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STABILIZATION OF WAVE EQUATIONS WITH VARIABLE
COEFFICIENT AND DELAY IN THE DYNAMICAL BOUNDARY
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Abstract. In this article we consider the boundary stabilization of a wave
equation with variable coefficients. This equation has an acceleration term and

a delayed velocity term on the boundary. Under suitable geometric conditions,

we obtain the exponential decay for the solutions. Our proof relies on the
geometric multiplier method and the Lyapunov approach.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary Γ. We
assume Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅. We consider the following wave equation
with dynamical Neumann boundary condition

utt − divA(x)∇u = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

m(x)utt(x, t) + ∂νA
u(x, t) = C(t), on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)

where divX denote the divergence of the vector field X in the Euclidean met-
ric, A(x) = (aij(x)) are symmetric and positive definite matrices for all x ∈ RN
and aij(x) are smooth functions on RN . ∂νA

u =
∑n
i,j=1 aij(x)∂xj

uνi, where
ν = (ν1, ν2, . . . , νn)T denotes the outward unit normal vector of the boundary and
νA = Aν. C(t) is the boundary feedback control.

We call the equation (1.1) is with dynamical boundary conditions if m(x) 6= 0,
which means the system has an acceleration term on part of the boundary. This is
what happened in some physical applications when one has to take the acceleration
terms into account on the boundary. Actually we need the models with dynamical
boundary conditions, see [8, 10, 17] and many others. They are not only important
theoretically but also have strong backgrounds for physical applications. There
are numerous of these applications in the bio-medical domain [5, 20] as well as in
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applications related to noise suppression and control of elastic structures [2, 3, 4, 21].
For the above reasons in this article we assume

m(x) ∈ L∞(Γ1) and m(x) > α > 0, (1.2)

where α is a positive constant. Here we denote ε1(x) a nonnegative function as

ε1(x) =
m(x)
α
− 1 > 0, x ∈ Γ1. (1.3)

On the other hand, time delay effects arise in many practical problems in science
and engineering. Most phenomena depends on not only the present state but also
the history of the system in a very complicated way. For instance the practical
systems often suffer from the actuator saturation and sometimes the control input
delay. It is well known that delay effects might turn a well-behaved system into a
wild one by inducing some instabilities, see [9, 11, 18]. Recently boundary feedbacks
are designed to overcome the negative effect of time delays and stabilize the system;
see [1, 15, 16, 19, 22] and the references therein.

In this article, we discuss the stabilization of wave equations subject to dynamical
boundary conditions with acceleration terms(i.e. utt) and time delayed velocity
terms. We shall design a collocated boundary feedback with time delay effect in
the velocity input to obtain the exponential stabilization of the system. That is,
C(t) is a feedback law with input time delay

C(t) = −αut(x, t)− βut(x, t− τ)− ∂νA
ut , (1.4)

where τ is the time delay, α is the positive constant given in (1.2) and the constant
β > 0 denotes the effect of time delay in the velocity input. β = 0 means the
absence of input delay. For the discussion of stabilization results in the case of
absence of delay, see [6, 7, 8, 12, 14, 23] and our recent paper [28]. Here in this
article we assume that, for x ∈ Γ1, we have

0 <
β

α
<

√
ε1(x)

1 + ε1(x)
, (1.5)

ε1(x) ∈ R+ \ [
β2

2α(α+ β)
,

β2

2α(α− β)
], (1.6)

where ε1(x) is given in (1.3). If t < τ , then ut(x, t − τ) is determined by the
datum in the past and we need an initial value in the past. We thus give the initial
condition

ut(x, t− τ) = f0(x, t− τ), (x, t) ∈ Γ1 × (0, τ). (1.7)
In equation (1.1) we adopt the feedback law given in (1.4) and the initial datum

given in (1.7) to obtain the following closed loop system:

utt − divA(x)∇u = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

m(x)utt(x, t) + ∂νA
u(x, t) = −αut(x, t)− βut(x, t− τ)− ∂νA

ut, on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x, t− τ) = f0(x, t− τ), (x, t) ∈ Γ1 × (0, τ).
(1.8)

We define
g = A−1(x), x ∈ Ω
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as a Riemannian metric on Ω and consider the couple (Ω, g) as a Riemannian
manifold. Let D denote the Levi-Civita connection of the metric g. For each
x ∈ Ω, the metric g induces an inner product on Rnx by

〈X,Y 〉g = 〈A−1(x)X,Y 〉, |X|2g = 〈X,X〉g , X, Y ∈ Rnx ,

where 〈·, ·〉 denotes the standard metric of the Euclidean space Rn.
To obtain the stabilization of problem (1.8), the following geometric hypotheses

are assumed:
There exists a vector field H on Riemannian manifold (Ω, g) such that the fol-

lowing properties hold:
(A1) DH(·, ·) is strictly positive definite on Ω: there exists a constant κ > 0 such

that for all x ∈ Ω, for all X ∈Mx(the tangent space at x):

DH(X,X) ≡ 〈DXH,X〉g ≥ κ|X|2. (1.9)

(A2)
H · ν ≤ 0 on Γ0 . (1.10)

Remark 1.1. For any Riemannian manifold M , the existence of such a vector
field H in (A1) has been proved in [24], where some examples are given. See also
[26]. For the Euclidean metric, taking the vector field H = x − x0 and we have
DH(X,X) = |X|2, which means assumption (A1) always holds with κ = 1 for the
Euclidean case.

Before we go to the stabilization of the system, we should first define an energy
connected with the natural energy of the hybrid system (1.1). We set

η(x, t) = m(x)ut(x, t) + ∂νA
u, x ∈ Γ1 . (1.11)

Let u be a regular solution of system (1.8). Then we associate with system (1.8)
the energy functional

E(t) =
∫

Ω

(
u2
t + |∇gu|2g

)
dx+

∫
Γ1

1
m(x)− α

η2dΓ +ξ
∫ 1

0

∫
Γ1

u2
t (x, t− ρτ)dΓdρ ,

(1.12)
for some constant ξ > 0 which will be determined later.

The main result of this paper is the following:

Theorem 1.2. Let the geometric assumptions (A1) and (A2) hold. Then there
exist constants C > 0 and ω > 0 such that

E(t) ≤ Ce−ωtE(0), t ≥ 0 . (1.13)

This article is organized as follows. In the next section, we discuss the well-
posedness of the nonlinear close-loop system by semigroup theory. Section 3 devotes
to the proof of the exponential stability. We construct an appropriate Lyapunov
functional to obtain the main result.

2. Well-posedness of the closed loop system

In this section, we shall study well-posedness results for system (1.8) using semi-
group theory. Let

z(x, ρ, t) = ut(x, t− ρτ), x ∈ Γ1, ρ ∈ (0, 1), t > 0 .
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Then the closed loop system (1.8) is equivalent to the system

utt − divA(x)∇u = 0 in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Γ1 × (0, 1)× (0,∞),

ηt(x, t) = −η + (m− α)ut(x, t)− βut(x, t− τ), in Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

η(x, 0) = mu1(x) + ∂νA
u0(x), on Γ1 ,

z(x, 0, t) = ut(x, t), on Γ1 × (0,∞),

z(x, ρ, 0) = f0(x,−ρτ), on Γ1 × (0, 1) ,

(2.1)

where η is given by (1.11). We consider the unknown

U =
(
u,w = ut|Ω, η, z

)T
,

in the state space, denoted by

Υ := H1(Ω)× L2(Ω)× L2(Γ1)× L2(Γ1 × (0, 1)) , (2.2)

with the norm defined by

‖U‖2

= ‖(u,w, η, z)T ‖2

=
∫

Ω

(
〈A(x)∇u,∇u〉+ w2

)
dx+

∫
Γ1

1
m(x)− α

η2dΓ + ξ

∫ 1

0

∫
Γ1

z2dρdΓ,

(2.3)

where ξ > 0 is the constant in (1.12).
The system (2.1) can be rewritten in the abstract form

U ′ = AU,

U0 =
(
u0, u1, η0, f0(·,− · τ)

)T
,

(2.4)

where the operator A is defined by

A


u
w
η
z

 =


w

divA(x)∇u
−η +

(
m(x)− α

)
w(x, t)− βz(x, 1, t)

−τ−1zρ


with domain

D(A) :=
{

(u,w, η, z)T ∈ H1(Ω)× L2(Ω)× L2(Γ1)× L2(Γ1;H1(0, 1)) :

divA(x)∇u ∈ L2(Ω), η = m(x)w|Γ1 + ∂νA
u, z(x, 0, t) = w(x, t)

on Γ1 × (0,∞)
}
.

(2.5)

We will show that A generates a C0 semigroup on Υ under the assumption (1.5).
Now we state the well-posedness result.

Theorem 2.1. For any initial datum U0 ∈ Υ, there exists a unique solution U ∈
C([0,∞),Υ) of system (2.4). Moreover, if U0 ∈ D(A), then U ∈ C([0,∞), D(A))∩
C1([0,∞), D(A)).
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Proof. Step 1. We prove that A is dissipative. We know Υ is a Hilbert space
equipped with the adequate scalar product 〈·, ·〉Υ and norm ‖U‖ defined by (2.3).
For U ∈ D(A), a simple computation leads to

〈AU,U〉Υ

=
1
2
d

dt
‖U‖2

=
∫

Γ

ut∂νA
udΓ +

∫
Γ1

1
m(x)− α

ηηtdΓ + ξ

∫ 1

0

∫
Γ1

z(x, ρ, t)zt(x, ρ, t)dρdΓ

=
∫

Γ1

ut∂νA
udΓ−

∫
Γ1

1
m(x)− α

η2dΓ +
∫

Γ1

ηut(x, t)dΓ

−
∫

Γ1

β

m(x)− α
z(x, 1, t)ηdΓ + ξ

∫ 1

0

∫
Γ1

z(x, ρ, t)zt(x, ρ, t)dρdΓ

=
∫

Γ1

ut∂νA
udΓ−

∫
Γ1

1
2m(x)

η2dΓ

−
∫

Γ1

( 1
m(x)− α

− 1
2m(x)

)
η2dΓ +

∫
Γ1

ηut(x, t)dΓ

−
∫

Γ1

β

m(x)− α
z(x, 1, t)ηdΓ + ξ

∫ 1

0

∫
Γ1

z(x, ρ, t)zt(x, ρ, t)dρdΓ

= −
∫

Γ1

(m(x)
2

u2
t +

1
2m(x)

∂2
νA
u
)
dΓ

−
∫

Γ1

( 1
m(x)− α

− 1
2m(x)

)
η2dΓ +

∫
Γ1

ηut(x, t)dΓ

−
∫

Γ1

β

m(x)− α
z(x, 1, t)ηdΓ +

ξ

2τ

∫
Γ1

(
u2
t (x, t)− z2(x, 1, t)

)
dΓ ,

(2.6)

where we used that

ξ

∫ 1

0

∫
Γ1

z(x, ρ, t)zt(x, ρ, t)dρdΓ

= −τ−1ξ

∫ 1

0

∫
Γ1

zρ(x, ρ, t)z(x, ρ, t)dρdΓ

= −1
2
τ−1ξ

∫
Γ1

∫ 1

0

dz2

dρ
dρdΓ

=
ξ

2τ

∫
Γ1

(
u2
t − z2(x, 1, t)

)
dΓ .

(2.7)

Now we handle the items in (2.6) by applying Hölder’s inequality∫
Γ1

ηut(x, t)dΓ ≤ 1
k1

∫
Γ1

η2

m(x)
dΓ +

k1

4

∫
Γ1

m(x)u2
tdΓ , (2.8)

−
∫

Γ1

β

m(x)− α
z(x, 1, t)ηdΓ ≤

∫
Γ1

β

m(x)− α
( 1

2k2
η2 +

k2

2
z2(x, 1, t)

)
dΓ , (2.9)
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where k1 > 0 and k2 > 0 can be chosen later. Substituting (2.7), (2.8) and (2.9) in
(2.6) yields

〈AU,U〉Υ ≤ −
∫

Γ1

(m(x)
2
− k1m(x)

4
− ξ

2τ
)
u2
tdΓ

−
∫

Γ1

( 1
m(x)− α

(1− β

2k2
)− 1

2m(x)
− 1
k1m(x)

)
η2dΓ

+
∫

Γ1

( β

m(x)− α
k2

2
− ξ

2τ
)
z2(x, 1, t)dΓ−

∫
Γ1

1
2m(x)

∂2
νA
udΓ.

(2.10)

Next we find positive numbers k1, k2 and ξ that guarantee the negativity of
〈AU,U〉Υ. That is, we need, for all x ∈ Γ1,

m(x)
2
− k1m(x)

4
− ξ

2τ
> 0 , (2.11)

1
m(x)− α

(1− β

2k2
)− 1

2m
− 1
k1m(x)

> 0 , (2.12)

β

m(x)− α
(
k2

2
)− ξ

2τ
< 0 . (2.13)

Inequalities (2.11) and (2.13) imply

β

m(x)− α
(
k2

2
) <

m(x)
2
− k1m(x)

4
, (2.14)

that is,

k2 <
(2− k1)m(x)

2
m(x)− α

β
. (2.15)

We can easily show that inequality (2.12) is equivalent to

k2(
1

m(x)− α
− k1 + 2

2m(x)k1
)− β

2(m(x)− α)
> 0 , (2.16)

from which we find that

2m(x)k1 − (k1 + 2)
(
m(x)− α

)
> 0 , (2.17)

that is,

k1 > 2
m(x)− α
m(x) + α

, (2.18)

and

k2 >
βm(x)k1

2m(x)k1 − (k1 + 2)
(
m(x)− α

) , (2.19)

for all x ∈ Γ1.
Now we can determine the constants k1 and k2 according to inequalities (2.15),

(2.18) and (2.19).
Firstly we aim to get k1. The inequalties (2.15) and (2.19) yield

βm(x)k1

2m(x)k1 − (k1 + 2)
(
m(x)− α

) < (2− k1)m(x)
(
m(x)− α

)
2β

,

that is,

k2
1

(
m(x)

(
m(x)− α

)(
m(x) + α

))
+ k1(2m(x))

(
β2 − 2m(x)

(
m(x)− α

))
+ 4m(x)

(
m(x)− α

)2
< 0 .
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For the quadratic form of k1, we compute the discriminant

∆(x) = 4m2
(
β2 − 2m(m− α)

)2 − 16m2(m− α)2(m2 − α2)

= 4m2
(
β4 + 4(m− α)(mα2 − α3 −mβ2)

)
> 0 ,

for all x ∈ Γ1, where we used assumption (1.5). Thus we get a possible candidate

k1 = min
x∈Γ1

{ 2m(x)
m(x) + α

− β2

m(x)2 − α2

}
. (2.20)

It’s easy to verify that 0 < k1 < 2 and inequality (2.18) holds.
Secondly we should determine the constant k2. Now inequalities (2.15) and

(2.19) become

k2 <
m(x)

(
m(x)− α

)
2β

(2− k1) =
2m(x)α

(
m(x)− α

)
+m(x)β2

2β
(
m(x) + α

) , (2.21)

and

k2 >
βm(x)k1

2m(x)k1 − (k1 + 2)
(
m(x)− α

) =
βm(x)
m(x) + α

2m(x)
(
m(x)− α

)
− β2

2α
(
m(x)− α

)
− β2

,

that is,

βm(x)
m(x) + α

2m(x)
(
m(x)− α

)
− β2

2α
(
m(x)− α

)
− β2

< k2 <
2m(x)α

(
m(x)− α

)
+m(x)β2

2β
(
m(x) + α

) . (2.22)

To obtain k2 we only have to verify that

2m(x)α
(
m(x)− α

)
+m(x)β2

2β
(
m(x) + α

) − βm(x)
m(x) + α

2m(x)
(
m(x)− α

)
− β2

2α
(
m(x)− α

)
− β2

=
((

2m(x)α
(
m(x)− α

)
+m(x)β2

)(
2α
(
m(x)− α

)
− β2

)
− 2β2m(x)

(
2m(x)

(
m(x)− α

)
− β2

))/(
2β
(
m(x) + α

)(
2α
(
m(x)− α

)
− β2

))
> 0 .

In fact, we have(
2mα(m− α) +mβ2

)(
2α(m− α)− β2

)
− 2β2m

(
2m(m− α)− β2

)
= 4m3α2 + 4mα4 − 8m2α3 +mβ4 − 4β2m3 + 4β2m2α

= (1 + ε1)
(
4α3ε21(α2 − β2)− 4α3β2ε1 + αβ4

)
> 0 ,

where we used assumption (1.6).
Thus by (2.22) we can take

k2 =
1
2

(
min
x∈Γ1

2m(x)α
(
m(x)− α

)
+m(x)β2

2β
(
m(x) + α

)
+ max
x∈Γ1

βm(x)
m(x) + α

2m(x)
(
m(x)− α

)
− β2

2α
(
m(x)− α

)
− β2

)
.

(2.23)

Finally, we can take a constant ξ to satisfy
βk2

m− α
<
ξ

τ
<
m(2− k1)

2
,

after k1 and k2 are given in (2.20) and (2.23). Thus we show that the operator A
is dissipative.
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Step 2. We will show that λI−A is surjective for a fixed λ > 0. Given (ā, b̄, c̄, f̄)T ∈
Υ, we seek a solution U = (u,w, η, z)T ∈ D(A) of

(λI −A)


u
w
η
z

 =


ā
b̄
c̄
f̄


that is, satisfying

λu− w = ā, in Ω,

λw − divA(x)∇u = b̄, in Ω,

λη + η − (m− α)w(x, t) + βz(x, 1, t) = c̄, on Γ1,

λz + τ−1zρ = f̄ , on Γ1 × (0, 1),

η = mw|Γ1 + ∂νA
u(x, t), z(x, 0, t) = w(x), z(x, ρ, 0) = f0(x,−ρτ) on Γ1.

(2.24)

where we take t as a parameter. Suppose that we have found u with the appropriate
regularity, then from equation (2.24) we have w := λu− ā. Therefore we have the
initial value problem for z,

λz + τ−1zρ = f̄ ,

z(x, 0) = w(x) on Γ1 .

We can easily see that

z(x, ρ) = w(x)e−λρτ + τe−λρτ
∫ ρ

0

f̄(x, θ)eλθτdθ .

In particular we have

z(x, 1) = (λu− ā)e−λτ + τe−λτ
∫ 1

0

f̄(x, θ)eλθτdθ =: λue−λτ + z0 , (2.25)

where z0 = −āe−λτ + τe−λτ
∫ 1

0
f̄(x, ρ)eλρτdρ. So once we know u,we can get w =

λu− ā,and we already know z(x, 1), so we obtain

η =
c̄

λ+ 1
+
m− α
λ+ 1

w − β

λ+ 1
z(x, 1) (2.26)

from (2.24)(3). Now we lay the emphasis on how to get u. Eliminating w we find
that the function u satisfies

λ2u = divA(x)∇u+ λā+ b̄, in Ω
u = 0, on Γ0

∂νA
u =

c̄

λ+ 1
− λm+ α

λ+ 1
(λu− ā)− β

λ+ 1
z(x, 1), in Γ1

(2.27)

where z(x, 1) is given in (2.25). We obtain a weak formulation of system (2.27) by
multiplying the equation by ψ and using Green’s formula∫

Ω

(λ2uψ + 〈A(x)∇u,∇ψ〉)dx+
∫

Γ1

uψ
λ(λm+ α)
λ+ 1

dΓ +
∫

Γ1

uψ
λβe−λτ

λ+ 1
dΓ

=
∫

Ω

(λā+ b̄)ψdx+
∫

Γ1

ψ
c̄

λ+ 1
dΓ +

∫
Γ1

ψ
ā(λm+ α)
λ+ 1

dΓ−
∫

Γ1

ψ
βz0

λ+ 1
dΓ ,

(2.28)
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for any ψ ∈ H1(Ω), where z0 is given in (2.25). As the left hand side of (2.28) is
coercive on H1(Ω), Lax-Milgram Theorem guarantees the existence and uniqueness
of a solution u ∈ H1(Ω) of (2.27).
Step 3. Finally, the well-posedness result follows from Lummer-Phillips Theorem.

�

3. Energy decay

In this section, we obtain the exponential stability of the system by energy
perturbed approach. At first we rewrite the energy E(t) defined in (1.12) as

E(t) = E(t) + Eτ (t) ,

where E(t) is the standard energy regardless of the time delay

E(t) =
∫

Ω

(
u2
t + |∇gu|2g

)
dx+

∫
Γ1

1
m(x)− α

η2dΓ ,

Eτ (t) =
∫ 1

0

∫
Γ1

u2
t (x, t− ρτ)dΓdρ .

To obtain the estimate of the energy E(t) we define three auxiliary functions:

V1(t) =
∫

Ω

H(u)utdx ,

V2(t) =
1
2

∫
Ω

(divH − κ)uutdx ,

V3(t) = ξ

∫
Γ1

∫ 1

0

e−2τρu2
t (x, t− ρτ)dρdΓ .

We need some lemmas from [26] and [13].

Lemma 3.1 ([26, Theorem 2.1.]). Suppose that u(x, t) is a solution of the utt −
divA∇u = 0. We have V̇1(t) = B1 + I1, where the boundary term is

B1(Γ) =
∫

Γ

∂νA
uH(u)dΓ +

1
2

∫
Γ

(u2
t − |∇gu|2g)H · νdΓ, (3.1)

and the internal term

I1 = −
∫

Ω

DgH(∇gu,∇gu)dx− 1
2

∫
Ω

(u2
t − |∇gu|2g) divHdx .

Lemma 3.2 ([26, Theorem 2.2.]). Suppose that u(x, t) is a solution of the equation
utt − divA∇u = 0. Then V̇2(t) = B2 + I2, where the boundary term is

B2(Γ) = −1
4

∫
Γ

u2∂νA
(divH)dΓ +

1
2

∫
Γ

(divH − κ)u∂νA
udΓ,

and the internal term

I2 =
1
2

∫
Ω

(divH − κ)(u2
t − |∇gu|2g)dx+

1
4

∫
Ω

u2 divA(x)∇(divH)dx .

Lemma 3.3 ([18, Prosition 3.1.]). Let u solve problem (1.8). We have

V̇3(t) =
ξ

τ

∫
Γ1

u2
tdΓ− ξ

τ

∫
Γ1

e−2τz2(x, 1, t)dΓ− 2ξ
∫

Γ1

∫ 1

0

e−2ρτz2dρdΓ . (3.2)

From Lemmas 3.1, 3.2 and 3.3, we obtain the following result.
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Lemma 3.4. Suppose that the geometric assumptions (A1) and (A2) hold. Let u
solves problem (1.8). There exist constants c1, c2, c3, c4, c5 > 0 such that

κ

2
E(t) + V̇1(t) + V̇2(t) +

κ

4ξ
e2τ V̇3(t)

≤ κ

2

∫
Γ1

1
m(x)− α

η2dΓ + c1

∫
Γ1

(u2
t + |∇gu|2g)dΓ + c2

∫
Ω

u2dx ,
(3.3)

|V1(t)| ≤ c3E(t), |V2(t)| ≤ c4E(t), |V3(t)| ≤ c5Eτ (t) . (3.4)

Proof. Obviously the estimate (3.4) is true. Now we prove inequality (3.3). First
we estimate the boundary terms B1, B2 given in Lemma 3.1 and Lemma 3.2. Since
u|Γ0 = 0, we have on Γ0 that

∇gu = ∂νA
u
νA
|νA|2g

,

which implies

H(u) = 〈H,∇gu〉g = ∂νA
u

1
|νA|2g

H · ν. (3.5)

Substituting equality (3.5) in (3.1) yields

B1(Γ0) =
1
2

∫
Γ0

(u2
t + |∇gu|2g)H · νdΓ ≤ 0 ,

where we noticed the geometric assumption (A2) is true. It is obvious that

B1(Γ) = B1(Γ0) +B1(Γ1) ≤ c1
4

∫
Γ1

(u2
t + |∇gu|2g)dΓ . (3.6)

Since u|Γ0 = 0, we have B2(Γ0) = 0. Also we have

B2(Γ) = B2(Γ0) +B2(Γ1) ≤ c1
4

∫
Γ1

|∇gu|2gdΓ. (3.7)

Next, we estimate the internal terms I1 and I2. From to the geometric assumption
(A1), we have

I1 ≤ −κ
∫

Ω

|∇gu|2gdx−
1
2

∫
Ω

(u2
t − |∇gu|2g) divHdx. (3.8)

It is obvious that

I1 + I2 ≤ −
κ

2

∫
Ω

(u2
t + |∇gu|2g)dx+ c2

∫
Ω

u2dx. (3.9)

Combining inequalities (3.6), (3.7), (3.8) and (3.9) we obtain
κ

2
E(t) + V̇1(t) + V̇2(t)

≤ κ

2

∫
Γ1

1
m− α

η2dΓ +
c1
2

∫
Γ1

(u2
t + |∇gu|2g)dΓ + c2

∫
Ω

u2dx .
(3.10)

Using Lemma 3.3 we know that
κ

2
Eτ (t) +

κ

4ξ
e2τ V̇3(t)

≤ κ

2
Eτ (t) +

κ

4τ
e2τ

∫
Γ1

u2
tdΓ− κ

2

∫
Γ1

∫ 1

0

e2τ−2ρτz2dρdΓ

≤ κ

4τ
e2τ

∫
Γ1

u2
tdΓ .

(3.11)
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Combining inequalities (3.10) and (3.11) we complete the proof. �

To elinate the tangential part of the derivative ∇gu we need the following lemma
from [13].

Lemma 3.5. p[13, Lemma 7.2.]] Let ε > 0 be given small. Let u solves the problem
(1.8). Then

∫ T−ε

ε

∫
Γ1

|∇gu|2gdΓdt

≤ CT,ε
{∫ T

0

∫
Γ1

(
(∂νA

u)2 + u2
t

)
dΓdt+ ‖u‖

H
1
2 +ε(Ω×(0,T ))

}
.

(3.12)

The following is the observability inequality for the system (1.8).

Lemma 3.6. Suppose that the geometric assumptions (A1) and (A2) hold. Let u
solve problem (1.8). Then for any given ε > 0, there exists a time T0 > 0 and a
positive constant CT,ε,ρ such that

E(0) ≤ CT,ε,ρ
{∫ T

0

∫
Γ1

(
u2
t + (∂νA

u)2 + z2(x, 1, t) + η2
)
dΓdt

+ ‖u‖H1/2+ε(Ω×(0,T ))

}
,

(3.13)

for all T > T0.

Proof. For a given ε small enough, integrating inequality (3.3) on the interval (ε, T−
ε) yields

κ

2

∫ T−ε

ε

E(t)dt+ V1(T − ε)− V1(ε) + V2(T − ε)− V2(ε)

+
κe2τ

4ξ
V3(T − ε)− κe2τ

4ξ
V3(ε)

≤ κ

2

∫ T−ε

ε

∫
Γ1

1
m− α

η2dΓ + c1

∫ T−ε

ε

∫
Γ1

(u2
t + |∇gu|2g)dΓ + c2

∫ T−ε

ε

∫
Ω

u2dx .

Then we use inequality (3.12) in Lemma 3.5 and inequality (3.4) in Lemma 3.4 to
obtain∫ T−ε

ε

E(t)dt ≤ CT,ε,ρ
{∫ T

0

∫
Γ1

(η2 + u2
t + |∂νA

u|2g)dΓ

+ ‖u‖H1/2+ε(Ω×(0,T ))

}
dx+ c0

(
E(T − ε) + E(ε)

)
,

(3.14)

where the constant CT,ε,κ depends on c1, κ, 1
m−α , meas(Ω) and the constant CT,ε

given in inequality (3.12).
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We notice that

E(0) + c0
(
E(T − ε) + E(ε)

)
=
∫ 2c0+ε+1

ε

E(t)dt+
∫ 2c0+ε+1

ε

(
E(0)− E(t)

)
dt

+ c0
(
E(ε)− E(0)

)
+ c0

(
E(T − ε)− E(0)

)
=
∫ 2c0+ε+1

ε

E(t)dt−
∫ 2c0+ε+1

ε

(∫ t

0

Ė(τ)dτ
)
dt+ c0

∫ ε

0

Ė(τ)dτ

+ c0

∫ T−ε

0

Ė(τ)dτ

≤
∫ 2c0+ε+1

ε

E(t)dt

+ c

∫ 2c0+ε+1

0

∫
Γ1

(
u2
t + (∂νA

u)2 + z2(x, 1, t) + η2
)
dΓdt ,

(3.15)

where we used Ė(t) ≤ 0 and the fact which is known from (2.6) that

− Ė(t) = −〈AU,U〉Υ ≤ c
∫

Γ1

(
u2
t + (∂νA

u)2 + z2(x, 1, t) + η2
)
dΓdt . (3.16)

Now we shall take T0 = 2c0 + 2ε+ 1 to guarantee that T − ε > 2c0 + ε+ 1, for
all T > T0. Substituting (3.15) to inequality (3.14) completes the proof. �

In what follows we use the compactness-uniqueness argument to absorb the lower
order term in (3.13). We list the lemma and omit the proof, which could be found
in [14, 19, 25, 27] and many others.

Lemma 3.7. Suppose that the geometric assumptions (A1) and (A2) hold. Let
u solve problem (1.1). Then for any T > T0, there exists a positive constant C
depending on T , ε, ρ, meas(Ω) such that

E(0) ≤ C
∫ T

0

∫
Γ1

(
u2
t + (∂νA

u)2 + z2(x, 1, t) + η2
)
dΓdt .

Proof of Theorem 1.2. From (2.10), we have

Ė ≤ −C1

∫
Γ1

[u2
t + η2 + z(x, 1, t)2 + ∂2

νA
u]dx , (3.17)

where we denote

C1 = min
(

(
m

2
− k1m

4
− ξ

2τ
)
, (

1
m− α

(1− β

2k2
)− 1

2m
− 1
k1m

)
,

− (
β

m− α
k2

2
− ξ

2τ
)
)
.

Thus from Lemma 3.7 we have that for all T > T0,

E(0) ≤ C
∫ T

0

∫
Γ1

(
η2 + ∂νA

2u+ u2
t + z2(x, 1, t)

)
dΓdt

≤ − C

C1

∫ T

0

Ėdt = − C

C1
(E(T )− E(0)) ;
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that is,

E(T ) ≤ C − C1

C
E(0) ,

from which the exponential decay result follows. �
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