
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 205, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HOMOCLINIC SOLUTIONS FOR A CLASS OF SECOND-ORDER
HAMILTONIAN SYSTEMS WITH LOCALLY DEFINED

POTENTIALS

XIANG LV

Abstract. In this article, we establish sufficient conditions for the existence

of homoclinic solutions for a class of second-order Hamiltonian systems

ü(t)− L(t)u(t) +∇W
`
t, u(t)

´
= f(t),

where L(t) is a positive definite symmetric matrix for all t ∈ R. It is worth

pointing out that the potential function W (t, u) is locally defined and can be

superquadratic or subquadratic with respect to u.

1. Introduction and statement of main results

The purpose of this article is to investigate the second-order Hamiltonian systems

ü(t)− L(t)u(t) +∇W
(
t, u(t)

)
= f(t) (1.1)

where t ∈ R, u ∈ Rn, L ∈ C(R,Rn×n) is a positive definite and symmetric matrix
for all t ∈ R, W : R×Rn → R and f : R→ Rn. Here, we say that a solution u(t) of
(1.1) is nontrivial homoclinic (to 0) if u 6≡ 0 and u(t) → 0 as t → ±∞. Moreover,
∇W (t, x) denotes the gradient with respect to x, (·, ·) : Rn × Rn → R denotes the
standard inner product in Rn and | · | is the induced norm.

If f = 0, then (1.1) degenerates to the following second-order Hamiltonian system

ü(t)− L(t)u(t) +∇W
(
t, u(t)

)
= 0 (1.2)

In physics, Hamiltonian systems describe the evolution equations of a physical
system, which can present important insight about the dynamics, even if the an-
alytical solution of the initial value problem cannot be obtained. It is well known
that a homoclinic orbit lies in the intersection of the stable manifold and the unsta-
ble manifold of a saddle point, which is a fundamental tool in the study of chaos.
In the past decades, there have been a lot of results about the existence and mul-
tiplicity of homoclinic orbits for Hamiltonian systems via critical point theory, see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
and the references therein.

In the case that L(t) and W (t, x) are either independent of t or periodic in t,
it has been studied by many authors, see [1, 4, 7, 8, 9, 11, 17, 16, 18, 22]. In
particular, in [18], Rabinowitz has proved the existence of homoclinic orbits as a
limit of 2kT -periodic solutions of (1.2). Motivated by the work of Rabinowitz,
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applying the same procedure, the existence of homoclinic solutions of (1.1) or (1.2)
was obtained as the limit of subharmonic solutions, see Izydorek and Janczewska
[8, 9] and so on.

In the case that L(t) and W (t, x) are not periodic with respect to t, the prob-
lem of existence and multiplicity of homoclinic orbits for (1.1) will become much
more difficult, due to the lack of compactness of the Sobolev embedding. In [20],
Rabinowitz and Tanaka considered (1.2) without a periodicity assumption, both
for L and W . To deal with the case that the nonlinearity W is superquadratic,
they introduced the Ambrosetti-Rabinowitz growth condition, i.e., the following
assumption (A1) and assumed that the smallest eigenvalue of L(t) tends to +∞ as
|t| → ∞. Using a variant of the Mountain Pass theorem without the Palais-Smale
condition, they proved that (1.2) possesses a nontrivial homoclinic orbit.

For the next theorem we use the following assumptions:

(A1) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an
l ∈ C(R,

(
0,∞)

)
such that l(t)→ +∞ as |t| → ∞ and(

L(t)x, x
)
≥ l(t)|x|2 for all t ∈ R and x ∈ Rn;

(A2) W ∈ C1(R× Rn,R) and there is a constant µ > 2 such that

0 < µW (t, x) ≤
(
x,∇W (t, x)

)
for all t ∈ R and x ∈ Rn \ {0};

(A3) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly with respect to t ∈ R;
(A4) There is a W ∈ C(Rn,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)| for all t ∈ R and x ∈ Rn.

Theorem 1.1 ([20]). Assume that L and W satisfy (A1)–(A4). Then (1.2) pos-
sesses a nontrivial homoclinic solution.

Motivated by [11, 20], in this paper, we study the existence of Homoclinic solu-
tions for (1.1), where we only give some local assumptions on W (t, u) and W (t, u)
can be superquadratic or subquadratic with respect to u. Our main results are
stated in the next theorem, under the following conditions:

(A5) W ∈ C1(R× Rn,R), W (t, 0) ≡ 0 and ∇W (t, 0) ≡ 0 for all t ∈ R;
(A6) there exist ρ > 0 and a ∈ Lα(R,R+) such that

W (t, x) ≤ a(t)|x|µ for all t ∈ R and |x| ≤ ρ, (1.3)

where α > 1, µ > 1 if 2(α−1)
α ≤ 1 or µ ≥ 2(α−1)

α if 2(α−1)
α > 1.

(A7) f 6≡ 0 is a continuous and bounded function such that
∫

R |f(t)|βdt < ∞
and

1 ∧ l∗
4

ρ− Ma
α∗
√

2
ρµ−1 − Mf

β∗
√

2
> 0, (1.4)

where 1 < β ≤ 2, 1
α∗ + 1

α = 1, 1
β∗ + 1

β = 1, l∗ = inft∈R l(t) > 0,

Ma =
(∫

R
|a(t)|αdt

)1/α

and Mf =
(∫

R
|f(t)|βdt

)1/β

.

Theorem 1.2. Assume that (A1), (A5)–(A7). Then (1.1) possesses a nontrivial
homoclinic solution.



EJDE-2017/205 HOMOCLINIC SOLUTIONS 3

2. Proof of main results

Motivated by [10, 13], we first consider the existence of the homoclinic solutions
for (1.1), which can be obtained as the limit of periodic solutions for the following
boundary-value problem

ü(t)− L(t)u(t) +∇W
(
t, u(t)

)
= f(t), t ∈ [−T, T ]

u(−T )− u(T ) = u̇(−T )− u̇(T ) = 0,
(2.1)

for all T ∈ R+.
Given any T ∈ R+, let

ET :=W 1,2
(
[−T, T ],Rn

)
=
{
u : [−T, T ]→ Rn : u is absolutely continuous,

u(−T ) = u(T ) and u̇ ∈ L2([−T, T ],Rn)
}

and for u ∈ ET , define

‖u‖ET =
{∫ T

−T
[|u̇(t)|2 + |u(t)|2]dt

}1/2

,

then ET is a Hilbert space endowed with the above norm.
Next, we define a functional IT : ET → R by

IT (u) =
∫ T

−T

[1
2
|u̇(t)|2 +

1
2
(
L(t)u(t), u(t)

)
−W

(
t, u(t)

)
+
(
f(t), u(t)

)]
dt. (2.2)

We can easily see that IT ∈ C1(ET ,R) is weakly lower semi-continuous because it
is the sum of a convex continuous function and of a weakly continuous one. By the
direct calculation, it follows that

〈I ′T (u), v〉 =
∫ T

−T

[(
u̇(t), v̇(t)

)
+
(
L(t)u(t), v(t)

)
−
(
∇W

(
t, u(t)

)
, v(t)

)
+
(
f(t), v(t)

)]
dt

(2.3)

for all u, v ∈ ET . Moreover, it is well known that the critical points of IT in ET
are classical solutions of (2.1) (see [15, 19]).

To prove our main result, we apply a critical point theorem, which is stated
precisely as follows.

Lemma 2.1 ( See [11]). Let X be a real reflexive Banach space and Ω ⊂ X be
a closed bounded convex subset of X. Suppose that ϕ : X → R is weakly lower
semi-continuous. If there exists a point x0 ∈ Ω \ ∂Ω such that

ϕ(x) > ϕ(x0) for all x ∈ ∂Ω. (2.4)

Then there exists a x∗ ∈ Ω \ ∂Ω such that

ϕ(x∗) = inf
u∈Ω

ϕ(u).

Lemma 2.2 (See [8]). Let u : R → Rn be a continuous mapping such that u̇ ∈
L2
loc(R,Rn). Then for every t ∈ R, we have

|u(t)| ≤
√

2
[ ∫ t+ 1

2

t− 1
2

(
|u̇(s)|2 + |u(s)|2

)
ds
]1/2

. (2.5)
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Lemma 2.3. Let u ∈ ET . It follows that

‖u‖L∞[−T,T ]
≤
(∫ T

−T
|u(t)|2dt

)1/2

+
(∫ T

−T
|u̇(t)|2dt

)1/2

. (2.6)

Note that the above lemma is a special case of [22, Corollary 2.2].

Corollary 2.4. Let u ∈ ET . It follows that

‖u‖L∞[−T,T ]
≤
√

2‖u‖ET =
√

2
{∫ T

−T

[
|u̇(t)|2 + |u(t)|2

]
dt
}1/2

. (2.7)

Proof. Combining (2.6) and the inequality
√
a +
√
b ≤
√

2(a + b)1/2, it is obvious
that (2.7) holds. �

Lemma 2.5. Under the conditions of Theorem 1.2, the boundary-value problem
(2.1) admits a solution uT ∈ ET such that∫ T

−T

[
|u̇T (t)|2 + |uT (t)|2

]
dt <

1
2
ρ2 for all T ∈ R+. (2.8)

Proof. Clearly, IT (0) = 0 by (A5) for all T ∈ R+. For the purpose of using Lemma
2.1, we first need to construct a closed bounded convex subset of ET for all T ∈ R+.
Given any T ∈ R+, let ΩT := {u ∈ ET :

∫ T
−T
[
|u̇(t)|2dt+ |u(t)|2

]
dt ≤ 1

2ρ
2}, where

ρ is the constant defined in (1.3). It is evident that ΩT is a closed bounded convex
subset of ET for all T ∈ R+.

For any T ∈ R+, we will prove that (2.8) holds. If u ∈ ∂ΩT , it follows
that

∫ T
T

[
|u̇(t)|2dt+ |u(t)|2

]
dt = 1

2ρ
2. Applying Corollary 2.4, it is obvious that

‖u‖L∞[−T,T ]
≤ ρ for all u ∈ ∂ΩT . That is |u(t)| ≤ ρ for all t ∈ [−T, T ]. Combining

this inequality, (A1), (A6) and (A7), we get that µ ≥ 2
α∗ and

IT (u)

=
∫ T

−T

[1
2
|u̇(t)|2 +

1
2
(
L(t)u(t), u(t)

)
−W

(
t, u(t)

)
+
(
f(t), u(t)

)]
dt

≥ 1
2

∫ T

−T
|u̇(t)|2dt+

1
2

∫ T

−T
l(t)|u(t)|2dt−

∫ T

−T
a(t)|u(t)|µdt+

∫ T

−T

(
f(t), u(t)

)
dt

≥ 1
2

∫ T

−T
|u̇(t)|2dt+

l∗
2

∫ T

−T
|u(t)|2dt−

(∫ T

−T
|a(t)|αdt

)1/α( ∫ T

−T
|u(t)|µα

∗
dt
)1/α∗

−
(∫ T

−T
|f(t)|βdt

)1/β(∫ T

−T
|u(t)|β

∗
dt
)1/β∗

≥ 1
2

∫ T

−T
|u̇(t)|2dt+

l∗
2

∫ T

−T
|u(t)|2dt− ‖u‖µ−

2
α∗

L∞[−T,T ]

(∫
R
|a(t)|αdt

)1/α

×
(∫ T

−T
|u(t)|2dt

)1/α∗

− ‖u‖
1− 2

β∗

L∞[−T,T ]

(∫
R
|f(t)|βdt

)1/β(∫ T

−T
|u(t)|2dt

)1/β∗

≥ 1 ∧ l∗
4

ρ2 − Ma
α∗
√

2
ρµ − Mf

β∗
√

2
ρ

> 0 = IT (0)
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for all u ∈ ∂ΩT . Consequently, using Lemma 2.1, we can have that for all T ∈ R+,
there exists uT ∈ int ΩT such that

IT (uT ) = inf
u∈ΩT

IT (u),

where

int ΩT =
{
u ∈ ET :

∫ T

−T
[|u̇(t)|2 + |u(t)|2]dt <

1
2
ρ2
}

Furthermore, we note that int ΩT is an open subset of ET . This together with [15,
Theorem 1.3] implies that

I ′T (uT ) = 0.
That is, uT is the solution of the boundary-value problem (2.1) and∫ T

−T
[|u̇T (t)|2 + |uT (t)|2]dt <

1
2
ρ2.

The proof is complete. �

Proof of Theorem 1.2. First, we can choose a sequence Tm → ∞ and study
the boundary-value problem (2.1) on the bounded closed interval [−Tm, Tm] for all
m ∈ N. Using the result of Lemma 2.5, it follows that there exists a sequence of
solutions um such that ‖um‖ETm is uniformly bounded with respect to m ∈ N.

According to the inequality

|um(t1)− um(t2)| ≤
∫ t2

t1

|u̇m(t)|dt ≤
√
t2 − t1

(∫ t2

t1

|u̇m(t)|2dt
)1/2

we can assert that the sequence {um}m∈N is equicontinuous and uniformly bounded
on every bounded closed interval [−Tm, Tm], m ∈ N. Therefore, we can select a
subsequence {umk}k∈N such that it converges uniformly on any bounded closed
interval to a continuous function u. Furthermore, using (2.1), it is clear that the
sequence {ümk}k∈N and so {u̇mk}k∈N converges uniformly on any bounded closed
intervals. Noting that

umk(t) =
∫ t

0

(t− s)ümk(s)ds+ tu̇mk(0) + umk(0),

it is obvious that u ∈ C2(R,Rn) and ümk → ü uniformly on any bounded closed
intervals as k →∞. Consequently, we can first study the boundary-value problem
(2.1) on bounded closed interval [−Tm, Tm], m ∈ N. Next, using the diagonal
process and let m→∞, we can easily see that u is a classical solution of (1.1).

Since ‖um‖ETm is uniformly bounded with respect to m ∈ N, under the above
analysis, it is evident that ∫

R
[|u̇(t)|2 + |u(t)|2]dt ≤ 1

2
ρ2. (2.9)

By Lemma 2.2, we have

|u(t)| ≤
√

2
[ ∫ t+ 1

2

t− 1
2

(
|u̇(s)|2 + |u(s)|2

)
ds
]1/2

for all t ∈ R.

This together with (2.9) implies that the limit of u(t) is zero as |t| → ∞, i.e.,
u(±∞) = 0. Moreover, since f 6≡ 0, it follows that u is a nontrivial homoclinic
orbit of (1.1).
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