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EXISTENCE OF WEAK SOLUTIONS TO A NONLINEAR
REACTION-DIFFUSION SYSTEM WITH SINGULAR SOURCES

IDA DE BONIS, ADRIAN MUNTEAN

Abstract. We discuss the existence of a class of weak solutions to a nonlinear

parabolic system of reaction-diffusion type endowed with singular production

terms by reaction. The singularity is due to a potential occurrence of quenching
localized to the domain boundary. The kind of quenching we have in mind is

due to a twofold contribution: (i) the choice of boundary conditions, modeling

in our case the contact with an infinite reservoir filled with ready-to-react
chemicals and (ii) the use of a particular nonlinear, non-Lipschitz structure

of the reaction kinetics. Our working techniques use fine energy estimates for
approximating non-singular problems and uniform control on the set where

singularities are localizing.

1. Introduction

Our main interest lies in combining homogenization asymptotics together with
either fast reactions (like in [18, 19]) or with singular reactions (like in [4] and [11]).
In this article, we set the foundations for such investigations by exploring the effect
of the choice of a particular type of singularity on the weak solvability of the model
equations. The singularity is supposed here to appear due to the occurrence of a
localized strong quenching behavior.

The quenching phenomenon is expected to be due to the kinetics of diffusion-
limited reactions in random and/or confined geometries; see e.g. [12] and references
cited therein. However, we are not aware of a multi-particle system derivation of the
structure of the (macroscopic) singularity in the reaction rate in the case of quench-
ing. Our approach here is simply ansatz-based. Traditionally, the mass action law
of chemical kinetics usually requires integer partial reaction orders (cf. [26], e.g.).
In our setting, we use instead a power-law reaction rate, sometimes referred to as
being based on a pseudo-mass action kinetics. The reader can find in [16], e.g., a
number of concrete examples of chemical reaction mechanisms of fractional order.
We use this occasion to refer also, for instance, to [2] (and references cited therein)
for classes of chemical reactions not respecting the classical mass action kinetics.

The goal in this paper is to study the existence of weak solutions to the follow-
ing system of nonlinear equations of reaction-diffusion type endowed with singular
production terms by reaction, mimicking the quenching feature:
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Let QT := Ω× (0, T ), where Ω is a bounded Lipschitz domain of RN , N ≥ 2 and
T > 0,

ut − div(a(x, t, u,∇u)) = f(u, v) in Ω× (0, T )

vt − div(b(x, t, v,∇v)) = g(u, v) in Ω× (0, T )

u(x, 0) = u0(x) in Ω

v(x, 0) = v0(x) in Ω

u(x, t) = 0 on Γ1 × (0, T )

v(x, t) = 0 on Γ2 × (0, T )

a(x, t, u,∇u) · ν = 0 on Γ2 × (0, T )

b(x, t, v,∇v) · ν = 0 on Γ1 × (0, T )

(1.1)

where Γ1 and Γ2 are such that Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅. The Haussdorff
measure of Γ1 and Γ2 does not vanish, i.e. H(Γ1) 6= 0 and H(Γ2) 6= 0.

Here ν denotes the outer normal to ∂Ω. The functions f(r, s) : [0,+∞) → R
and g(r, s) : [0,+∞)→ R are defined as

f(r, s) := k
s

rγ
, (1.2)

g(r, s) := −k s
rγ

(1.3)

with k > 0 and 0 < γ ≤ 1 real parameters. Note that the functions f and g are
singular at r = 0, i.e. they can take the value +∞ when r = 0 and s 6= 0.

Problem (1.1) has a clear physical meaning. To fix ideas, just imagine the fol-
lowing scenario: let u, v denote the mass concentration of two distinct chemical
species (reactant and product), being involved in the chemical reaction mechanism

U → V, (1.4)

where U denotes the chemical species associated to u and V denotes the chemical
species associated to v. Such chemical mechanism can refer either to a gas-liquid
reaction (cf. [21, sec. 2.4.3.3]) or to a gas-gas reaction (cf. [1]). These chemicals
are provided (from infinite reservoirs) at Γ1 and Γ2, they travel a heterogeneous
medium Ω (modeled here by the use of nonlinear diffusivities a(·) and b(·)), and
finally, they mix. It is worth noting that the mechanism (1.4) does not require per
se that the species U and V coexist.

We restrict our attention by using the following assumptions: the functions
a(x, t, s, ξ) and b(x, t, s, ξ) : Ω× (0, T )×R×RN → RN are Carathéodory functions
and satisfy the following Leray-Lions conditions:

(A1) a(x, t, s, ξ) ·ξ ≥ α|ξ|p, α ∈ R+, p > 1, a.e. in QT and for all (s, ξ) ∈ R×RN ;
(A2) (a(x, t, s, ξ)− a(x, t, s, η)) · (ξ − η) > 0, for every s ∈ R and for all (s, ξ) ∈

R× RN such that ξ 6= η;
(A3) |a(x, t, s, ξ)| ≤ α1|ξ|p−1 with α1 ∈ R+;
(A4) b(x, t, s, ξ) · ξ ≥ β|ξ|p, β ∈ R+, p > 1 a.e. in QT and for all (s, ξ) ∈ R×RN ;
(A5) (b(x, t, s, ξ)− b(x, t, s, η)) · (ξ − η) > 0, for every s ∈ R and for all (s, ξ) ∈

R× RN such that ξ 6= η;
(A6) |b(x, t, s, ξ)| ≤ β1|ξ|p−1 with β1 ∈ R+;
(A7) the functions u0 and v0 are nonnegative functions that belong to L∞(Ω).
We set our problem in the following spaces:

V := {ϕ ∈W 1,p(Ω) : ϕ = 0 on Γ1},
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W := {ψ ∈W 1,p(Ω) : ψ = 0 on Γ2},
with p > 1. The dual spaces of V and W , respectively, are denoted by (V )∗ and
(W )∗.

We can now give our definition of weak solution to problem (1.1).

Definition 1.1. A weak solution to problem (1.1) is a nonnegative couple (u, v) ∈
[Lp(0, T ;V ) ∩ L∞(0, T ;L2(Ω)]× [Lp(0, T ;W ) ∩ L∞(0, T ;L2(Ω))] with

(ut, vt) ∈ [Lp
′
(0, T ; (V )∗) +L1(0, T ;L1

loc(Ω))]× [Lp
′
(0, T ; (W )∗) +L1(0, T ;L1

loc(Ω))]

such that:

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) a.e. x ∈ Ω, (1.5)∫∫
QT

v

uγ
φ < +∞, (1.6)

−
∫

Ω

u0(x)ϕ(x, 0)−
∫∫

QT

u
∂ϕ

∂t
+
∫∫

QT

a(x, t, u,∇u)∇ϕ =
∫∫

QT

f(u, v)ϕ, (1.7)

−
∫

Ω

v0(x)ψ(x, 0)−
∫∫

QT

v
∂ψ

∂t
+
∫∫

QT

b(x, t, v,∇v)∇ψ =
∫∫

QT

g(u, v)ψ, (1.8)

for all ϕ,ψ, φ ∈ C∞0 (Ω× [0, T )).

We give the following existence result for the solution of problem (1.1).

Theorem 1.2 (Existence). Assume 0 < γ ≤ 1, (A1)–(A7). Then there exists a
solution (u, v) to problem (1.1) in the sense of Definition 1.1.

Problem (1.1) consists of a system of two weakly coupled equations which present
in the right hand side singular lower order term in the variable u. By singular we
mean, in this context, that the terms f(r, s) and/or g(r, s) can become unbounded
when r = 0. Scalar parabolic problems which present lower order terms of this type
were studied previously in [8, 9, 10].

Essentially, problems of type (1.1) which exhibit equations with singular lower
order term of type f(u) = − 1

up , p > 0, have a global solution for which there
exists a time T such that infx∈Ωf → 0 as t → T . So, the reaction term tends to
blow up when the solution goes towards extinction. This kind of phenomenon is
called quenching (or in some case extinction, as in [6]). For example, if we solve the
ordinary differential equation

u′ = − 1
up
, t > 0, u(0) = 1

(p > 0), we obtain

u(t) = [1− (1 + p)t]
1
p+1 , for some t > 0.

The main observation is here that the solution is smooth for t ∈
(

0, 1
p+1

)
and

u(t)→ 0 for t→ 1
p+1 , that is u quenches in finite time.

If we consider the partial differential equation

ut −∆u = − 1
up

the situation becomes somewhat more complicated. Now, the presence of the dif-
fusion term ∆u attempts to prevent the quenching phenomenon and an intrinsic
reaction-diffusion competition appears.
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In this paper, we search for local-in-time weak solutions to our problem (1.1).
It is worth however mentioning that, under additional strong structural conditions
on our Leray-Lions-like operators, working technical ideas from [22], which rely on
sub- and super-solutions or at least on the existence of some global bounds, can
be used in principle to extend our concept of local-in-time weak solution up to a
global weak solution.

2. Nonsingular approximating problems

To deal with problem (1.1) we use a couple of approximations. In particular,
we consider the following sequence of nonsingular approximating problems (2.1).
Essentially, we are truncating in such a way as to eliminate the singularity. The ap-
proximating Problem reads: Find (un, vn) ∈ [Lp(0, T ;V )∩L∞(QT )]×[Lp(0, T ;W )∩
L∞(QT )] such that

(un)t − div(a(x, t, un,∇un)) = fn(un, vn) in Ω× (0, T )

(vn)t − div(b(x, t, vn,∇vn)) = gn(un, vn) in Ω× (0, T )

u(x, 0) = u0,n(x) in Ω

v(x, 0) = v0,n(x) in Ω

un(x, t) = 0 on Γ1 × (0, T )

vn(x, t) = 0 on Γ2 × (0, T )

a(x, t, un,∇un) · ν = 0 on Γ2 × (0, T )

b(x, t, vn,∇vn) · ν = 0 on Γ1 × (0, T )

(2.1)

where

fn(un, vn) =

{
k vn

(un+ 1
n )γ

, if un ≥ 0 and vn ≥ 0

0, otherwise,

gn(un, vn) =

{
−k vn

(un+ 1
n )γ

, if un ≥ 0 and vn ≥ 0

0, otherwise,

while u0,n, v0,n ∈ L∞(Ω) ∩ H1
0 (Ω) are suitable regularizations of the initial data

obtained by a standard convolution technique (see [5]) such that

lim
n→∞

1
n
‖u0,n‖H1

0 (Ω) = 0, (2.2)

lim
n→∞

1
n
‖v0,n‖H1

0 (Ω) = 0. (2.3)

Lemma 2.1. Problem (2.1) admits a nonnegative couple of solutions

(un, vn) ∈ [Lp(0, T ;V ) ∩ L∞(QT )]× [Lp(0, T ;W ) ∩ L∞(QT )]

such that

−
∫

Ω

u0,n(x)ϕ(x, 0)−
∫∫

QT

un
∂ϕ

∂t
+
∫∫

QT

a(x, t, un,∇un)∇ϕ

= k

∫∫
QT

vn

(un + 1
n )γ

ϕ,

(2.4)
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−
∫

Ω

v0,n(x)ψ(x, 0)−
∫∫

QT

vn
∂ψ

∂t
+
∫∫

QT

b(x, t, vn,∇vn)∇ψ

= −k
∫∫

QT

vn

(un + 1
n )γ

ψ,

(2.5)

for every ϕ,ψ ∈ C∞0 (Ω× [0, T )).

Proof. The existence of a solution (un, vn) can be proved following the line of stan-
dard results of [17]. For simplicity, we suppose u0,n = 0 and v0,n = 0. Then, using
the method by Stampacchia [25], we can prove that un ≥ 0 taking as test function
in the first equation of the problem (2.1) the function ϕ = −u−n .

Since u+
n = 0 on the support of u−n (i.e. where un ≤ 0) and remember that

fn(un, vn) =

{
k vn

(un+ 1
n )γ

, if un ≥ 0 and vn ≥ 0

0, otherwise,

we have that the right hand side of (2.4) is zero, so we obtain∫∫
QT

(un)t(−u−n ) +
∫∫

QT

a(x, t, un,∇un)∇(−u−n ) = 0.

We rewrite the last equality as∫∫
QT

(u+
n − u−n )t(−u−n ) +

∫∫
QT

a(x, t, u+
n − un,∇(u+

n − u−n ))∇(−u−n ) = 0

from which, by (A1) we obtain

1
2

∫
Ω

(u−n )2(t) + α

∫∫
QT

|∇u−n |p ≤ 0,

and we deduce that
u−n = 0 a.e. in QT ,

i.e. that un ≥ 0 a.e. in Ω and for all t ∈ [0, T ). In the same way, to obtain that
vn ≥ 0, we can reason as before, by choosing as test function ψ = −v−n . �

From now on, we denote with C a generic constant. Its precise value changes
depending on the context. Usually C is thought to be independent of n, if not
otherwise mentioned. We recall here the definition of the usual truncation function
Tk, defined as

Tk(s) = max{−k,min{k, s}}, k ≥ 0, s ∈ R+. (2.6)

In the following we will denote by 〈·, ·〉 the duality product between (V )∗ and V
(and also between (W )∗ and W ).

3. A priori uniform estimates

3.1. Uniform estimate for (un, vn) in L∞(QT ).

Proposition 3.1. Assume (A1)–(A7). Then there exist positive constants M1 and
M2, independent of n, such that:

‖un‖L∞(QT ) ≤M1, (3.1)

‖vn‖L∞(QT ) ≤M2. (3.2)
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Proof. The uniform estimate (3.1) for the sequence {un} follows by the [10, Propo-
sition 2.13].

For simplicity we suppose v0,n(x) = 0. To handle the equation solved by vn we
choose as test function ψ = GM2(vn) := (vn −M2)+, with M2 > 1 fixed. By (A4),
we obtain∫∫

Qt

(vn)t(vn −M2)+ + β

∫∫
Qt

|∇GM2(vn)|p ≤ −k
∫∫

Qt

vnGM2(vn)
(un + 1

n )γ
≤ 0,

where Qt := Ω × [0, t). Neglecting the nonnegative term on the left hand side, it
follows that

1
2

∫
Ω

[(vn −M2)+]2(t) = 0

from which (vn −M2)+ = 0 a.e. in QT , i.e. (3.2) is proved. �

3.2. Energy estimate for (un, vn) in Lp(0, T ;V )× Lp(0, T ;W ).

Proposition 3.2. Assume (A1)–(A6). Then there exists a positive constant C,
independent of n, such that:

‖un‖Lp(0,T ;V ) ≤ C, (3.3)

‖vn‖Lp(0,T ;W ) ≤ C. (3.4)

Proof. Choosing as test function ϕ = un ∈ Lp(0, T ;V ) in the first equation of
problem (2.1) solved by un and integrating over Ω× [0, t), we obtain

1
2
d

dt

∫ T

0

‖un‖2L2(Ω)dt+
∫∫

QT

a(x, t, un,∇un)∇un = k

∫∫
QT

vnun

(un + 1
n )γ

.

By assumption (A1) and observing that un
(un+ 1

n )γ
≤ u1−γ

n , the previous equality
leads to

1
2

∫
Ω

u2
n(t) + α

∫∫
QT

|∇un|p ≤ k
∫∫

QT

vnu
1−γ
n + C‖u0‖2L2(Ω).

Following the same steps as in the proof of [8, Lemma 2.4-(i)], we find that
1
2

∫
Ω

u2
n(t) + α

∫∫
QT

|∇un|p ≤ C. (3.5)

Now, from (3.5) we deduce also that

‖un‖L∞(0,T ;L2(Ω)) ≤ C. (3.6)

To handle the second equation of problem (2.1), we choose as test function
ψ = vn ∈ Lp(0, T ;W ). By (A4) we obtain the inequality

1
2

∫
Ω

v2
n(t) + β

∫∫
QT

|∇vn|p ≤ −k
∫∫

QT

v2
n

(un + 1
n )γ

+ C‖v0,n‖2L2(Ω)

≤ C‖v0,n‖2L2(Ω).

(3.7)

From (3.7) we deduce also that

‖vn‖L∞(0,T ;L2(Ω)) ≤ C. (3.8)

Summing (3.5) and (3.7) leads to the estimates (3.3) and (3.4). �

An important a priori estimate for controlling the singular lower order term is
the following.



EJDE-2017/202 REACTION-DIFFUSION SYSTEM WITH SINGULAR SOURCES 7

Proposition 3.3. Assume γ > 0, (A1)–(A7). Then there exists a positive constant
C, independent of n, such that

k

∫∫
QT

vn

(un + 1
n )γ

ϕp(x) ≤ C for all n ∈ N, (3.9)

for every ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Proof. We multiply the first equation of problem (2.1) by the test function ϕp(x)
and get∫ T

0

〈(un)t, ϕp(x)〉+ p

∫∫
QT

a(x, t, un,∇un)ϕp−1∇ϕ = k

∫∫
QT

vn

(un + 1
n )γ

ϕp(x),

from which, using (A3), we obtain

k

∫∫
QT

vn

(un + 1
n )γ

ϕp(x) ≤ p
∫∫

QT

|a(x, t, un,∇un)|ϕp−1|∇ϕ|+ C

≤ α1p

∫∫
QT

|∇un|p−1ϕp−1|∇ϕ|+ C ≤ C.

Here we have used once again Young’s inequality with exponents p
p−1 and p together

with the energy estimate (3.3). �

3.3. Uniform estimate on the sets {(x, t) ∈ QT : un(x, t) ≤ δ} and {(x, t) ∈
QT : vn(x, t) ≤ δ}. In this subsection, we focus our attention on the critical sets

{(x, t) ∈ QT : un(x, t) ≤ δ},
{(x, t) ∈ QT : vn(x, t) ≤ δ}.

These sets are prone to hosting the locations of the singularity, i.e., where the
lower order term is unbounded when un = 0, or when an indeterminate situation
appears when un = 0 and vn = 0. In fact, we wish to avoid a potential blow up of
the solutions on these sets. This is ensured by the following key result.

Proposition 3.4. Assume γ > 0, (A1)–(A7). Then

k

∫∫
QT∩{0≤un≤δ}

vn

(un + 1
n )γ

ϕp(x) ≤ Cδ, (3.10)

k

∫∫
QT∩{0≤vn≤δ}

vn

(un + 1
n )γ

ϕp(x) ≤

{
Cδ1−γ if 0 < γ < 1
C
√
δ if γ = 1.

(3.11)

Proof. We begin by proving (3.10). Following the ideas in the proof of [10, Propo-
sition 2.20], we choose as test function in the equation solved by un the function
ϕσ = Tσ(−(un−δ)−)

σ ϕp(x), with ϕ ∈ C∞0 (Ω), ϕ ≥ 0. Consequently we obtain∫ T

0

〈(un)t,
Tσ(−(un − δ)−)

σ
ϕp(x)〉

+
1
σ

∫∫
QT

a(x, t, un,∇un)∇(Tσ(−(un − δ)−))ϕp(x)

+ p

∫∫
QT

a(x, t, un,∇un)
Tσ(−(un − δ)−)

σ
ϕp−1∇ϕ

= +k
∫∫

QT

vn

(un + 1
n )γ

Tσ(−(un − δ)−)
σ

ϕp(x).

(3.12)
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First, we want to show that∫ T

0

〈(un)t,
Tσ(−(un − δ)−)

σ
ϕp(x)〉 ≥ −δ|Ω|, (3.13)

where |Ω| is the Lebesgue measure of Ω. To this end, we introduce the function
vσ,ν = Tσ(−(un,ν−δ)−)

σ , where un,ν is, for any fixed n ∈ N and σ ∈ N, the solution of
the following ordinary differential equation problem

1
σ

[un,ν ]t + un,ν = un

un,ν(0) = u0,n.
(3.14)

The function un,ν satisfies the following properties (see [14, 15]):

un,ν ∈ Lp(0, T ;W 1,p
0 (Ω)), (un,ν)t ∈ Lp(0, T ;W 1,p

0 (Ω)),

‖un,ν‖L∞(QT ) ≤ ‖un‖L∞(QT ),

un,ν → un in Lp(0, T ;W 1,p
0 (Ω)) as ν → +∞,

(un,ν)t → (un)t in Lp
′
(0, T ;W−1,p′(Ω)) as ν → +∞.

So, we have ∫ T

0

〈(un)t,
Tσ(−(un − δ)−)

σ
ϕp(x)〉

= lim
ν→∞

∫∫
QT

(un,ν − δ)+
t

Tσ(−(un,ν − δ)−)
σ

ϕp(x)

− lim
ν→∞

∫∫
QT

(un,ν − δ)−t
Tσ(−(un,ν − δ)−)

σ
ϕp(x)

= lim
ν→∞

∫∫
QT

(un,ν − δ)−t
Tσ((un,ν − δ)−)

σ
ϕp(x).

(3.15)

Introducing now the function Φσ(s) :=
∫ (s−δ)−

0
Tσ(ρ)
σ dρ, from (3.15), we obtain

lim
ν→∞

∫∫
QT

(un,ν − δ)−t
Tσ((un,ν − δ)−)

δ
ϕp(x)

= lim
ν→∞

∫∫
QT

d

dt
Φσ(un,ν)

= lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(T )− lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(0)

≥ − lim
ν→∞

∫
Ω

Φσ(un,ν − δ)−(0)

= −
∫

Ω

Φσ(un − δ)−(0) ≥ −δ|Ω|,

since
∫

Ω
Φσ(un − δ)−(0) ≤ δ|Ω|. This proves (3.13). By (3.13), observing also

that Tσ(−(un−δ)−)
σ = 0 on the set {(x, t) ∈ QT : un(x, t) ≥ δ}, the equality (3.12)
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becomes
1
σ

∫∫
QT∩{δ−σ≤un≤δ}

a(x, , t, un,∇un)∇unϕp(x)

+ k

∫∫
QT

vn

(un + 1
n )γ

Tσ((un − δ)−)
σ

ϕp(x)

≤ p
∫∫

QT∩{un≤δ}
|a(x, t, un,∇un)|ϕp−1|∇ϕ|+ δ|Ω|.

(3.16)

Note that, in view of (A1), the first term in the left-hand side of (3.16) is
nonnegative. By (A3) and using Hölder’s inequality in the right hand side, we
obtain

k

∫∫
QT

vn

(un + 1
n )γ

Tσ((un − δ)−)
σ

ϕp(x)

≤ pα1

∫∫
QT∩{un≤δ}

|∇un|p−1ϕp−1|∇ϕ|+ δ|Ω|

≤ pα
(∫∫

QT∩{un≤δ}
|∇un|pϕp

) p−1
p
(∫∫

QT

|∇ϕ|p
)1/p

+ δ|Ω|.

(3.17)

We observe now that ∫∫
QT∩{un≤δ}

|∇un|pϕp(x) ≤ Cδ. (3.18)

Indeed, multiplying problem (2.1) by the test function −(un − δ)−ϕp(x), ϕ ∈
C∞0 (Ω), ϕ ≥ 0, we obtain∫ T

0

〈(un)t, (−(un − δ)−)ϕp(x)〉+
∫∫

QT∩{un≤δ}
a(x, t, un,∇un)∇unϕp(x)

− p
∫∫

QT

a(x, t, un,∇un)(un − δ)−ϕp−1∇ϕ ≤ 0.
(3.19)

To deal with the term involving time derivative, we use the same argument as that
used to achieve (3.13). Hence we obtain∫ T

0

〈(un)t, (−(un − δ)−)ϕp(x)〉 ≥ −δ|Ω|. (3.20)

By (A1), (A3) and (3.20), the inequality (3.19) becomes

α

∫∫
QT∩{un≤δ}

|∇un|pϕp ≤ pα1

∫∫
QT∩{un<δ}

|∇un|p−1(δ − un)ϕp−1|∇ϕ|+ δ|Ω|,

which, by Hölder’s inequality and (3.3), leads to∫∫
QT∩{un≤δ}

|∇un|pϕp ≤
pδα1

α

(∫∫
QT

|∇un|pϕp
) p−1

p
(∫∫

QT

|∇ϕ|p
)1/p

+
δ|Ω|
α

≤ Cδ.

Thus, (3.18) holds. Finally, we have obtained that

k

∫∫
QT

vn

(un + 1
n )γ

Tσ((un − δ)−)
σ

ϕp(x) ≤ Cδ. (3.21)
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Now, we can pass to the limit in (3.21) for σ → 0 and n fixed, relying on Lebesgue
dominate convergence Theorem since Tσ((un−δ)−)

σ converges a.e. to 1 on the set
{(x, t) ∈ QT : un(x, t) < δ}. Therefore, we obtain:∫∫

QT∩{0≤un≤δ}

vn

(un + 1
n )γ

ϕp(x) ≤ Cδ,

and hence, (3.10) holds.
We now focus the attention on the estimate (3.11). We distinguish two cases,

depending on the value of parameter γ.
If 0 < γ < 1, we consider the decomposition∫∫

QT∩{0≤vn≤δ}

vn

(un + 1
n )γ

ϕp(x)

=
∫∫

QT∩{0≤vn≤δ}∩{0≤un≤δ}

vn

(un + 1
n )γ

ϕp(x)

+
∫∫

QT∩{0≤vn≤δ}∩{un>δ}

vn

(un + 1
n )γ

ϕp(x)

≤
∫∫

QT∩{0≤un≤δ}

vn

(un + 1
n )γ

ϕp(x)

+
∫∫

QT∩{0≤vn≤δ}∩{un>δ}

vn

(un + 1
n )γ

ϕp(x) = I + II.

(3.22)

By (3.10) we obtain
I ≤ Cδ. (3.23)

To handle the term II, we proceed as follows:

II ≤ δ
∫∫

QT∩{0≤vn≤δ}∩{un>δ}

ϕp(x)
δγ

= δ1−γ
∫∫

QT

ϕp(x) ≤ Cδ1−γ . (3.24)

If γ = 1, we consider the decomposition∫∫
QT∩{0≤vn≤δ}

vn

un + 1
n

ϕp(x)

=
∫∫

QT∩{0≤vn≤δ}∩{0≤un≤
√
δ}

vn

un + 1
n

ϕp(x)

+
∫∫

QT∩{0≤vn≤δ}∩{un>
√
δ}

vn

un + 1
n

ϕp(x)

≤
∫∫

QT∩{0≤un≤
√
δ}

vn

un + 1
n

ϕp(x)

+
∫∫

QT∩{0≤vn≤δ}∩{un>
√
δ}

vn

un + 1
n

ϕp(x) = Ĩ + ĨI.

(3.25)

Choosing as test function in the equation solved by un the function

φσ =
Tσ
(
− (un −

√
δ)−
)

σ
ϕp(x),

with ϕ ∈ C∞0 (Ω), ϕ ≥ 0, and repeating the same arguments of the proof of (3.10),
we obtain

Ĩ ≤ C
√
δ. (3.26)
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For the term ĨI, we obtain:∫∫
QT∩{0≤vn≤δ}∩{un>

√
δ}

vn

un + 1
n

ϕp(x)

≤ δ
∫∫

QT∩{0≤vn≤δ}∩{un>
√
δ}

ϕp(x)
δ

1
2

= δ1− 1
2

∫∫
QT

ϕp(x) ≤ C
√
δ.

(3.27)

Consequently, by (3.23), (3.24), (3.22), (3.26), (3.27), (3.25), we finally get (3.11).
�

4. Convergence and compactness results

To pass to the limit as n→∞ in the distributional formulations (2.4) and (2.5)
we need strongly convergent subsequences. Their existence is ensured in the next
result.

Proposition 4.1. Assume 0 < γ ≤ 1, (A1)–(A7). Then there exists a couple
(u, v) ∈ [Lp(0, T, V ) ∩ L∞(QT )] × [Lp(0, T,W ) ∩ L∞(QT )] such that, as n → ∞,
we have:

un ⇀ u weakly in Lp(0, T ;V ), (4.1)

vn ⇀ v weakly in Lp(0, T ;W ), (4.2)

un ⇀ u weakly* in L∞(QT ), (4.3)

vn ⇀ v weakly* in L∞(QT ), (4.4)

un → u strongly in L1(QT ), (4.5)

vn → v strongly in L1(QT ), (4.6)

un → u a.e. in QT , (4.7)

vn → v a.e. in QT , (4.8)

up to a subsequence.

Proof. Convergences (4.1) and (4.2) are direct consequences of the a priori estimates
(3.3) and (3.4) obtained respectively for the sequences {un} and {vn}. Convergences
(4.3) and (4.4) are direct consequences of the a priori estimates (3.1) and (3.2)
obtained respectively for the sequences {un} and {vn}.

To prove (4.5) and (4.7) we observe that thanks to the uniform estimate (3.9)
we have

vnϕ
p

(un + 1
n )γ
∈ L1(QT ) (4.9)

for every ϕ ∈ C∞0 (Ω), ϕ ≥ 0. Moreover, observing that a(x, t, s, ξ) is uniformly
bounded in Lp

′
(0, T ; (V )∗) we have that

∂(unϕp)
∂t

is bounded in Lp
′
(0, T ; (V )∗) + L1(QT ). (4.10)

By (4.10) and for s > N
2 + 1, proceeding as [20, Lemma 2.3] we obtain that ∂(unϕ)

∂t

is also bounded in L1(0, T ;H−s). Consequently, since s > N
2 , we obtain

V ⊂ Lp(Ω) ⊂ H−s(Ω),
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and the embedding V ⊂ Lp(Ω) is compact. Applying [24, Corollary 4], by (4.10)
and the compactness results we deduce that unϕ is relatively compact in Lp(QT ).
Hence, up to a subsequences, convergences (4.5) and (4.7) are satisfied. Reasoning
in the same way for the sequence {vn}, we obtain (4.6) and (4.8). �

Proposition 4.2. Assume (A1)–(A7). Then

lim
n→∞

∫∫
QT

|∇(un − u)|p = 0, (4.11)

lim
n→∞

∫∫
QT

|∇(vn − v)|p = 0. (4.12)

Therefore,

∇un → ∇u a.e. in QT , (4.13)

∇vn → ∇v a.e. in QT . (4.14)

The proofs of (4.11) and (4.12) follow directly from [10, Proposition 2.22].

5. The set {(x, t) ∈ QT : u(x, t) = 0 a.e. in QT }

As a consequence of the uniform estimate near the singularity (3.10), we have
the following result.

Proposition 5.1. The couple (u, v) as a solution to (1.1), in the sense of Definition
1.1, satisfies ∫∫

QT∩{u=0}

v

uγ
ψ = 0 (5.1)

for every ψ ∈ C∞0 (Ω× [0, T )), ψ ≥ 0 Moreover, it holds∫∫
QT

v

uγ
ψ =

∫∫
QT∩{u>0}

v

uγ
ψ. (5.2)

Proof. Following the line of the proof of [10, Proposition 2.23], we consider a func-
tion ψ ∈ C∞0 (Ω× [0, T )), ψ ≥ 0, with suppψ = C × [0, T1], T1 < T , C ⊂⊂ E ⊂⊂ Ω
and ϕ ∈ C1

0 (Ω) with ϕ(x) = 1 over C, ϕ ≥ 0 with suppϕ = E. By the uniform
estimate (3.10), we obtain∫∫

QT∩{un<δ}

vn

(un + 1
n )γ

ψ(x, t)

≤ ‖ψ‖∞
∫∫

C×[0,T ]

vn

(un + 1
n )γ

χ
{un<δ}

≤ ‖ψ‖∞
∫∫

QT

vn

(un + 1
n )γ

ϕp(x)χ
{un<δ}

≤ Cδ.

Moreover, ∫∫
QT

vn

(un + 1
n )γ

χ
{un<δ}

ψ(x, t)

=
∫∫

QT

vn

(un + 1
n )γ

χ
{un<δ}

χ
{u=δ}

ψ(x, t)

+
∫∫

QT

vn

(un + 1
n )γ

χ
{un<δ}

χ
{u 6=δ}

ψ(x, t) ≤ Cδ.

(5.3)
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We now observe that there exists at most a countable set D such that meas{(x, t) :
u(x, t) = δ} > 0. We take δ outside of this set D, so that, in (5.3), the integral∫∫

QT

vn

(un + 1
n )γ

χ
{un<δ}

χ
{u=δ}

ψ(x, t) = 0.

So, we have ∫∫
QT

vn

(un + 1
n )γ

χ
{un<δ}

ψ(x, t)

=
∫∫

QT

vn

(un + 1
n )γ

χ
{un<δ}

χ
{u6=δ}

ψ(x, t) ≤ Cδ.
(5.4)

Since by (4.7),
χ
{un<δ}

χ
{u6=δ}

→ χ
{u<δ}

a.e. in QT

applying Fatou’s Lemma in (5.4) for δ fixed, leads to∫∫
QT

v

uγ
χ
{u<δ}

ψ(x, t) ≤ Cδ.

Using again Fatou’s Lemma in the last inequality for δ → 0, we obtain∫∫
QT

v

uγ
χ
{u=0}

ψ(x, t) =
∫∫

QT∩{u=0}

v

uγ
ψ(x, t) = 0. (5.5)

That implies that ∫∫
QT

v

uγ
ψ(x, t) =

∫∫
QT∩{u>0}

v

uγ
ψ(x, t), (5.6)

which is the desired identity. �

6. Proof of Theorem 1.2

In this section, we give the proof of the main result of our paper. Since (un, vn) ≥
(0, 0) a.e. in QT , thanks to (4.3) and (4.4) we obtain (u, v) ≥ (0, 0). Thanks to
the convergences (4.5) and (4.6), we can pass to the limit in the parts involving the
time derivatives of (2.4) and (2.5).

Concerning to the principal parts we have

a(x, t, un,∇un)→ a(x, t, u,∇u) in Lp
′
(QT ), (6.1)

b(x, t, vn,∇vn)→ b(x, t, v,∇v) in Lp
′
(QT ). (6.2)

In fact, we observe that for any measurable set D, the assumptions (A2) and (A5)
guarantee ∫∫

D

|a(x, t, un,∇un|p
′
≤ C

∫∫
D

|∇un|p,∫∫
D

|b(x, t, vn,∇vn|p
′
≤ C

∫∫
D

|∇vn|p.

By (4.11) and (4.12), the sequences {|a(x, t, un,∇un)|} and {|b(x, t, vn,∇vn)|}
are equintegrable. By (4.7), (4.8), (4.13) and (4.14), thanks to Vitali’s Theorem
(see [7, Theorem 1.0.16]), we obtain (6.1) and (6.2).

We deal now with the singular lower order term. Let be D = K× [0, T1], T1 < T ,
such that K ⊂⊂ E ⊂⊂ Ω and ψ ∈ C∞0 (Ω × [0, T )) with suppψ = D. Let ϕ be a
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function such that ϕ(x) = 1 on the set K, 0 ≤ ϕ ≤ 1 and supp(ϕ) = E. For any
δ > 0 we have ∫∫

QT

vn

(un + 1
n )γ

ψ(x, t) dx dt

=
∫∫

QT∩{0≤un<δ}

vn

(un + 1
n )γ

ψ(x, t) dx dt

+
∫∫

QT∩{un≥δ}

vn

(un + 1
n )γ

ψ(x, t) dx dt = A+B.

(6.3)

To estimate the term A, we proceed as follows:

A ≤ ‖ψ‖∞
∫∫
{0≤un<δ}∩D

vn

(un + 1
n )γ

ϕp(x) dx dt

≤ ‖ψ‖∞
∫∫

QT∩{0≤un<δ}

vn

(un + 1
n )γ

ϕp(x).

By (3.10), we deduce that
A ≤ Cδ, (6.4)

where C is a constant independent of n. For handling the term B, we see that

B =
∫∫

QT∩{un≥δ}

vn

(un + 1
n )γ

ψ(x, t) dx dt

=
∫∫

QT

vn

(un + 1
n )γ

χ
{un≥δ}

χ
{u 6=δ}

ψ(x, t) dx dt

+
∫∫

QT

vn

(un + 1
n )γ

χ
{un≥δ}

χ
{u=δ}

ψ(x, t) dx dt = B1 +B2.

For the term B2, we observe that there is at most a countable set C such that
meas{(x, t) : u(x, t) = δ} > 0. We take δ outside of this set C, so that the term B2

is zero. Since (4.7) holds, for the term B1 we have that

χ
{un≥δ}

χ
{u6=δ}

→ χ
{u>δ}

a.e. in QT ,

vn

(un + 1
n )γ

χ
{un≥δ}

χ
{u 6=δ}

ψ(x, t) ≤ vnψ(x, t)
δγ

∈ L1(QT ).

Thanks to (4.7) and (4.8), the Lebesgue Dominate Convergence Theorem ensures
that

lim
n→∞

∫∫
QT

vn

(un + 1
n )γ

χ
{un≥δ}

χ
{u 6=δ}

ψ(x, t) dx dt =
∫∫

QT

v

uγ
χ
{u>δ}

ψ(x, t) dx dt

i.e.

lim
n→∞

B =
∫∫

QT

v

uγ
χ
{u>δ}

ψ(x, t) dx dt. (6.5)

By (6.3), (6.4), (6.5) and (5.6), we deduce that

lim
n→∞

∫∫
QT

vn

(un + 1
n )γ

ψ(x, t) = lim
δ→0

lim
n→∞

∫∫
QT

vn

(un + 1
n )γ

ψ(x, t)

=
∫∫

QT∩{u>0}

v

uγ
ψ(x, t) dx dt
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=
∫∫

QT

v

uγ
ψ(x, t) dx dt

for every ψ ∈ C∞0 (Ω × [0, T )). Repeating the same argument for un to deal with
the case of vn, completes the proof of Theorem 1.2.
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Thése de Doctorat, Université François-Rabelais de Tours.

[7] I. de Bonis; Singular elliptic and parabolic problems: existence and regularity of solutions,

Ph D Thesis, Sapienza University of Rome, April 2015.
[8] I. de Bonis, L. M. De Cave; Degenerate parabolic equations with singular lower order terms,

Differential and Integral Equations, 27 (2014), 9/10, 949-976.

[9] I. de Bonis, D. Giachetti; Singular parabolic problems with possibly changing sign data, Dis-
crete and Continuous Dynamical Systems Series B, 7 (2014), 19, 2047-2064.

[10] I. de Bonis, D. Giachetti; Nonnegative solutions for a class of singular parabolic problems
involving p-laplacian, Asymptotic Analysis, 91 (2015), 147-183.

[11] D. Giachetti, Martinez-Aparicio, P.J., Murat, F.; A semilinear elliptic equation with a mild

singularity at u = 0: existence and homogenization, J. Math. Pures Appl. (2016).
[12] Z. Koza, H. Taitelbaum; Reaction-diffusion front in a system with strong quenched disorder,

Physical Review E, 56 (1987), 6, 6387–6392.

[13] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uraltseva; Linear and Quasilinear Equations
of Parabolic Type, Translations of Math. Monographs, Providence 1968.

[14] R. Landes; On the existence of weak solutions for quasilinear parabolic initial-boundary value

problems, Proc. Roy. Soc. Edinburgh Sect. A, 89 (1981), 217-237.
[15] R. Landes, V. Mustonen; On parabolic initial-boundary value problems with critical growth

for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 135-158.
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