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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Communicated by Zhaosheng Feng

Abstract. In this article we study radial solutions of ∆u + K(r)f(u) = 0

on the exterior of the ball of radius R > 0, BR, centered at the origin in RN
with u = 0 on ∂BR where f is odd with f < 0 on (0, β), f > 0 on (β,∞),

f(u) ∼ up with 0 < p < 1 for large u and K(r) ∼ r−α for large r. We prove

that if N > 2 and K(r) ∼ r−α with 2 < α < 2(N − 1) then there are no
solutions with limr→∞ u(r) = 0 for sufficiently large R > 0. On the other

hand, if 2 < N − p(N − 2) < α < 2(N − 1) and k, n are nonnegative integers

with 0 ≤ k ≤ n then there exist solutions, uk, with k zeros on (R,∞) and
limr→∞ uk(r) = 0 if R > 0 is sufficiently small.

1. Introduction

In this article we study radial solutions of

∆u+K(r)f(u) = 0 in RN\BR, (1.1)

u = 0 on ∂BR, (1.2)

u→ 0 as |x| → ∞ (1.3)

where BR is the ball of radius R > 0 centered at the origin in RN and K(r) > 0.
We assume:

(H1) f is odd and locally Lipschitz, f < 0 on (0, β), f > 0 on (β,∞), and
f ′(0) < 0.

(H2) There exists p with 0 < p < 1 such that f(u) = |u|p−1u + g(u) where
limu→∞

|g(u)|
|u|p = 0.

We let F (u) =
∫ u
0
f(s) ds. Since f is odd it follows that F is even and from (H1) it

follows that F is bounded below by −F0 < 0, F has a unique positive zero, γ, with
0 < β < γ, and

(H3) −F0 < F < 0 on (0, γ), F > 0 on (γ,∞).

When f grows superlinearly at infinity - i.e. limu→∞
f(u)
u = ∞, Ω = RN ,

and K(r) ≡ 1 then the problem (1.1), (1.3) has been extensively studied [1]-[3],
[10, 12, 14].
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Interest in the topic for this paper comes from recent papers [5, 11, 13] about
solutions of differential equations on exterior domains. In [7]-[9] we studied (1.1)-
(1.3) with K(r) ∼ r−α, f superlinear, and Ω = RN\BR with various values for
α. In those papers we proved existence of an infinite number of solutions - one
with exactly n zeros for each nonnegative integer n such that u → 0 as |x| → ∞
for all R > 0. In [6] we studied (1.1)-(1.3) with K(r) ∼ r−α, f bounded, and
Ω = RN\BR. In this paper we consider the case where f grows sublinearly at
infinity - i.e. limu→∞

f(u)
up = c0 > 0 with 0 < p < 1.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) =
u(|x|) = u(r) where x ∈ RN and r = |x|=

√
x2

1 + · · ·+ x2
N so that u solves

u′′(r) +
N − 1
r

u′(r) +K(r)f(u(r)) = 0 on (R,∞) where R > 0, (1.4)

u(R) = 0, u′(R) = b ∈ R. (1.5)

We will also assume that
(H4) there exist constants k1 > 0, k2 > 0, and α with 0 < α < 2(N − 1) such

that
k1r
−α ≤ K(r) ≤ k2r

−α on [R,∞). (1.6)

(H5) K is differentiable, on [R,∞), limr→∞
rK′

K = −α, and rK′

K + 2(N − 1) > 0.

Note that (H5) implies r2(N−1)K(r) is increasing. In this article we prove the
following result.

Theorem 1.1. Let N > 2, 0 < p < 1, and 2 < N − p(N − 2) < α < 2(N − 1).
Assuming (H1)–(H5) then given nonnegative integers k, n with 0 ≤ k ≤ n then there
exist solutions, uk, of (1.4)-(1.5) with k zeros on (R,∞) and limr→∞ uk(r) = 0 if
R > 0 is sufficiently small.

In addition we also prove:

Theorem 1.2. Let N > 2, 0 < p < 1 and 2 < α < 2(N − 1). Assuming (H1)–
(H5), there are no solutions of (1.4)-(1.5) such that limr→∞ u(r) = 0 if R > 0 is
sufficiently large.

Note that for the superlinear problems studied in [7]-[9] we were able to prove
existence for any R > 0 whereas in the sublinear case and in [6] we only get solutions
if R is sufficiently small.

2. Preliminaries and proof of Theorem 1.2

From the standard existence-uniqueness theorem for ordinary differential equa-
tions [4] it follows there is a unique solution of (1.4)-(1.5) on [R,R + ε) for some
ε > 0. We then define

E =
1
2
u′2

K
+ F (u). (2.1)

Using (H5) we see that

E′ = − u′2

2rK

(
2(N − 1) +

rK ′

K

)
≤ 0 for 0 < α < 2(N − 1). (2.2)

Thus E is nonincreasing. Hence it follows that

1
2
u′2

K
+ F (u) = E(r) ≤ E(R) =

1
2

b2

K(R)
for r ≥ R (2.3)
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and so we see from (H2)–(H4) that u and u′ are uniformly bounded wherever they
are defined from which it follows that the solution of (1.4)-(1.5) is defined on [R,∞).

Lemma 2.1. Let N > 2, 0 < p < 1, and 0 < α < 2(N − 1). Assume (H1)–(H5)
and suppose u satisfies (1.4)-(1.5) with b > 0. If u has a zero, zb, with u > 0 on
(R, zb) or if u > 0 for r > R and limr→∞ u = 0 then u has a local maximum, Mb,
with R < Mb, u′ > 0 on (R,Mb), Mb →∞ as b→∞, and u(Mb)→∞ as b→∞.

Proof. Since u(R) = 0 and u′(R) = b > 0 we see that u gets positive for r > R and
if u has a zero, zb, or if u > 0 and limr→∞ u(r) = 0 then u has a critical point, Mb,
such that u′ > 0 on (R,Mb). Then u′(Mb) = 0 and u′′(Mb) ≤ 0. By uniqueness of
solutions of initial value problems it follows that u′′(Mb) < 0 and thus Mb is a local
maximum. Next suppose there exists M0 > R such that Mb ≤ M0 for all b > 0.
Letting vb(r) = u(r)

b then from (1.5) we have vb(R) = 0, v′b(R) = 1 and

v′′b (r) +
N − 1
r

v′b(r) +K(r)
f(bvb(r))

b
= 0 for r ≥ R. (2.4)

It follows from (2.1)-(2.2) that(1
2
v′2b
K

+
F (bvb)
b2

)′
≤ 0 for r ≥ R

and thus
1
2
v′2b
K

+
F (bvb)
b2

≤ 1
2K(R)

for r ≥ R. (2.5)

It then follows from (2.5) and (H2)–(H4) that |v′b| is uniformly bounded for large
b > 0 on [R,∞). So there is a constant C1 > 0 such that

|v′b| ≤ C1 for large b > 0 and all r ≥ R. (2.6)

We now fix a compact set [R,R0]. Then on [R,R0] we have by (2.6)

|vb| = |(r −R) +
∫ r

R

v′b(t) dt| ≤ (1 + C1)(R0 −R)

so we see that |vb| is uniformly bounded for large b on [R,R0].
In addition from (H1)–(H2) it follows there is a constant C2 > 0 such that

|f(u)| ≤ C2|u|p for all u (2.7)

and therefore since the vb are uniformly bounded on [R,R0] and 0 < p < 1 it follows
that

|f(bvb)
b
| ≤ C2|vb|p

b1−p
→ 0 as b→∞. (2.8)

Then from (2.4) and (2.8) we see that |v′′b | is uniformly bounded on [R,R0]. So
by the Arzela-Ascoli theorem there is a subsequence of vb (still denoted vb) such
that vb → v0 and v′b → v′0 uniformly on [R,R0] as b → ∞. It then follows from
(2.4) that v′′b converges uniformly to v′′0 on [R,R0] and v′′0 + N−1

r v′0 = 0. Since R0

is arbitrary we see that v′′0 + N−1
r v′0 = 0 on [R,∞). Thus, rN−1v′0 = RN−1 and

v0 = RN−1[R2−N−r2−N ]
N−2 . Now since Mb ≤ M0 for all b > 0 then a subsequence of

Mb converges to some M and since v′b(Mb) = 0 it follows that v′0(M) = 0. However
this contradicts that v′0 = RN−1

rN−1 > 0. Therefore our assumption that the Mb are
bounded is false and so we see Mb →∞ as b→∞.

Next we see that since Mb → ∞ then Mb > 2R if b is sufficiently large and
since u is increasing on [R,Mb] then u(Mb)

b ≥ u(2R)
b = vb(2R) → v0(2R) > 0 for
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sufficiently large b. Thus u(Mb) >
v0(2R)

2 b for sufficiently large b and so we see that
u(Mb)→∞ as b→∞. This completes the proof. �

Lemma 2.2. Let N > 2, 0 < p < 1, 2 < α < 2(N − 1), and assume (H1)–(H5). If
u(zb) = 0 with u > 0 on (R, zb) or u > 0 on (R,∞) with limr→∞ u = 0 then

[u(Mb)]
1−p
2 M

α
2−1

b ≤ k2
α
2 − 1

√
1

p+ 1
+

F0

γp+1
. (2.9)

Proof. We first show that if u(zb) = 0 with u > 0 on (Mb, zb) then u′ < 0 on (Mb, zb)
and if u > 0 on (Mb,∞) with limr→∞ u(r) = 0 then u′ < 0 on (Mb,∞). In the first
case, if u has a positive local minimum, mb, with Mb < mb < zb then u′(mb) = 0,
u′′(mb) ≤ 0, so f(u(mb)) ≥ 0 which implies 0 < u(mb) ≤ β. On the other hand,
since E is nonincreasing 0 > F (u(mb)) = E(mb) ≥ E(zb) = 1

2
u′2(zb)
K(zb)

≥ 0 which
is impossible. Secondly, suppose u > 0 on (R,∞) and limr→∞ u(r) = 0. Since
E is nonincreasing it follows that limr→∞E(r) exists and since 1

2
u′2

K ≥ 0 and
F (u(r))→ 0 as r →∞ we see that limr→∞E(r) ≥ 0. Thus E(r) ≥ 0 for all r ≥ R.
On the other hand, if u has a positive local minimum, mb, then 0 < u(mb) ≤ β and
E(mb) = F (u(mb)) < 0 again yielding a contradiction.

Next, it follows from (2.1)-(2.2) that E(t) ≤ E(Mb) for t ≥ Mb. Rewriting this
inequality we obtain

|u′(t)|√
2
√
F (u(Mb))− F (u(t))

≤
√
K for t ≥Mb. (2.10)

If u(zb) = 0 then integrating (2.10) on (Mb, zb) and using that u′ < 0 on (Mb, zb)
gives ∫ u(Mb)

0

dt√
F (u(Mb))− F (t)

=
∫ zb

Mb

−u′(t)√
2
√
F (u(Mb))− F (u(t))

dt

≤
∫ zb

Mb

√
K dt

≤ k2
α
2 − 1

(M1−α2
b − z1−α2

b )

≤ k2
α
2 − 1

M
1−α2
b .

(2.11)

Similarly if u(r) > 0 and limr→∞ u = 0 then integrating (2.10) on (Mb,∞) and
using that u′ < 0 on (Mb,∞) we again obtain∫ u(Mb)

0

dt√
F (u(Mb))− F (t)

≤ k2
α
2 − 1

M
1−α2
b .

Next from (H2), (H3) and (2.7) it follows that −F0 ≤ F (u) ≤ C2|u|p+1

p+1 for all u.
Therefore estimating the left-hand side of (2.11) gives∫ u(Mb)

0

dt√
F (u(Mb))− F (t)

≥ u(Mb)√
C2[u(Mb)]p+1

p+1 + F0

=
[u(Mb)]

1−p
2√

C2
p+1 + F0

[u(Mb)]p+1

. (2.12)

Also from (2.1)-(2.2) if u(zb) = 0 then we have F (u(Mb)) = E(Mb) ≥ E(zb) =
1
2
u′2(zb)
K(zb)

≥ 0 and so u(Mb) ≥ γ. On the other hand, if u > 0 and limr→∞ u = 0
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then as we saw earlier E(r) ≥ 0 for all r ≥ R. Thus F (u(Mb)) = E(Mb) ≥ 0 and
again we see u(Mb) ≥ γ. Now using (2.12) in (2.11) and rewriting gives

1−p
2 M

α
2−1

b ≤ k2
α
2 − 1

√
C2

p+ 1
+

F0

[u(Mb)]p+1

≤ k2
α
2 − 1

√
C2

p+ 1
+

F0

γp+1
.

(2.13)

This completes the proof. �

Proof of Theorem 1.2. If u has a zero, zb, with u > 0 on (R, zb) or u > on (R,∞)
with limr→∞ u(r) = 0 then by Lemmas 2.1 and 2.2 we know that u has a local
maximum, Mb, with R < Mb and u′ > 0 on (R,Mb). In addition, from the proof
of Lemma 2.2 we have u(Mb) ≥ γ. Combining this with (2.13) and the fact that
α > 2 and 0 < p < 1 we obtain

γ
1−p
2 R

α
2−1 ≤ [u(Mb)]

1−p
2 M

α
2−1

b ≤ k2
α
2 − 1

√
1

p+ 1
+

F0

γp+1
. (2.14)

Thus we see that if R is sufficiently large then (2.14) is violated and so we obtain
a contradiction. This completes the proof of Theorem 1.2. �

3. Proof of Theorem 1.1

We now turn to the proof of existence for N > 2, 0 < p < 1, 2 < N −p(N −2) <
α < 2(N − 1) and R > 0 sufficiently small. First we make the change of variables:

u(r) = u1(r2−N ) .

Using (1.4) we see that u1 satisfies

u′′1 + h(t)f(u1) = 0 (3.1)

where it follows from (H4)–(H5) that:

0 < h(t) =
t

2(N−1)
2−N K(t

1
2−N )

(N − 2)2
and h′(t) < 0 for t > 0, (3.2)

u1(R2−N ) = 0 and u′1(R2−N ) = −bR
N−1

N − 2
< 0. (3.3)

In addition, from (H4) we have

k1

(N − 2)2tq
≤ h(t) ≤ k2

(N − 2)2tq
for all t > 0, where q =

2(N − 1)− α
N − 2

. (3.4)

Note: Since 2 < α < 2(N − 1), N > 2, and q = 2(N−1)−α
N−2 it follows that

0 < q < 2.
Now instead of considering (3.1) with (3.3) we consider (3.1) with

u1(0) = 0, u′1(0) = b1 > 0. (3.5)

Integrating (3.1) twice on (0, t) and using (3.5) we see that a solution of (3.1), (3.5)
is equivalent to a solution of:

u1 = b1t−
∫ t

0

∫ s

0

h(x)f(u1) dx ds. (3.6)
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Letting u1 = tv1 we see that a solution of (3.6) is equivalent to a solution of

v1 = b1 −
1
t

∫ t

0

∫ s

0

h(x)f(xv1) dx ds. (3.7)

Now we define

Tv1 = b1 −
1
t

∫ t

0

∫ s

0

h(x)f(xv1) dx ds. (3.8)

Let 0 < ε < 1. Denoting ‖w‖ = sup[0,ε] |w(x)| we let

B = {v ∈ C[0, ε] | ‖v − b1‖ ≤ 1}

where C[0, ε] is the set of continuous functions on [0, ε]. It follows from (H1)–(H2)
that there exists L > 0 such that

|f(u)| ≤ L|u| for all u. (3.9)

Then by (3.4), (3.8)-(3.9), and since q < 2 as well as |v1| ≤ 1 + b1:

|Tv1 − b1| ≤
Lk2

(N − 2)2t

∫ t

0

∫ s

0

x−qx|v1| dx ds

≤ Lk2(1 + b1)t2−q

(2− q)(3− q)(N − 2)2

≤ Lk2(1 + b1)ε2−q

(2− q)(3− q)(N − 2)2
.

Thus for sufficiently small ε > 0 we have T : B → B. Next we see by the mean
value theorem, (3.4), and (3.9) that we have

|Tv1 − Tv2| = |
1
t

∫ t

0

∫ s

0

h(x)[f(xv1)− f(xv2)] dx ds|

≤ L

t

∫ t

0

∫ s

0

xh(x)|v1 − v2| dx ds

≤ Lk2

(N − 2)2
‖v1 − v2‖

1
t

∫ t

0

∫ s

0

xx−q dx ds

≤ Lk2ε
2−q

(2− q)(3− q)(N − 2)2
‖v1 − v2‖.

Thus for small enough ε > 0 we see that T is a contraction for any b1 > 0 and so
by the contraction mapping principle there is a solution of (3.7) and hence of (3.1),
(3.5) on [0, ε] for some ε > 0.

Next from (3.7) and (3.9) we have

|u1

t
| = |v1| ≤ b1 +

L

t

∫ t

0

∫ s

0

xh(x)|v1(x)| dx ds (3.10)

≤ b1 +
Lk2

(N − 2)2t

∫ t

0

∫ s

0

x1−q|v1(x)| dx ds

≤ b1 +
k2L

(N − 2)2

∫ t

0

x1−q|v1(x)| dx. (3.11)

Now let w1 =
∫ t
0
s1−q|v1(s)| ds. Then

w′1 = t1−q|v1(t)| = t−q|u1(t)| (3.12)
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and from (3.10)-(3.12) we obtain

w′1 −
k2L

(N − 2)2
t1−qw1 ≤ b1t1−q. (3.13)

Multiplying (3.13) by µ(t) = e
− k2Lt

2−q

(2−q)(N−2)2 ≤ 1, integrating on [0, t], and rewriting
gives

w1 ≤
b1
µ(t)

∫ t

0

s1−qµ(s) ds ≤ b1
(2− q)

t2−q

µ(t)
. (3.14)

Then from (3.12)-(3.14) we obtain

u1 ≤
( k2L

(2− q)(N − 2)2
)b1t3−q
µ(t)

+ b1t = b1
(
t+B(t)t3−q

)
(3.15)

where

B(t) =
( k2L

(2− q)(N − 2)2
) 1
µ(t)

. (3.16)

Note that µ(t) is decreasing and continuous hence B(t) is increasing and continuous.
Next it follows from (3.6) that

u′1 = b1 −
∫ t

0

h(x)f(u1) dx (3.17)

and thus from (3.4), (3.15), (3.17), and since B(t) is increasing:

|u′1| ≤ b1 +
k2L

(N − 2)2

∫ t

0

x−qb1
(
x+B(x)x3−q) dx

≤ b1 +
k2Lb1

2(N − 2)2(2− q)
(
2t2−q +B(t)t4−2q

)
.

(3.18)

Thus from (3.15) and (3.18) we see that u1 and u′1 are bounded on [0, t] and so it
follows that the solution of (3.1), (3.5) exists on [0, t]. Since t is arbitrary it follows
that the solution of (3.1), (3.5) exists on [0,∞).

Lemma 3.1. Let N > 2, 0 < p < 1, and 2 < α < 2(N − 1). Assuming (H1)–(H5)
and that u1 solves (3.1), (3.5) then there exists tb1 > 0 such that u1(tb1) = β and
0 < u1 < β on (0, tb1). In addition, u′1(t) > 0 on [0, tb1 ].

Proof. Since u′1(0) = b1 > 0 we see that u1 is initially increasing, positive, and less
than β. On this set f(u1) < 0 and so by (3.1) we have u′′1 > 0. Thus by (3.5) we
have u′1 > b1 > 0 when 0 < u1 < β and so on this set we have u1 > b1t. Since
b1t exceeds β for sufficiently large t we see then that there exists tb1 > 0 such that
u1(tb1) = β and 0 < u1 < β on (0, tb1). This completes the proof. �

Lemma 3.2. Let N > 2, 0 < p < 1, and 2 < α < 2(N − 1). Assuming (H1)–(H5)
and that u1 solves (3.1), (3.5) then tb1 →∞ as b1 → 0+.

Proof. Evaluating (3.15) at t = tb1 gives:

β = u1(tb1) ≤ b1(tb1 +B(tb1)t3−qb1
). (3.19)

Since 2 < α < 2(N − 1) it then follows from the note after (3.4) that 0 < q < 2.
Now if tb1 is bounded as b1 → 0+ then the right-hand side of (3.19) goes to 0 as
b1 → 0+ which violates (3.19). Thus we obtain a contradiction and so we see that
tb1 →∞ as b1 → 0+. This completes the proof. �
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Lemma 3.3. Let N > 2, 0 < p < 1, and N − p(N − 2) < α < 2(N − 1). Assuming
(H1)–(H5) and that u1 solves (3.1), (3.5) then u1 has a local maximum, Mb1 , on
(0,∞).

Proof. From Lemma 3.1 it follows that there exists tb1 > 0 such that u1(tb1) = β
and u′1 > 0 on [0, tb1 ]. Now if u1 does not have a local maximum then u′1 ≥ 0 for
t > tb1 and so u1 ≥ u1(tb1 + δ) > β > 0 for t > tb1 + δ and some δ > 0. Then from
(H2) we see that there is a C3 > 0 such that f(u1) ≥ C3 on [tb1 + δ,∞). Thus

− u′′1 = h(t)f(u1) ≥ C3h(t) for t > tb1 + δ. (3.20)

We now divide the rest of the proof into 3 cases.
Case 1: N < α < 2(N − 1) In this case we see from (3.4) that 0 < q < 1 so
integrating (3.20) on (tb1 + δ, t) and using (3.4) gives

u′1 ≤ u′1(tb1 + δ)− k1C3

(1− q)(N − 2)2
(
t1−q − (tb1 + δ)1−q

)
→ −∞ as t→∞.

Thus u′1 gets negative which contradicts that u′1 ≥ 0 for t > 0 and so u1 must have
a local maximum.
Case 2: α = N In this case we have q = 1 by (3.4) and so again integrating (3.20)
on (tb1 + δ, t) we obtain

u′1 ≤ u′1(tb1 + δ)− k1C3

(N − 2)2
(ln(t)− ln(tb1 + δ))→ −∞ as t→∞

which again contradicts that u′1 ≥ 0 for t > 0. Thus u1 must have a local maximum.

Case 3: N − p(N − 2) < α < N We denote

E1 =
1
2
u′21
h(t)

+ F (u1) (3.21)

and observe from (3.1)-(3.2) that

E′1 =
(1

2
u′21
h(t)

+ F (u1)
)′

= −u
′2
1 h
′

2h2
≥ 0. (3.22)

In addition we see from (3.4) that E1(0) = 0 and so E1(t) ≥ 0 for t ≥ 0.
We suppose now that u1 is increasing for t > tb1 . We first show that there exists

tb2 > tb1 such that u(tb2) = γ. So we suppose by the way of contradiction that
0 < u1 < γ and u′1 ≥ 0 for t > tb1 .

Then from (3.1)-(3.2) and (H3) we have(1
2
u′21 + h(t)F (u1)

)′
= h′(t)F (u1) ≥ 0 when 0 ≤ u1 ≤ γ. (3.23)

Now we recall from (H1) that limu1→0
F (u1)
u2

1
= f ′(0)

2 . Also since u1(0) = 0 and
u′1(0) = b1 then limt→0+

u1
t = b1. Therefore for small positive t and (3.4) we have

0 ≤ h(t)|F (u1)| = t2h(t)
|F (u1)|
u2

1

u2
1

t2
≤ |f

′(0)| k2 b
2
1 t

2−q

(N − 2)2
→ 0 (3.24)

as t → 0+ since q < 2. Therefore, integrating (3.23) on (0, t) and using (3.24) we
obtain

1
2
u′21 + h(t)F (u1) ≥ 1

2
b21 when 0 ≤ u1 ≤ γ. (3.25)
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In addition, since 0 ≤ u1 ≤ γ it follows that h(t)F (u1) ≤ 0 and thus from (3.25),

u′1 ≥ b1 when 0 ≤ u1 ≤ γ. (3.26)

Integrating on (0, t) we obtain

u1 ≥ b1t→∞ as t→∞
- a contradiction since we assumed u1 < γ. Thus there exists tb2 > tb1 such that
u(tb2) = γ and u′1 ≥ b1 > 0 on [0, tb2 ] by (3.26).

We show now that u1(t)→∞ as t→∞. If not then u1 is bounded from above
and so there exists Q > γ such that limt→∞ u1(t) = Q. Returning to (3.1) we see
that this implies:

lim
t→∞

u′′1
h(t)

= −f(Q) < 0. (3.27)

In particular, u′′1 < 0 for large t and so u′1 is decreasing for large t. Since u′1 > 0
for large t it follows that limt→∞ u′1 exists. This limit must be zero otherwise
this would imply u1 → ∞ as t → ∞ contradicting the assumption that u1 is
bounded. Thus limt→∞ u′1 = 0. Next denoting H(t) =

∫∞
t
h(s) ds we see that since

N − p(N − 2) < α < N and q = 2(N−1)−α
N−2 this implies:

1 < q < 1 + p < 2. (3.28)

Therefore by (3.4) we see that h(t) is integrable at infinity so H(t) is defined. Then
by (3.27) and L’Hôpital’s rule we see that

lim
t→∞

u′1
H(t)

= lim
t→∞

− u′′1
h(t)

= f(Q) > 0. (3.29)

Then from (3.4) and (3.28)-(3.29) we see

u′1 ≥
f(Q)

2
H(t) ≥ k1f(Q)

2(q − 1)(N − 2)2
t1−q for large t. (3.30)

Now integrating (3.30) on (t0, t) where t0 and t are sufficiently large gives

u1 ≥ u1(t0) +
k1f(Q)
2(q − 1)

t2−q

(2− q)(N − 2)2
→∞ as t→∞ since q < 2

- a contradiction since we assumed u1 was bounded. Thus if u′1 > 0 for t > 0 then
it must be that u1 →∞ as t→∞.

Next recalling (3.23) we have(1
2
u′21 + h(t)F (u1)

)′
= h′(t)F (u1) < 0 when u1 > γ. (3.31)

Integrating this on (tb2 , t) gives
1
2
u′21 + h(t)F (u1) ≤ 1

2
u′21 (tb2) for t > tb2 . (3.32)

On (tb2 , t) we have h(t)F (u1) > 0 and thus from (3.32):

|u′1| < |u′1(tb2)| for t > tb2 . (3.33)

We claim now that

lim
t→∞

t2h(t)f(u1)
u1

=∞. (3.34)

Integrating (3.33) on (tb2 , t) gives

u1 < γ + (t− tb2)|u′1(tb2)| ≤ C4t for some C4 > 0 for large t. (3.35)
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Next from (H2) we have

f(u1)
up1

≥ 1− ε for large u1.

Thus by (3.35),

f(u1)
u1

≥ (1− ε)up1
u1

=
(1− ε)
u1−p

1

≥ (1− ε)
C1−p

4 t1−p
for large t. (3.36)

Therefore by (3.4), (3.28), and (3.36):

t2h(t)f(u1)
u1

≥ k1(1− ε)
C1−p

4 (N − 2)2
t2−q

t1−p
=

k1(1− ε)
C1−p

4 (N − 2)2
t1+p−q →∞,

since 1 + p > q. This establishes (3.34).
Next we rewrite (3.1) as

u′′1 +
t2h(t)f(u1)

u1

u1

t2
= 0. (3.37)

Now it follows from (3.34) that we may choose t0 sufficiently large so that

t2h(t)f(u1)
u1

≥ A >
1
4

on [t0,∞).

Next let y1 be the solution of

y′′1 +A
y1
t2

= 0 (3.38)

with y1(t0) = u1(t0) = γ and y′1(t0) = u′1(t0) > 0. It follows then for some constants
d1 6= 0 and d2 that

y1 = d1

√
t
(

sin
(

ln
(
t

√
A− 1

4
)

+ d2

))
and so clearly y1 has an infinite number of local extrema on [t0,∞). Consider now
the interval [t0,M ] such that y1 > 0, y′1 > 0 on [t0,M ] and y′1(M) = 0. We claim
now that u′1 must get negative on [t0,M ]. So suppose not. Then u′1 ≥ 0 on [t0,M ].
Then multiplying (3.37) by y1, multiplying (3.38) by u1, and subtracting we obtain

(y1u′1 − y′1u1)′ +
( t2h(t)f(u1)

u1
−A

)y1u1

t2
= 0.

Integrating this on [t0,M ] gives

y1(M)u′1(M) +
∫ M

t0

( t2h(t)f(u1)
u1

−A
)y1u1

t2
dt = 0. (3.39)

The integral term in (3.39) is positive by (3.34) and also y1(M)u′1(M) ≥ 0 yielding
a contradiction. Therefore we see that u1 must have a maximum, Mb1 > 0, and
u′1 > 0 on [0,Mb1). This completes the proof. �

Lemma 3.4. Let N > 2, 0 < p < 1, and N − p(N − 2) < α < 2(N − 1). Assuming
(H1)–(H5) and that u1 solves (3.1), (3.5) then there exists tb3 > Mb1 such that
u1(tb3) = β+γ

2 and u′1 < 0 on (Mb1 , tb3 ].
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Proof. If u1 ≥ β+γ
2 for all t ≥Mb1 , then f(u1) > 0 for t ≥Mb. Then from (3.1) it

follows that u′′1 < 0 and thus u′1(t) ≤ u′1(t0) < 0 for t > t0 > Mb1 . Integrating this
inequality on (t0, t) gives

u1(t) ≤ u1(t0) + u′1(t0)(t− t0)→ −∞ as t→∞

which gives a contradiction since we assumed u1 ≥ β+γ
2 for all t ≥Mb1 . Thus there

exists tb3 > Mb1 such that u1(tb3) = β+γ
2 , u1 >

β+γ
2 , and u′1 < 0 on (Mb1 , tb3 ]. �

Lemma 3.5. Let N > 2, 0 < p < 1, and N − p(N − 2) < α < 2(N − 1). Assuming
(H1)–(H5) and that u1 solves (3.1), (3.5) then there exists z1,b1 > Mb1 such that
u1(z1,b1) = 0. In fact, u1 has an infinite number of zeros on (0,∞).

Proof. Suppose now by the way of contradiction that 0 < u1 < γ and thus F (u1) <
0 for t > tb3 . Then from (3.21)-(3.22) we have

1
2
u′21
h(t)

+ F (u1) ≥ F (u1(Mb1)) > 0 for t ≥Mb1 . (3.40)

Therefore by (3.4) and (3.40) we have

u′21 ≥ 2h(t)F (u1(Mb1)) ≥ 2k1F (u1(Mb1))
(N − 2)2tq

for t > tb3 . Thus:

− u′1 ≥ C5t
−q/2 where C5 =

√
2k1F (u1(Mb1))

N − 2
> 0 for t > tb3 . (3.41)

Integrating (3.41) on (tb3 , t) gives

u1 ≤
β + γ

2
− C5

( t1− q2 − t1− q2b3

1− q
2

)
→ −∞ as t→∞ since q < 2.

Thus u1 gets negative contradicting that u1 > 0 on (0,∞). Hence there exists
z1,b1 > Mb1 such that u1(z1,b1) = 0 and u′1 < 0 on (Mb1 , z1,b1 ].

In a similar way to Lemma 3.3 we can show that u1 has a negative local minimum,
mb1 > z1,b1 , and similar to Lemma 3.5 we can show that u1 has a second zero
z2,b1 > mb1 . It then in fact follows that u1 has an infinite number of zeros zn,b1 .
This completes the proof. �

Proof of Theorem 1.1. By continuous dependence on initial conditions it follows
that z1,b1 is a continuous function of b1. In addition, by Lemma 3.2 it follows that
tb1 →∞ as b1 → 0+ and since z1,b1 > tb1 it follows that z1,b1 →∞ as b1 → 0+.

So now let k, n be nonnegative integers with 0 ≤ k ≤ n. Choose R > 0 suffi-
ciently small so that z1,b1 < · · · < zn,b1 < R2−N . Then by the intermediate value
theorem there exists a smallest value of b1 > 0, say b1,k, such that zk,b1,k = R2−N .
Then u1(t, b1,k) is a solution of (3.1) and (3.5) such that u1(t, b1,k) has k zeros on
(0, R2−N ).

Finally defining
Uk(r) = (−1)ku1(r2−N , b1,k)

we see that Uk solves (1.4), Uk has k zeros on (R,∞), and limr→∞ Uk(r) = 0. This
completes the proof. �
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Note: A crucial step in proving Theorem 1.1 is Lemma 3.3 which says that if
N − p(N − 2) < α < 2(N − 1) then every solution of (3.1), (3.5) must have a
local maximum. We conjecture that a similar lemma does not hold for 2 < α <

N − p(N − 2) because for an appropriate constant c > 0 the function ct
α−2

(N−2)(1−p)

is a monotonically increasing solution of the model equation

u′′ +
1
tq
up = 0

with q = 2(N−1)−α
N−2 and 0 < p < 1.
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