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NONEXISTENCE OF GLOBAL SOLUTIONS OF CAUCHY
PROBLEMS FOR SYSTEMS OF SEMILINEAR HYPERBOLIC

EQUATIONS WITH POSITIVE INITIAL ENERGY

AKBAR B. ALIEV, GUNAY I. YUSIFOVA

Communicated by Mokhtar Kirane

Abstract. In this paper we study the Cauchy problem for a system of semi-

linear hyperbolic equations. We prove a theorem on the nonexistence of global
solutions with positive initial energy.

1. Introduction

We study the solution of some Cauchy problems for systems containing nonlinear
wave equations, from mathematical physics problems in [4, 8, 25, 31]. We consider
the system of nonlinear Klein-Gordon equations

uktt −∆uk + uk + γukt = fk(u1, . . . , um) k = 1, 2, . . . ,m , (1.1)

with initial conditions

uk(0, x) = uk0(x), ukt(0, x) = uk1(x), x ∈ Rn, k = 1, . . .,m, (1.2)

where fk(u1, . . . , uk) = |u1|ρ1k |u2|ρ2k . . . |um|ρmkuk, ρjk = pj + 1, ρkk = pk − 1,
k, j = 1, 2, . . . ,m, (u1, u2, . . . , um) are real functions depending on t ∈ R+ and
x ∈ Rn, p1, p2, . . . , pm are real numbers. System (1.1) describes the model of
interaction of various fields with single masses [8]. The goal of this paper is to
investigate nonexistence of global solutions of problem (1.1), (1.2).

Before going further, we briefly introduce some results for the wave equation

utt −∆u = f(u), (1.3)

with
f(u) ≥ (2 + ε)F (u), (1.4)

where F (u) =
∫ u
0
f(s)ds. The general nonlinearity f(u) satisfying (1.4) was firstly

considered for some abstract wave equations in [12], where Levine proved the blow-
up result when the initial energy is negative. But most results concerning the
Cauchy problem of the wave equation were established for the typical form of
nonlinearity as f(u) = |u|p−1u where 1 < p < n+2

n+1 as n ≥ 3 and 1 < p < ∞ as
n = 1, 2. Here we note that the above power satisfies the condition (1.4). For the

2010 Mathematics Subject Classification. 35G25, 35J50, 35Q51.
Key words and phrases. Semilinear hyperbolic equations; nonexistence of global solutions;

Cauchy problem; blow up.
c©2017 Texas State University.

Submitted August 17, 2017. Published September 11, 2017.

1



2 A. B. ALIEV, G. I. YUSIFOVA EJDE-2017/211

nonlinearity satisfying (1.4), the wave equations with damping term were studied
by many authors [5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 20, 22, 23, 32].

For existence and non-existence of global solutions for the Cauchy problem of
equation (1.3) with a damping term, we refer the reader to [7, 14, 26, 27]. In
particular, recently the wave equation with damping term was considered in [14],
where Levine and Todorova showed that for arbitrarily positive initial energy there
are choices of initial data such that the local solution blows up in finite time.
Subsequently, Todorova and Vitillaro [26] established more precise result regarding
the existence of initial values such that the corresponding solution blows up in
finite time for arbitrarily high initial energy. More recently, Gazzola and Squassina
[7] established sufficient conditions of initial data with arbitrarily positive initial
energy such that the corresponding solution blows up in finite time for the wave
equation with linear damping and in the mass free case on a bounded Lipschitz
subset of Rn. A fairly comprehensive picture of the studies in this direction can be
gained from the monograph [22].

In [15], [18] the authors obtained sufficient conditions on initial functions for
which the initial boundary value problem for second-order quasilinear strongly
damped wave equations blow up in a finite time. The nonexistence of global so-
lutions of a generalized fourth-order Klein-Gordon equation with positive initial
energy was analyzed in [11].

A mixed problem for systems of two semilinear wave equations with viscosity
and with memory was studied in [10, 21, 24, 29], where the nonexistence of global
solutions with positive initial energy was proved.

The nonexistence of global solutions of the problem

u1tt −∆u1 + u1 + γu1t = g1(u1, u2),

u2tt −∆u2 + u2 + γu2t = g2(u1, u2),
(1.5)

with

ui(0, x) = ui0(x), uit(0, x) = ui1(x), x ∈ Rn, i = 1, 2, (1.6)

where

g1(u1, u2) = |u1|p−1|u2|p+1u1, g2(u1, u2) = |u1|p+1|u2|p−1u2,

with negative initial energy was studied in [21], [27]. In the case when

g1(u1, u2) = |u1|p−1|u2|q+1u1, g2(u1, u2) = |u1|p+1|u2|q−1u2.

The absence of global solutions for problem (1.5), (1.6) was investigated in [1, 2].
Recently, more investigations were carried out in this field [1, 7, 24, 29].

The absence of global solutions with positive arbitrary initial energy for systems
of semilinear hyperbolic equations

uitt −∆ui + ui + γuit =
m∑

i,j=1i6=j

|uj |pj |ui|piui i = 1, 2, . . . ,m

was investigated in [2], where n ≥ 2, pj ≥ 0, j = 1, 2, . . . ,m, and
∑m
k=1 pk ≤

2
n−2 if

n ≥ 3.
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2. Formulation of the problem and main results

To state our main results, we briefly mention some facts, notation, and well
known results. We denote the norm on the space L2(Rn) by | · |, the inner product
on L2(Rn) by 〈·, ·〉, and the norm on the Sobolev space H1 = W 1

2 (Rn) by ‖u‖ =
[|∇u|2 + |u|2]

1
2 . The constants C and c used throughout this paper are positive

generic constants that may be different in various occurrences.
Assume that

pj > 0, j = 1, 2, . . . ,m, m = 2, 3, . . . ; (2.1)
m∑
k=1

pk +m− 2 ≤ 2
n− 2

if n ≥ 3. (2.2)

Let E(t) be the energy functional

E(t) =
m∑
j=1

pj + 1
2

[
|u′jt(t, ·)|2 + ‖uj(t, ·)‖2 + 2γ

∫ t

0

|u′jt(s, ·)|2ds
]

−
∫
Rn

m∏
j=1

|uj(t, x)|pj+1dx.

We also set

I(u1, . . . , um) =
m∑
j=1

pj + 1∑m
r=1 pr +m

‖uj(t, ·)‖2 −
∫
Rn

m∏
j=1

|uj(t, x)|pj+1dx. (2.3)

The main result of this article is stated in the following theorem.

Theorem 2.1. Let conditions (2.1) and (2.2) be satisfied. Assume uk0 ∈ H1 and
uk1 ∈ L2(Rn), k = 1, 2, . . . ,m, and

E(0) > 0, (2.4)

I(u10, u20, . . . , um0) < 0, (2.5)
m∑
k=1

〈uk0, uk1〉 ≥ 0, (2.6)

m∑
j=1

pj + 1
2
|uj0|2 >

∑m
j=1 pj +m∑m
j=1 pj

E(0). (2.7)

Then the solution of the Cauchy problem (1.1), (1.2) blows up in finite time.

Note that, in the case of m = 2, this result was obtained in [1], and in the case
m = 2, p1 = p2 ≥ 1, it was obtained in [29].

3. Auxiliary assertions

In the Hilbert space H̃ = L2(Rn) × L2(Rn) × · · · × L2(Rn) we write problem
(1.1), (1.2) as the Cauchy problem

w′′ +Bw′ +Aw = F (w), (3.1)

w(0) = w0, w′(0) = w1, (3.2)



4 A. B. ALIEV, G. I. YUSIFOVA EJDE-2017/211

where

w =


u1

u2

. . .
um

 , w0 =


u10(x)
u20(x)
. . .

um0(x)

 , w1 =


u11(x)
u21(x)
. . .

um1(x)


Here A and B are linear operators in H̃ defined by

A =


−∆ + 1 0 . . . 0

0 −∆ + 1 . . . 0
. . . . . . . . . . . .
0 0 . . . −∆ + 1

 ,

D(A) = H̃2 = H2 ×H2 × · · · ×H2,

B =


γ 0 . . . 0
0 γ . . . 0
. . . . . . . . . . . .
0 0 . . . γ

 ,

D(B) = L2(Rn)× L2(Rn)× · · · × L2(Rn),

F (w) =


f1(u1, u2, . . . , um)
f2(u1, u2, . . . , um)

. . .
fm(u1, u2, . . . , um)

 .

Note that A is a self-adjoint positive definite operator, B is a linear bounded
operator acting in H̃ and conditions (2.1), (2.2) imply that F (w) is a nonlinear
operator acting from H̃1 = H1 ×H1 × · · · ×H1 to H̃.

Lemma 3.1. Let n = 1, 2, pj ≥ 1, j = 1, 2, . . . , n, m = 2, 3, . . . or n = 3, m = 2,
p1 = p2 = 1. Then the nonlinear operator w → F (w) : H̃1 → H̃ satisfies the local
Lipchitz condition, that is for any w1, w2 ∈ H̃1 we have

‖F (w1)− F (w2)‖H̃ ≤ c(r)‖w
1 − w2‖H̃1

, (3.3)

where c(·) ∈ C(R+), c(r) ≥ 0, r =
∑2
i=1 ‖wi‖H̃1

.

Proof. Let us take wj = (uj1, u
j
2, . . . , u

j
m) ∈ H̃1, j = 1, 2. Then, by the mean value

theorem we have

‖F (w1)− F (w2)‖2
H̃
≤ c

m∑
k=1

m∑
j=1

∫
Rn

(|u1
j |2(ρjk−1) + |u2

j |2(ρjk−1))

×
m∏

i=1,i6=j

(|u1
j |2ρjk + |u2

j |2ρjk)|u1
j − u2

j |2dx.

(3.4)

Let n ≥ 2. By Holder inequality with exponents,

αik =
∑m
r=1 pr +m

ρki
if i 6= j, i = 1, . . . ,m,

αjk =
∑m
r=1 pr +m

ρkj − 1
, α0

k =
m∑
r=1

pr +m
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and using interpolation inequalities of Gagliardo and Nirenberg in the case n = 2
or Sobolev inequality in case n = 3 we have

‖F (w1)−F (w2)‖2eH ≤ c
(
‖w1‖

Pm
r=1 pr+m−1eH1

+‖w2‖
Pm

r=1 pr+m−1eH1

)
‖w1−w2‖ eH1

. (3.5)

In case n = 1, from (3.4) using embedding theorem we again obtain (3.1). �

By the theorem of solvability of the Cauchy problem for the evolution equation
[3], we have the following local solvability theorem for problem (2.3), (2.4).

Theorem 3.2. Let n = 1, 2, pj ≥ 1, j = 1, 2, . . . ,m, m = 2, 3, . . . or n = 3, m = 2,
p1 = p2 = 1. Then for arbitrary w0 ∈ H̃1, w1 ∈ H̃, there exists T ′ > 0 such that
problem (3.1), (3.2) has a unique solution w(·) ∈ C([0, T ∗]; H̃1) ∩ C1([0, T ∗]; H̃).
If Tmax = supT ∗, i.e., Tmax is the length of the maximal existence interval of the
solution w(·) ∈ C([0, Tmax); H̃1) ∩ C1([0, Tmax); H̃), then either

(i) Tmax = +∞, or
(ii) lim supt→Tmax−0[‖w(·)‖H̃1

+ ‖ẇ(·)‖H̃ ] = +∞.

Theorem 3.3. Let conditions (2.1) and (2.2) be satisfied. Then for arbitrary
w0 ∈ H̃1 and w1 ∈ H̃ there exists T ′ > 0 such that problem (3.1), (3.2) has a
solution w(·) ∈ C([0, T ′]; H̃1) ∩ C1([0, T ′]; H̃) and w(t) is either global or blow-up
in a finite time.

Proof. We carry out the proof by Galerkin’s method, using some considerations
from the work [18]. Let {w1, w2, . . . , wr . . . } be the basis of the space H̃1 and
wr(t, ·) =

∑r
j=1 grj(t)wj , r = 1, 2, . . . be defined as a solution of the system

(w′′r (t), ωj) eH + (Bw′r(t), wj) eH + (wr(t), ωj) eH1
= (F (wr), ωj) eH (3.6)

with initial data
wr(0, ·) = w0r, w′r(0, ·) = w1r, (3.7)

where w0r and w1r belongs to the subspace [ω1, ω2, . . . , ωr] generated by the r first
vectors of the basis {ωj}, and

w0r → w0 in H̃1 and w1r → w1 in H̃ if r →∞. (3.8)

By multiplying the equation (3.6) by g′rj(t) and summing by k, where k takes
the values from 1 to r, we get that

1
2
d

dt
[‖wrt(t, ·)‖2eH + ‖wr(t, ·)‖2eH1

] + (Bwrt(t, ·), wrt(t, ·)) eH
= (F (w(t, ·)), w′(t, ·)) eH .

(3.9)

Then using Holder’s inequalities and (3.5), for

yr(t) = ‖wrt(t, ·)‖2eH + ‖wr(t, ·)‖2eH1
(3.10)

from (3.9) we get y′r(t) ≤ c(yr(t))
Pm

r=1 pr+m.
Integrating this inequality and taking into account the inequality (3.4), we find

that there exists T ′ > 0 and r0 such that

yr(t) ≤ c, t ∈ [0, T ′], r ≥ r0. (3.11)

From (3.10), (3.11) it follows that there exists a subsequence still denoted by the
same symbols, such that

wr → w weak star in L∞(0, T ′; H̃1),
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w′r → w′ weak star in L∞(0, T ′; H̃), F (wr)→ χ weak star in L∞(0, T ′; H̃).

Further, using the method given in [16], we obtain that χ = F (w).
Passing to the limit is carried out by the standard method (for example, see

[[16, 18]). Thus, problem (3.1), (3.2) has the solution w ∈ L∞(0, T ′; H̃1), such that
w′ ∈ L∞(0, T ′; H̃) and F (w) ∈ L∞(0, T ′; H̃).

Further applying the linear theory of the hyperbolic equations, considering equa-
tion (3.1) as a linear equation with a given right-hand side of χ(t) = F (w) ∈
L∞(0, T ′; H̃), we find that w ∈ C([0, T ′]H̃1) ∩ C1([0, T ′]H̃) (see [17]). �

Remark 3.4. labelrmk3.1 If w0 ∈ H̃2 and w1 ∈ H̃1, then w(·) ∈ C([0, Tmax); H̃2)∩
C1([0, Tmax); H̃1).

Lemma 3.5. Let conditions (2.1), (2.2) and (2.4)-(2.7) be satisfied. Then

I(u1(t, .), u2(t, .), . . . , um(t, .)) < 0, t ∈ [0, Tmax).

Proof. By (2.5) there exists T1 > 0, such that

I(u1(t, ·), u2(t, ·), . . . , um(t, ·)) < 0, t ∈ [0, T1). (3.12)

We shall prove that T1 = Tmax. Assume that T1 < Tmax. Then by the continuity
of I(u1(t, ·), u2(t, ·), . . . , um(t, ·)) we have

I(u1(T1, ·), u2(T1, ·), . . . , um(T1, ·)) = 0. (3.13)

We introduce the functional F (t) =
∑m
j=1(pj + 1)|uj(t, ·)|2. Taking into account

Remark 2.1 and using (1.1), (1.2) we obtain:

F ′(t) = 2
m∑
j=1

(pj + 1)〈uj(t, ·), u̇j(t, ·)〉,

and

F ′′(t) = 2
m∑
j=1

(pj + 1)|u′j(t, ·)|2 − 2
m∑
j=1

(pj + 1)
[
‖uj(t, ·)‖2 + γ〈uj(t, ·), u̇j(t, ·)〉

]
+ 2
( m∑
k=1

pk +m
)∫

Rn

m∏
j=1

|uj(t, x)|pj+1dx.

Therefore,
F ′′(t) + γ F ′(t) = ϕ(t), t ∈ [0, T1), (3.14)

where

ϕ(t) = 2
m∑
j=1

(pj + 1)|u′j(t, ·)|2 − 2
( m∑
k=1

pk +m
)
I(u1(t, ·), u2(t, ·), . . . , um(t, ·)).

Taking into account inequality (3.12), we obtain

ϕ(t) > 0, t ∈ [0, T1). (3.15)

It follows from condition (2.6) and relations (3.14) and (3.15) that

F ′(t) > 0, t ∈ [0, T1).

Therefore, the function F (t) is monotone increasing on [0, T1). Consequently,

F (t) > F (0) =
m∑
j=1

(pj + 1)|uj0|2. (3.16)
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By taking into account the continuity of the function F (t), from condition (2.7)
and inequalities (3.16), we obtain

F (T1) >
2
[∑m

j=1 pj +m
]∑m

j=1 pj3
E(0). (3.17)

On the other hand it follows from (1.1) and (1.2) that

E(t) = E(0) (3.18)

for every t ∈ [0, Tmax). From (3.13) and (3.18) we obtain the inequality(
1− 2∑m

j=1 pj +m

) m∑
j=1

pj + 1
2
‖uj(T1, ·)‖2 ≤ E(0).

It follows that

F (T1) ≤
2
[∑m

j=1 pj +m
]∑m

j=1 pj +m− 2
E(0). (3.19)

The resulting contradiction (3.17) with (3.19) shows that our assumption fails.
Therefore T1 = Tmax.

Let T2 > 0, T3 > 0 and k > 0 be some numbers. Consider the functional

R(t) =
m∑
j=1

pj + 1
2

[
|uj(t, ·)|2 + γ

∫ t

0

|uj(s, ·)|2ds+ γ|uj0|2(T2 − t)
]

+ k(T3 + t)2.

(3.20)

�

Lemma 3.6. Let (2.4)–(2.7) be satisfied. Then R̈(t) > 0 for t ∈ [0, Tmax).

Proof. A simple computation gives us

R′(t) =
m∑
j=1

pj + 1
2

[
2〈uj(t, ·), u′j(t, ·)〉+ γ|uj(t, ·)|2 − γ|uj0|2

]
+ 2k(t+ T3). (3.21)

Next, from (3.18), (3.21) by using relations (1.1) and (1.2), we obtain

R′′(t) =
m∑
j=1

(pj + 1)[|u′j(t, ·)|2 − ‖uj(t, ·)‖2]

+
[ m∑
j=1

pj +m
] ∫

Rn

m∏
j=1

|uj(t, x)|pj+1dx+ 2k.

(3.22)

It follows from (2.3) and (3.22) that

R′′(t) ≥ −
[ m∑
j=1

pj +m
]
I(u1(t, .), . . . , u3(t, .)) + 2k, t ∈ [0, Tmax).

By Lemma 3.5, for sufficiently small k it holds

R′′(t) > 0, t ∈ [0, Tmax). (3.23)

�
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4. Proof of main result

We first assume that ui0 ∈ H2, ui1 ∈ H1, i = 1, 2, . . . ,m. We shall prove that
under conditions (2.1), (2.2) and (2.4)-(2.7), Tmax < +∞. Suppose the contrary:
Tmax = +∞. It follows from (1.1) and (1.2) that∫

Rn

m∏
j=1

|uj(t, x)|pj+1dx

= −E(0) +
m∑
j=1

pj + 1
2

[|u′j(t, ·)|2 + ‖uj(t, ·)‖2 + 2γ
∫ t

0

|u′j(s, ·)|2ds].

Taking into account this relation in (3.22), we obtain

R′′(t) =

∑m
j=1 pj +m+ 2

2

m∑
j=1

(pj + 1)|u′j(t, ·)|2

+

∑m
j=1 pj +m− 2

2

m∑
j=1

(pj + 1)‖uj(t, ·)‖2 + γ
[ m∑
j=1

pj +m
]

×
3∑
j=1

(pj + 1)
∫ t

0

|u′j(s, ·)|2ds−
[ m∑
j=1

pj +m
]
E(0) + 2k.

(4.1)

By (3.9) we have

R′2(t) ≤
[ m∑
j=1

(pj + 1)(|uj(t, ·)|2 + γ

∫ t

0

|uj(s, ·)|2ds) + k(t+ T3)2
]

×
[ m∑
j=1

(pj + 1)(|u′j(t, ·)|2 + γ

∫ t

0

|u′j(s, ·)|2ds) + k
]
.

(4.2)

By choosing a sufficiently large T3, from Lemma 3.5 and relations (3.19), (4.1), and
(4.2), we obtain

R(t)R′′(t)−
∑m
j=1 pj +m+ 2

4
(R′(t))2

≥ R(t) ·R′′(t)−
∑m
j=1 pj +m+ 2

4

[
2R(t)− (T1 − t)

m∑
j=1

(pj + 1) · |uj0|2
]

×
[ m∑
j=1

(pj + 1)(|u′j(t, ·)|2 + γ

∫ t

0

|u′j(s, ·)|2ds) + k]

≥ R(t)
{∑m

j=1 pj +m

2

m∑
j=1

(pj + 1)|u′j(t, ·)|2

+

∑m
j=1 pj +m− 2

2

m∑
j=1

(pj + 1)‖uj(t, ·)‖2

+ [
m∑
j=1

pj +m]
m∑
j=1

(pj + 1)
∫ t

0

|u′j(s, ·)|2ds−
[ m∑
j=1

pj +m
]
E(0) + 2k
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−
∑m
j=1 pj +m+ 2

2

m∑
j=1

(pj + 1)
(
|u′j(t, ·)|2 +

∫ t

0

|u′j(s, ·)|2ds
)

+ k
}

= R(t)y(t) +

∑m
j=1 pj +m− 2

2

m∑
j=1

∫ t

0

|u′j(s, ·)|2ds, (4.3)

where

y(t) =

∑m
j=1 pj +m− 2

2

m∑
j=1

(pj + 1)‖uj(t, ·)‖2

−
[ m∑
j=1

pj +m
]
E(0)− p1 + p2 + p3 + 1

2
k.

Having in mind Lemma 3.5, and choosing a sufficiently small k > 0, we obtain
that y(t) ≥ 0. Thus, for sufficiently large T2 > 0, T3 > 0, and for sufficiently small
k > 0 we ahve

R(t) ·R′′(t)−
∑m
j=1 pj +m+ 2

4
R′2(t) ≥ 0 . (4.4)

On the other hand,

R′(0) =
m∑
j=1

(pj + 1)〈uj0, uj1〉+ 2kT2 .

Therefore, R′(0) > 0. Using this inequality and (4.4) bya standard procedure, we
obtain that there exists 0 < T ∗ < +∞ such that limt→T∗−0R(t) = +∞. We obtain
a contradiction, which shows that Tmax < +∞.

If ui0 ∈ H1 and ui1 ∈ L2(Rn), i = 1, 2, . . . ,m, then the justification can be
carried out in a standard way, by approximation of the initial data by functions
from H2 and H1, respectively.
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