) \leq 0$ and thus from 3.25,

$$
\begin{equation*}
u_{1}^{\prime} \geq b_{1} \quad \text { when } 0 \leq u_{1} \leq \gamma \tag{3.26}
\end{equation*}
$$

Integrating on $(0, t)$ we obtain

$$
u_{1} \geq b_{1} t \rightarrow \infty \text { as } t \rightarrow \infty
$$

- a contradiction since we assumed $u_{1}<\gamma$. Thus there exists $t_{b_{2}}>t_{b_{1}}$ such that $u\left(t_{b_{2}}\right)=\gamma$ and $u_{1}^{\prime} \geq b_{1}>0$ on $\left[0, t_{b_{2}}\right]$ by (3.26).

We show now that $u_{1}(t) \rightarrow \infty$ as $t \rightarrow \infty$. If not then u_{1} is bounded from above and so there exists $Q>\gamma$ such that $\lim _{t \rightarrow \infty} u_{1}(t)=Q$. Returning to 3.1 we see that this implies:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{u_{1}^{\prime \prime}}{h(t)}=-f(Q)<0 \tag{3.27}
\end{equation*}
$$

In particular, $u_{1}^{\prime \prime}<0$ for large t and so u_{1}^{\prime} is decreasing for large t. Since $u_{1}^{\prime}>0$ for large t it follows that $\lim _{t \rightarrow \infty} u_{1}^{\prime}$ exists. This limit must be zero otherwise this would imply $u_{1} \rightarrow \infty$ as $t \rightarrow \infty$ contradicting the assumption that u_{1} is bounded. Thus $\lim _{t \rightarrow \infty} u_{1}^{\prime}=0$. Next denoting $H(t)=\int_{t}^{\infty} h(s) d s$ we see that since $N-p(N-2)<\alpha<N$ and $q=\frac{2(N-1)-\alpha}{N-2}$ this implies:

$$
\begin{equation*}
1<q<1+p<2 \tag{3.28}
\end{equation*}
$$

Therefore by (3.4) we see that $h(t)$ is integrable at infinity so $H(t)$ is defined. Then by (3.27) and L'Hôpital's rule we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{u_{1}^{\prime}}{H(t)}=\lim _{t \rightarrow \infty}-\frac{u_{1}^{\prime \prime}}{h(t)}=f(Q)>0 \tag{3.29}
\end{equation*}
$$

Then from (3.4) and (3.28)-3.29 we see

$$
\begin{equation*}
u_{1}^{\prime} \geq \frac{f(Q)}{2} H(t) \geq \frac{k_{1} f(Q)}{2(q-1)(N-2)^{2}} t^{1-q} \quad \text { for large } t \tag{3.30}
\end{equation*}
$$

Now integrating 3.30 on $\left(t_{0}, t\right)$ where t_{0} and t are sufficiently large gives

$$
u_{1} \geq u_{1}\left(t_{0}\right)+\frac{k_{1} f(Q)}{2(q-1)} \frac{t^{2-q}}{(2-q)(N-2)^{2}} \rightarrow \infty \quad \text { as } t \rightarrow \infty \text { since } q<2
$$

- a contradiction since we assumed u_{1} was bounded. Thus if $u_{1}^{\prime}>0$ for $t>0$ then it must be that $u_{1} \rightarrow \infty$ as $t \rightarrow \infty$.

Next recalling 3.23 we have

$$
\begin{equation*}
\left(\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right)\right)^{\prime}=h^{\prime}(t) F\left(u_{1}\right)<0 \quad \text { when } u_{1}>\gamma \tag{3.31}
\end{equation*}
$$

Integrating this on $\left(t_{b_{2}}, t\right)$ gives

$$
\begin{equation*}
\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right) \leq \frac{1}{2} u_{1}^{\prime 2}\left(t_{b_{2}}\right) \quad \text { for } t>t_{b_{2}} \tag{3.32}
\end{equation*}
$$

On $\left(t_{b_{2}}, t\right)$ we have $h(t) F\left(u_{1}\right)>0$ and thus from 3.32):

$$
\begin{equation*}
\left|u_{1}^{\prime}\right|<\left|u_{1}^{\prime}\left(t_{b_{2}}\right)\right| \text { for } t>t_{b_{2}} . \tag{3.33}
\end{equation*}
$$

We claim now that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}}=\infty \tag{3.34}
\end{equation*}
$$

Integrating (3.33) on $\left(t_{b_{2}}, t\right)$ gives

$$
\begin{equation*}
u_{1}<\gamma+\left(t-t_{b_{2}}\right)\left|u_{1}^{\prime}\left(t_{b_{2}}\right)\right| \leq C_{4} t \quad \text { for some } C_{4}>0 \text { for large } t \tag{3.35}
\end{equation*}
$$

Next from (H2) we have

$$
\frac{f\left(u_{1}\right)}{u_{1}^{p}} \geq 1-\epsilon \text { for large } u_{1}
$$

Thus by (3.35),

$$
\begin{equation*}
\frac{f\left(u_{1}\right)}{u_{1}} \geq \frac{(1-\epsilon) u_{1}^{p}}{u_{1}}=\frac{(1-\epsilon)}{u_{1}^{1-p}} \geq \frac{(1-\epsilon)}{C_{4}^{1-p} t^{1-p}} \quad \text { for large } t . \tag{3.36}
\end{equation*}
$$

Therefore by (3.4), 3.28, and 3.36):

$$
\frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}} \geq \frac{k_{1}(1-\epsilon)}{C_{4}^{1-p}(N-2)^{2}} \frac{t^{2-q}}{t^{1-p}}=\frac{k_{1}(1-\epsilon)}{C_{4}^{1-p}(N-2)^{2}} t^{1+p-q} \rightarrow \infty
$$

since $1+p>q$. This establishes (3.34).
Next we rewrite (3.1) as

$$
\begin{equation*}
u_{1}^{\prime \prime}+\frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}} \frac{u_{1}}{t^{2}}=0 \tag{3.37}
\end{equation*}
$$

Now it follows from (3.34) that we may choose t_{0} sufficiently large so that

$$
\frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}} \geq A>\frac{1}{4} \quad \text { on }\left[t_{0}, \infty\right)
$$

Next let y_{1} be the solution of

$$
\begin{equation*}
y_{1}^{\prime \prime}+A \frac{y_{1}}{t^{2}}=0 \tag{3.38}
\end{equation*}
$$

with $y_{1}\left(t_{0}\right)=u_{1}\left(t_{0}\right)=\gamma$ and $y_{1}^{\prime}\left(t_{0}\right)=u_{1}^{\prime}\left(t_{0}\right)>0$. It follows then for some constants $d_{1} \neq 0$ and d_{2} that

$$
y_{1}=d_{1} \sqrt{t}\left(\sin \left(\ln \left(t \sqrt{A-\frac{1}{4}}\right)+d_{2}\right)\right)
$$

and so clearly y_{1} has an infinite number of local extrema on $\left[t_{0}, \infty\right)$. Consider now the interval $\left[t_{0}, M\right]$ such that $y_{1}>0, y_{1}^{\prime}>0$ on $\left[t_{0}, M\right]$ and $y_{1}^{\prime}(M)=0$. We claim now that u_{1}^{\prime} must get negative on $\left[t_{0}, M\right]$. So suppose not. Then $u_{1}^{\prime} \geq 0$ on $\left[t_{0}, M\right]$. Then multiplying (3.37) by y_{1}, multiplying 3.38) by u_{1}, and subtracting we obtain

$$
\left(y_{1} u_{1}^{\prime}-y_{1}^{\prime} u_{1}\right)^{\prime}+\left(\frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}}-A\right) \frac{y_{1} u_{1}}{t^{2}}=0
$$

Integrating this on $\left[t_{0}, M\right]$ gives

$$
\begin{equation*}
y_{1}(M) u_{1}^{\prime}(M)+\int_{t_{0}}^{M}\left(\frac{t^{2} h(t) f\left(u_{1}\right)}{u_{1}}-A\right) \frac{y_{1} u_{1}}{t^{2}} d t=0 \tag{3.39}
\end{equation*}
$$

The integral term in (3.39) is positive by 3.34) and also $y_{1}(M) u_{1}^{\prime}(M) \geq 0$ yielding a contradiction. Therefore we see that u_{1} must have a maximum, $M_{b_{1}}>0$, and $u_{1}^{\prime}>0$ on $\left[0, M_{b_{1}}\right)$. This completes the proof.

Lemma 3.4. Let $N>2,0<p<1$, and $N-p(N-2)<\alpha<2(N-1)$. Assuming (H1)-(H5) and that u_{1} solves (3.1), (3.5) then there exists $t_{b_{3}}>M_{b_{1}}$ such that $u_{1}\left(t_{b_{3}}\right)=\frac{\beta+\gamma}{2}$ and $u_{1}^{\prime}<0$ on $\left(M_{b_{1}}, t_{b_{3}}\right]$.

Proof. If $u_{1} \geq \frac{\beta+\gamma}{2}$ for all $t \geq M_{b_{1}}$, then $f\left(u_{1}\right)>0$ for $t \geq M_{b}$. Then from (3.1) it follows that $u_{1}^{\prime \prime}<0$ and thus $u_{1}^{\prime}(t) \leq u_{1}^{\prime}\left(t_{0}\right)<0$ for $t>t_{0}>M_{b_{1}}$. Integrating this inequality on $\left(t_{0}, t\right)$ gives

$$
u_{1}(t) \leq u_{1}\left(t_{0}\right)+u_{1}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which gives a contradiction since we assumed $u_{1} \geq \frac{\beta+\gamma}{2}$ for all $t \geq M_{b_{1}}$. Thus there exists $t_{b_{3}}>M_{b_{1}}$ such that $u_{1}\left(t_{b_{3}}\right)=\frac{\beta+\gamma}{2}, u_{1}>\frac{\beta+\gamma}{2}$, and $u_{1}^{\prime}<0$ on $\left(M_{b_{1}}, t_{b_{3}}\right]$.

Lemma 3.5. Let $N>2,0<p<1$, and $N-p(N-2)<\alpha<2(N-1)$. Assuming (H1)-(H5) and that u_{1} solves (3.1), (3.5) then there exists $z_{1, b_{1}}>M_{b_{1}}$ such that $u_{1}\left(z_{1, b_{1}}\right)=0$. In fact, u_{1} has an infinite number of zeros on $(0, \infty)$.

Proof. Suppose now by the way of contradiction that $0<u_{1}<\gamma$ and thus $F\left(u_{1}\right)<$ 0 for $t>t_{b_{3}}$. Then from $(3.21)-(3.22)$ we have

$$
\begin{equation*}
\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right) \geq F\left(u_{1}\left(M_{b_{1}}\right)\right)>0 \text { for } t \geq M_{b_{1}} \tag{3.40}
\end{equation*}
$$

Therefore by (3.4) and 3.40 we have

$$
u_{1}^{\prime 2} \geq 2 h(t) F\left(u_{1}\left(M_{b_{1}}\right)\right) \geq \frac{2 k_{1} F\left(u_{1}\left(M_{b_{1}}\right)\right)}{(N-2)^{2} t^{q}}
$$

for $t>t_{b_{3}}$. Thus:

$$
\begin{equation*}
-u_{1}^{\prime} \geq C_{5} t^{-q / 2} \quad \text { where } C_{5}=\frac{\sqrt{2 k_{1} F\left(u_{1}\left(M_{b_{1}}\right)\right)}}{N-2}>0 \text { for } t>t_{b_{3}} \tag{3.41}
\end{equation*}
$$

Integrating (3.41) on $\left(t_{b_{3}}, t\right)$ gives

$$
u_{1} \leq \frac{\beta+\gamma}{2}-C_{5}\left(\frac{t^{1-\frac{q}{2}}-t_{b_{3}}^{1-\frac{q}{2}}}{1-\frac{q}{2}}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty \text { since } q<2
$$

Thus u_{1} gets negative contradicting that $u_{1}>0$ on $(0, \infty)$. Hence there exists $z_{1, b_{1}}>M_{b_{1}}$ such that $u_{1}\left(z_{1, b_{1}}\right)=0$ and $u_{1}^{\prime}<0$ on $\left(M_{b_{1}}, z_{1, b_{1}}\right]$.

In a similar way to Lemma 3.3 we can show that u_{1} has a negative local minimum, $m_{b_{1}}>z_{1, b_{1}}$, and similar to Lemma 3.5 we can show that u_{1} has a second zero $z_{2, b_{1}}>m_{b_{1}}$. It then in fact follows that u_{1} has an infinite number of zeros $z_{n, b_{1}}$. This completes the proof.

Proof of Theorem 1.1. By continuous dependence on initial conditions it follows that $z_{1, b_{1}}$ is a continuous function of b_{1}. In addition, by Lemma 3.2 it follows that $t_{b_{1}} \rightarrow \infty$ as $b_{1} \rightarrow 0^{+}$and since $z_{1, b_{1}}>t_{b_{1}}$ it follows that $z_{1, b_{1}} \rightarrow \infty$ as $b_{1} \rightarrow 0^{+}$.

So now let k, n be nonnegative integers with $0 \leq k \leq n$. Choose $R>0$ sufficiently small so that $z_{1, b_{1}}<\cdots<z_{n, b_{1}}<R^{2-N}$. Then by the intermediate value theorem there exists a smallest value of $b_{1}>0$, say $b_{1, k}$, such that $z_{k, b_{1, k}}=R^{2-N}$. Then $u_{1}\left(t, b_{1, k}\right)$ is a solution of (3.1) and (3.5) such that $u_{1}\left(t, b_{1, k}\right)$ has k zeros on (0, $\left.R^{2-N}\right)$.

Finally defining

$$
U_{k}(r)=(-1)^{k} u_{1}\left(r^{2-N}, b_{1, k}\right)
$$

we see that U_{k} solves (1.4), U_{k} has k zeros on (R, ∞), and $\lim _{r \rightarrow \infty} U_{k}(r)=0$. This completes the proof.

Note: A crucial step in proving Theorem 1.1 is Lemma 3.3 which says that if $N-p(N-2)<\alpha<2(N-1)$ then every solution of 3.1), 3.5 must have a local maximum. We conjecture that a similar lemma does not hold for $2<\alpha<$ $N-p(N-2)$ because for an appropriate constant $c>0$ the function $c t^{\frac{\alpha-2}{(N-2)(1-p)}}$ is a monotonically increasing solution of the model equation

$$
u^{\prime \prime}+\frac{1}{t^{q}} u^{p}=0
$$

with $q=\frac{2(N-1)-\alpha}{N-2}$ and $0<p<1$.

References

[1] H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[2] H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary differential equations, Ginn and Company, 1962.
[5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[6] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, submitted to the Journal of Partial Differential Equations, 2016.
[7] J. Iaia; Existence for semilinear equations on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, No. 108, 1-12, 2016.
[8] J. Iaia; Existence of solutions for semilinear problems on exterior domains, submitted to Journal of Mathematical Analysis and Applications, 2016.
[9] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, to appear in Journal of Mathematical Analysis and Applications, 446, 591-604, 2017.
[10] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[11] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[12] K. McLeod, W.C. Troy, F.B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros; Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[14] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domains; semilinear; sublinear; radial.
 (C)2017 Texas State University.

 Submitted December 29, 2016. Published September 13, 2017.

