
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 201, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONLOCAL INITIAL BOUNDARY VALUE PROBLEM FOR THE
TIME-FRACTIONAL DIFFUSION EQUATION
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Communicated by Mokhtar Kirane

Abstract. In this article we discuss a method for constructing trace formulae
for the heat-volume potential of the time-fractional diffusion equation to lateral

surfaces of cylindrical domains and use these conditions to construct as well
as to study a nonlocal initial boundary value problem for the time-fractional

diffusion equation.

1. Introduction

Let us consider the one-dimensional potential

u(t) =
∫ 1

0

−1
2
|t− τ |f(τ)dτ in Ω = (0, 1), (1.1)

where f is an integrable function in Ω. The kernel of the one-dimensional potential
is a fundamental solution of the second order differential equation; that is,

− ∂2
tE(t− τ) = δ(t− τ), (1.2)

where E(t − τ) = − 1
2 |t − τ | and δ is the Dirac distribution. Hence the potential

(1.1) satisfies the equation

− ∂2
t u(t) = f(t), t ∈ Ω. (1.3)

An interesting question having several important applications (in general) is what
boundary condition can be put on u on the boundary of Ω so that equation (1.3)
complemented by this boundary condition would have a unique solution in Ω still
given by the same formula (1.1) (with the same kernel). This amounts to finding
the trace of the one-dimensional Newton potential (1.1) to the boundary of Ω.

Simply, by using integration by parts, one obtains that boundary conditions for
the potential (1.1) are

u′(0) + u′(1) = 0,−u′(1) + u(0) + u(1) = 0. (1.4)

Hence if we solve equation (1.3) with the boundary conditions (1.4), then we
find a unique solution of this boundary value problem in the form (1.1). This
problem becomes more interesting for PDE. The trace of the Newton potential
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on a boundary surface appeared in Kac’s work [4], where he called it and the
subsequent spectral analysis as “the principle of not feeling the boundary”. This
was further expanded in Kac’s book [5] with several further applications to the
spectral theory and the asymptotics of the Weyl eigenvalue counting function. Some
results towards answering these questions can be found in papers of Kac [4, 5], Saito
[21], as well as in systematic studies of Kal’menov and Suragan [8, 9, 10, 11, 22], see
also Kal’menov and Otelbaev [6] for the more general analysis. The analogues of
the problem for the Kohn Laplacian and its powers on the Heisenberg group have
been recently investigated by Ruzhanksy and Suragan in [19] as well as in [20] for
general stratified Lie groups.

The main purpose of this paper is to construct trace formulae for the heat-
volume potentials of the time-fractional diffusion equation to piecewise smooth
lateral surfaces of cylindrical domains and use these conditions to construct as
well as to study a nonlocal initial boundary value problem for the time-fractional
diffusion equation. Consider

♦α,tu = ∂αt u−∆u = f in Ω× (0, T ), (1.5)

u(0, x) = 0, x ∈ Ω, (1.6)

where Ω ⊂ Rn is a bounded domain with the boundary ∂Ω ∈ C1+γ , 0 < γ < 1,
∆ =

∑n
i=1 ∂

2
xi

is the Laplacian and

∂αt u(t, x) =
1

Γ(1− α)

∫ t

0

(t− τ)−τu′τ (τ, x)dτ

is the fractional Caputo time derivative of order 0 < α ≤ 1. Here Γ is the gamma
function. We shall note that for α = 1 the fractional derivative coincides with the
standard time derivative.

For the convenience of the reader let us now briefly recapture the main results
of this paper:

We establish trace formulae for the time-fractional heat potential operator∫ t

0

dτ

∫
Ω

E(x− y, t− τ)f(τ, y)dy

to the surface ∂Ω×(0, T ), where ∂Ω is the boundary of the bounded domain Ω ⊂ Rn.
Then we use this to introduce a version of Kac’s boundary value problem, that is
Kac’s principle of “not feeling the boundary” for the time-fractional heat operator
♦α,t.

In Section 2 we very briefly review the main concepts of potential theory for
the fractional diffusion equation and fix the notation. In Section 3 we derive trace
formulae and give the analogues of Kac’s boundary value problem for the time-
fractional diffusion equation in Theorem 3.1.

2. Preliminaries

In this section we very briefly review some important concepts of the time-
fractional diffusion equation and fix the notation. For the general background
details on potential theory of the time-fractional diffusion equation we refer to
[12, 15, 16, 1]. The fundamental solution of the time-fractional diffusion equation
(1.5) is given by

E(x, t) = θ(t)π−d/2tα−1|x|−dH20
12

(1
4
|x|2t−α|(α,α)

(−d/2,1),(1,1)

)
, (2.1)
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where H is the Fox H-function (see e.g. [17]) and θ is the Heaviside step function.
It is constructed by taking the Laplace-transform in the time and the Fourier-
transform in the spatial variable of the time-fractional diffusion equation

♦α,tE(x, t) := (∂αt −∆x)E(x, t) = δ(x, t),

where δ(x, t) is the Dirac distribution at the origin, and by using the inverse Fourier-
transform of the Mittag-Leffler function. Heat volume potential, single and double
layer potentials of the time-fractional diffusion equation, respectively, can be defined
by

(♦−1
α,tρ)(x, t) =

∫ t

0

∫
Ω

E(x− y, t− τ)ρ(y, τ)dydτ, (2.2)

(Sρ)(x, t) =
∫ t

0

∫
∂Ω

E(x− y, t− τ)ρ(y, τ)dydτ, (2.3)

(Dρ)(x, t) =
∫ t

0

∫
∂Ω

∂nE(x− y, t− τ)ρ(y, τ)dydτ, (2.4)

where ∂n is the outer normal derivative on the boundary ∂Ω of the bounded domain
Ω. Here we also recall Green’s formula (see, for example, [15]) for the the time-
fractional diffusion operator∫ T

0

∫
Ω

(♦α,τuPT v − PTu♦α,τv) dxdτ =
∫ T

0

∫
∂Ω

(u∂nPT v − ∂nuPT v)dSdτ, (2.5)

where PT is a time involution operator on the interval (0, T ) and is defined by
setting

P (T )v(τ) = v(T − τ).

3. Trace formula and initial boundary value problem

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with Lyapunov boundary ∂Ω ∈
C1+λ, 0 < λ < 1, and f ∈ C((0, T )× Ω) such that f(·, t) is Hölder continuous
uniformly in t ∈ [0, T ] and supp f(·, t) ⊂ Ω, t ∈ [0, T ]. Consider the following
time-fractional generalization of the heat potential (time-fractional heat potential)

u(x, t) := ♦−1
α,tf =

∫ t

0

dτ

∫
Ω

E(x− y, t− τ)f(τ, y)dy, x ∈ Ω, t ∈ (0, T ), (3.1)

where E is a fundamental solution of ♦α,t. Here our aim is to find a boundary
condition for u on the boundary ∂Ω of a bounded domain Ω such that with this
boundary condition the equation

♦α,tu(x, t) = f(x, t), in Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,
(3.2)

has a unique classical solution and this solution is the time-fractional heat potential
(3.1). This amounts to finding the trace of the integral operator in (3.1) on ∂Ω.

A starting point for us will be that if f ∈ C(Ω× (0, T )) such that f(·, t) is Hölder
continuous uniformly in t ∈ [0, T ] and supp f(·, t) ⊂ Ω, t ∈ [0, T ], then u defined by
(3.1) is well defined and satisfies the initial problem (3.2) (see [13, Theorem 2.4]).

Our main result for the time-fractional heat potential operator is the following
variant of Kac’s formula (see the discussion in the introduction of [18] and [19]) for
a case of setting of the time-fractional diffusion equation.
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Theorem 3.1. For each f ∈ C(Ω× (0, T )) such that f(·, t) is Hölder continuous
uniformly in t ∈ [0, T ] and supp f(·, t) ⊂ Ω, t ∈ [0, T ], the time-fractional heat
potential u = ♦−1

α,tf satisfies the following nonlocal boundary condition:

− u(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)u(y, τ)dSy

−
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nu(y, τ)dSy = 0,
(3.3)

for all x ∈ ∂Ω and t ∈ (0, T ). Conversely, if u is a solution of the time-fractional
diffusion equation

♦α,tu = f, (3.4)

satisfying the initial condition

u|t=0 = 0, on Ω, (3.5)

and the boundary condition (3.3), then it is given as the time-fractional heat poten-
tial u = ♦−1

α,tf by formula (3.1) and it is unique.

Corollary 3.2. It follows from Theorem 3.1 that the kernel E, which is a funda-
mental solution of the time-fractional diffusion equation, is Green’s function of the
nonlocal initial boundary value problem (3.3)-(3.5) in Ω × (0, T ). Therefore, the
initial nonlocal boundary value problem (3.3)-(3.5) can serve as an example of an
explicitly solvable initial boundary value problem for the time-fractional diffusion
equation for any 0 < α ≤ 1 (and independent of the shape of the domain Ω).

Proof of Theorem 3.1. By using Green’s formula (2.5), for any x ∈ Ω and t ∈ (0, T ),
we obtain

u(x, T − t) =
∫ T−t

0

dτ

∫
Ω

E(x− y, T − t− τ)f(y, τ)dy

=
∫ T−t

0

dτ

∫
Ω

E(x− y, T − t− τ)♦α,τu(y, τ)dy

=
∫ T

0

dτ

∫
Ω

E(x− y, T − t− τ)♦α,τu(y, τ)dy

=
∫ T

0

dτ

∫
Ω

♦α,τE(x− y, τ − t)u(y, T − τ)dy

+
∫ T

0

dτ

∫
∂Ω

∂nE(x− y, T − t− τ)u(y, τ)dSy

−
∫ T

0

dτ

∫
∂Ω

E(x− y, T − t− τ)∂nu(y, τ)dSy

= u(y, T − t) +
∫ T

0

dτ

∫
∂Ω

∂nE(x− y, T − t− τ)u(y, τ)dSy

−
∫ T

0

dτ

∫
∂Ω

E(x− y, T − t− τ)∂nu(y, τ)dSy,
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for any x ∈ Ω and t ∈ (0, T ). That is, we have∫ T

0

dτ

∫
∂Ω

∂nE(x− y, T − t− τ)u(y, τ)dSy

−
∫ T

0

dτ

∫
∂Ω

E(x− y, T − t− τ)∂nu(y, τ)dSy ≡ 0,

(3.6)

for any x ∈ Ω and t ∈ (0, T ). Since θ(T − t− τ) = 0 for T − t < τ , this means∫ T−t

0

dτ

∫
∂Ω

∂nE(x− y, T − t− τ)u(y, τ)dSy

−
∫ T−t

0

dτ

∫
∂Ω

E(x− y, T − t− τ)∂nu(y, τ)dSy ≡ 0,

(3.7)

for any x ∈ Ω and t ∈ (0, T ). Therefore, denoting T − t by t, we obtain∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)u(y, τ)dSy

−
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nu(y, τ)dSy = 0,
(3.8)

for all t ∈ (0, T ) and x ∈ Ω. By using the properties of the (time-fractional)
double and single layer potentials (see [12, Theorem 1] and [14, Theorem 2.1]) as x
approaches the boundary ∂Ω from the interior, from (3.8), we obtain

− u(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)u(y, τ)dSy

−
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nu(y, τ)dSy = 0,
(3.9)

for all t ∈ (0, T ) and x ∈ ∂Ω. This shows that (3.1) is a solution of the initial
boundary value problem (3.4)-(3.5)-(3.3).

Now let us prove its uniqueness. If the initial boundary value problem has two
solutions u and u1, then the function w = u− u1 satisfies

♦α,tw(x, t) = 0, in Ω× (0, T ),

w(x, 0) = 0, x ∈ Ω,
(3.10)

and the boundary condition (3.3), i.e.

− w(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)w(y, τ)dSy

−
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nw(y, τ)dSy = 0,
(3.11)

for all t ∈ (0, T ) and x ∈ ∂Ω.
Since f = 0 in this case, instead of (3.8) we have the representation formula

w(x, t) = −
∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)w(y, τ)dSy

+
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nw(y, τ)dSy,
(3.12)
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for all t ∈ (0, T ) and x ∈ Ω. As above, by using the properties of the double and
single layer potentials as Ω 3 x→ ∂Ω, we obtain

−w(x, t) = −w(x, t)
2

+
∫ t

0

dτ

∫
∂Ω

∂nE(x− y, t− τ)w(y, τ)dSy

−
∫ t

0

dτ

∫
∂Ω

E(x− y, t− τ)∂nw(y, τ)dSy,
(3.13)

for any x ∈ ∂Ω and t ∈ (0, T ). Comparing this with (3.11), we arrive at w(t, x) = 0,
x ∈ ∂Ω, t ∈ (0, T ), by uniqueness of the solution of the mixed Cauchy-Dirichlet
problem (see [13], see also [2] for more general discussions) we get w ≡ 0, i.e.
u = ♦−1

α,tf . So we obtain the desired result. �
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