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Abstract. In this article, we study the Kirchhoff type equation“
a+ λ

Z
R3
|∇u|2 + λb

Z
R3
u2
”

[−∆u+ bu] = K(x)|u|p−1u, in R3,

where a, b > 0, p ∈ (2, 5), λ ≥ 0 is a parameter, and K may be an unbounded

potential function. By using variational methods, we prove the existence of
nontrivial solutions for the above equation. A cut-off functional and some

estimates are used to obtain the bounded Palais-Smale sequences.

1. Introduction

In this article, we consider the Kirchhoff type problem(
a+ λ

∫
R3
|∇u|2 + λb

∫
R3
u2
)

[−∆u+ bu] = K(x)|u|p−1u, in R3,

u ∈ H1
r (R3),

(1.1)

where a > 0, b > 0, p ∈ (2, 5), λ ≥ 0 is a parameter and K(x) is a given potential
satisfying the following conditions:

(H1) K : R3 → R is a nonnegative continuous function, K is radial (that is
k(x) = k(|x|)) and K 6≡ 0;

(H2) there exists C0 > 0 and 0 ≤ l < p− 2 such that K(x) ≤ C0(1 + |x|l) for all
x ∈ R3.

When Ω is a bounded domain in RN , the Kirchhoff type problem

−
(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)

has attracted a lot of attention in recent years. Equation (1.2) is a nonlocal problem
because of the appearance of the term

∫
Ω
|∇u|2. This causes some mathematical

difficulties but makes the study of (1.2) very interesting. One can refer to [1, 4,
3, 19, 15, 25, 27, 23, 28, 7, 8, 13] and references therein for the existence and
multiplicity of positive solutions to (1.2). Mao and Luan [21], Mao and Luan [20],
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Zhang and Perera [29] have investigated the existence of sign-changing solutions of
(1.2).

When Ω = RN , the existence and multiplicity of solutions to (1.2) have been
treated in [16, 12, 14, 26, 6, 5]. In particular, Nie and Wu [22] have studied the
Schrödinger-Kirchhoff type problem

−
(
a+ b

∫
RN
|∇u|2

)
∆u+ V (|x|)u = Q(|x|)f(u),

u(x)→ 0, as |x| → ∞,
(1.3)

where N ≥ 2, a, b > 0, f ∈ C(R,R), V and Q are both radial functions in RN .
Under some conditions on V and Q, the existence of nontrivial solutions and a
sequence of high energy solutions for problem (1.3) has been proved by the Mountain
Pass theorem and symmetric Mountain Pass theorem. From [22, Remarks 1 and
2], we see that the potential Q is bounded in RN .

In [17], Li, Li and Shi showed the existence of nontrivial solutions of the following
problem with zero mass

−
(
a+ b

∫
RN
|∇u|2

)
∆u = K(x)f(u), in RN ,

u ∈ D1,2(RN ),

where the potential function K(x) is a nonnegative continuous function, K ∈
[Ls(RN ) ∩ L∞(RN )]\{0} for some s ≥ 2N/(N + 2) and |x · ∇K(x)| ≤ αK(x)
for a.e. x ∈ RN and some α ∈ (0, 2).

To be best of our knowledge, there is no result about the Kirchhoff type problems
with unbounded potential at infinity. Motivated by the above work, in this article,
we are lead to study problem (1.1) with unbounded potential K. Our main results
are as follows:

Theorem 1.1. Assume (H1) and (H2) hold. Then there exists λ0 > 0 such that
for any λ ∈ [0, λ0), problem (1.1) has at least one nontrivial solution in H1

r (R3).

Corollary 1.2. Assume (H1) and (H2) hold. Then the local problem

−∆u+ bu = K(x)|u|p−1u, in R3 (1.4)

has at least one nontrivial solution in H1
r (R3).

We remark that in [17], a cut-off functional and Pohozaev type identity are
utilized to obtain the bounded Palais-Smale sequences. However, we find that
when f(u) = |u|p−1u can be expressed explicitly, it is not necessary to establish
the Pohozaev type identity. In the case that K is unbounded, we need the Radial
Lemma (see Lemma 2.1) to overcome the loss of compactness, which is different
from [17].

The remaining of this paper is organized as follows. In Section 2, we give some
notations and elementary lemmas which will be used in the paper. In Section 3, we
are devoted to the proof of our main results.

2. Preliminaries

In this paper, we shall use the following notation:
• C stands for different positive constants.
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• For r > 0, Br(x) is an open ball in R3 with radius r centered at x.
• H1(R3) denotes the usual Sobolev space equipped with the inner product

(u, v) =
∫

R3
(∇u · ∇v + buv)dx,

and the corresponding norm ‖u‖ = (u, u)1/2.
• H1

r (R3) is the set of all radial functions in H1(R3).
• For Ω ⊂ R3 and 1 ≤ q <∞, Lq(Ω) denotes the Lebesgue space with the norm

|u|Lq(Ω) = (
∫

Ω

|u|qdx)
1
q .

When Ω = R3, we write |u|q = |u|Lq(R3) for simplicity of notations. Furthermore,
when q =∞, we write

|u|∞ = ess supx∈R3 |u(x)|.
• H1(R3) ↪→ Lq(R3) continuously for q ∈ [2, 6], while H1

r (R3) ↪→ Lq(R3) compactly
for q ∈ (2, 6).
• The dual space of H1

r (R3) is denoted by H−1
r (R3).

• Let 〈·, ·〉 be the duality pairing between H1
r (R3) and H−1

r (R3).
Before establishing the variational setting for (1.1), we need the following lemma.

Lemma 2.1 ([2]). Let N ≥ 2. Then for any radial function u ∈ H1
r (RN ),

|u(r)| ≤ C1‖u‖r
1−N

2 , for r ≥ 1,

where C1 is a positive constant and only depends on N .

Remark 2.2. Since H1(R3) ↪→ Lq(R3) continuously for q ∈ [2, 6], for any u ∈
H1
r (R3), by (H1) and (H2), we have

0 ≤
∫

R3
K(x)|u|p+1dx

≤ C0

∫
R3

(1 + |x|l)|u|p+1dx

= C0

∫
B1(0)

(1 + |x|l)|u|p+1dx+ C0

∫
R3\B1(0)

(1 + |x|l)|u|p+1dx

≤ C(
∫
B1(0)

|u|p+1dx+
∫ ∞

1

rl+2|u(r)|p+1dr)

≤ C‖u‖p+1 + C

∫ ∞
1

rl+2|u(r)|p+1dr.

Note that 0 ≤ l < p− 2. Then by Lemma 2.1, we deduce∫ ∞
1

rl+2|u(r)|p+1dr ≤ C‖u‖p+1

∫ ∞
1

rl−p+1dr ≤ C

p− 2− l
‖u‖p+1.

Thus,

0 ≤
∫

R3
K(x)|u|p+1dx < C‖u‖p+1.

In view of Remark 2.2, we consider the Sobolev space H1
r (R3). As usual, the

energy functional Jλ : H1
r (R3)→ R associated with (1.1) is well defined by

Jλ(u) =
1
2
a‖u‖2 +

1
4
λ‖u‖4 − 1

p+ 1

∫
R3
K(x)|u|p+1dx.
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It is easy to check that Jλ is C1-functional, whose Gateaux derivative is given by

〈J ′λ(u), v〉 = a(u, v) + λ‖u‖2(u, v)−
∫

R3
K(x)|u|p−1uvdx u, v ∈ H1

r (R3).

In the weak sense, solutions to (1.1) correspond to the critical points of the func-
tional Jλ.

3. Proof of our main results

In this section, we prove the existence of nontrivial solutions to (1.1). We first
have the following lemma.

Lemma 3.1. If u is a nontrivial weak solution of (1.1), then ‖u‖ ≥ r for some
r > 0.

Proof. Since u is a nontrivial weak solution of (1.1), by Remark 2.2, we have

a‖u‖2 ≤ (a+ λ‖u‖2)‖u‖2 =
∫

R3
K(x)|u|p+1dx ≤ C‖u‖p+1.

Because p+ 1 > 2, there exists r > 0 such that ‖u‖ > r. �

To find a bounded Palais-Smale sequence for the energy functional Jλ, by fol-
lowing [9, 11] (also see [17, 18]), we introduce a cut-off function φ ∈ C∞(R+,R)
such that

φ(t) = 1, t ∈ [0, 1],

0 ≤ φ(t) ≤ 1, t ∈ (1, 2),

φ(t) = 0, t ∈ [2,∞),

|φ′|∞ ≤ 2.

So we can define the functional JTλ : H1
r (R3)→ R by

JTλ (u) =
1
2
a‖u‖2 +

1
4
λhT (u)‖u‖4 − 1

p+ 1

∫
R3
K(x)|u|p+1dx, u ∈ H1

r (R3),

where for every T > 0,

hT (u) = φ(
‖u‖2

T 2
).

Moreover, for every u, v ∈ H1
r (R3), we have

〈(JTλ )′(u), v〉 = a(u, v) + λhT (u)‖u‖2(u, v) +
λ

2T 2
φ′(
‖u‖2

T 2
)‖u‖4(u, v)

−
∫

R3
K(x)|u|p−1uvdx.

(3.1)

It is easy to see that if u is a critical point of JTλ such that ‖u‖ ≤ T , then
〈(JTλ )′(u), v〉 = 〈J ′λ(u), v〉. So the arbitrary of v yields J ′λ(u) = 0 and thus u is
also a critical point of Jλ.

Next we recall a theorem, for which a corollary was proved by Struwe [24].

Theorem 3.2 ([10]). Let (X, ‖ · ‖) be a Banach space and I ⊂ R+ an interval.
Consider the family of C1− functional on X

Jµ(u) = A(u)− µB(u), µ ∈ I,
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with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ and such
that Jµ(0) = 0.

For every µ ∈ I, we set

Γµ = {γ ∈ C([0, 1], X) : γ(0) = 0, Jµ(γ(1)) < 0}.

If for every µ ∈ I, the set Γµ is nonempty and

cµ = inf
γ∈Γµ

max
t∈[0,1]

Jµ(γ(t)) > 0,

then for almost every µ ∈ I, there is a sequence {un} ⊂ X such that
(i) {un} is bounded;
(ii) Jµ(un)→ cµ;

(iii) J ′µ(un)→ 0 in the dual space X−1 of X.

In our case, X = H1
r (R3),

A(u) =
1
2
a‖u‖2 +

1
4
λhT (u)‖u‖4,

B(u) =
1

p+ 1

∫
R3
K(x)|u|p+1dx,

and the associated perturbed functional we study is

JTλ,µ(u) =
1
2
a‖u‖2 +

1
4
λhT (u)‖u‖4 − µ

p+ 1

∫
R3
K(x)|u|p+1dx, u ∈ H1

r (R3).

It is clear that this functional is C1-functional and for every u, v ∈ H1
r (R3),

〈(JTλ,µ)′(u), v〉 = a(u, v) + λhT (u)‖u‖2(u, v) +
λ

2T 2
φ′(
‖u‖2

T 2
)‖u‖4(u, v)

− µ
∫

R3
K(x)|u|p−1uvdx.

(3.2)

Notice that JTλ,µ(0) = 0, B is nonnegative in H1
r (R3) and A(u)→ +∞ as ‖u‖ → ∞.

Next we shall prove the following two lemmas which show that the functional JTλ,µ
satisfies the other conditions of Theorem 3.2.

Lemma 3.3. We have Γµ 6= ∅ for all λ ≥ 0 and µ ∈ I := [ 1
2 , 1].

Proof. By (H1), there exist R,C2 > 0 and ϕ ∈ C∞0 (R3) such that

ϕ ≥ 0, ‖ϕ‖ = 1,

supp(ϕ) ⊂ BR(0),∫
BR(0)

K(x)ϕp+1dx ≥ C2.

(3.3)

Then for t2 ≥ 2T 2,

JTλ,µ(tϕ) =
1
2
at2‖ϕ‖2 +

1
4
λφ(

t2‖ϕ‖2

T 2
)t4‖ϕ‖4 − µ

p+ 1
|t|p+1

∫
R3
K(x)ϕp+1dx

=
1
2
at2 − µ

p+ 1
|t|p+1

∫
R3
K(x)ϕp+1dx

≤ 1
2
at2 − 1

2(p+ 1)
|t|p+1

∫
BR(0)

K(x)ϕp+1dx
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≤ 1
2
at2 − C2

2(p+ 1)
|t|p+1.

Since p+ 1 > 2, we can choose t0 > 0 large such that JTλ,µ(t0ϕ) < 0. We set

γ(t) = tt0ϕ, t ∈ [0, 1].

So γ ∈ Γµ and Γµ 6= ∅. The proof is complete. �

Lemma 3.4. There exists a positive constant α such that cµ ≥ α for all µ ∈ I.

Proof. For any µ ∈ I and u ∈ H1
r (R3), by Remark 2.2, we have that

JTλ,µ(u) =
1
2
a‖u‖2 +

1
4
λhT (u)‖u‖4 − µ

p+ 1

∫
R3
K(x)|u|p+1dx

≥ 1
2
a‖u‖2 − µ

p+ 1
C‖u‖p+1

≥ 1
2
a‖u‖2 − C

p+ 1
‖u‖p+1.

Take ρ :=
(
ap+a
4C

) 1
p−1 and α := 1

2aρ
2 − C

p+1ρ
p+1 > 0. Then JTλ,µ(u) > 0 for any

µ ∈ I and 0 < ‖u‖ ≤ ρ. Moreover, JTλ,µ(u) ≥ α if ‖u‖ = ρ. By the definition of Γµ,
for each γ ∈ Γµ, there is t∗ ∈ (0, 1) such that ‖γ(t∗)‖ = ρ. Therefore, the arbitrary
of µ ∈ I yields that

cµ ≥ inf
γ∈Γµ

JTλ,µ(γ(t∗)) ≥ α.

The proof is complete. �

Next we need some compactness on Palais-Smale sequences of the functional
JTλ,µ in order to prove our main results.

Lemma 3.5. Assume 4λT 2 < a. For any µ ∈ I, any bounded Palais-Smale se-
quence of JTλ,µ contains a convergent subsequence.

Proof. Fix µ ∈ I. We assume {un} be a bounded Palais-Smale sequence of JTλ,µ,
namely

{un} and {JTλ,µ(un)} are bounded,

(JTλ,µ)′(un)→ 0 in H−1
r (R3).

Up to a subsequence, there exists u ∈ H1
r (R3) such that

un ⇀ u, in H1
r (R3),

un → u, in Ls(R3), s ∈ (2, 6),

un → u, in Lsloc(R3), s ∈ [1, 6),

un(x)→ u(x), a.e. x ∈ R3.
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For R > 1, from (H2) we obtain∣∣ ∫
R3
K(x)|un|p−1un(un − u)dx

∣∣ ≤ ∫
R3
K(x)|un|p|un − u|dx

≤ C0

∫
R3

(1 + |x|l)|un|p|un − u|dx

= C0

∫
BR(0)

(1 + |x|l)|un|p|un − u|dx

+ C0

∫
R3\BR(0)

(1 + |x|l)|un|p|un − u|dx

=: I1 + I2.

(3.4)

By Hölder’s inequality, we have

I1 = C0

∫
BR(0)

(1 + |x|l)|un|p|un − u|dx

≤ C(R)(
∫
BR(0)

|un|p+1dx)
p
p+1

(∫
BR(0)

|un − u|p+1dx
) 1
p+1

= C(R)|un|pLp+1(BR(0))|un − u|Lp+1(BR(0))

≤ C(R)‖un‖p|un − u|Lp+1(BR(0)).

(3.5)

Moreover, from Lemma 2.1 we deduce that

I2 = C0

∫
R3\BR(0)

(1 + |x|l)|un|p|un − u|dx

≤ 2C0

∫
R3\BR(0)

|x|l(|un|p+1 + |un|p|u|)dx

≤ C(‖un‖p+1 + ‖un‖p‖u‖)
∫ ∞
R

rl−p+1dr

= C
Rl−p+2

p− 2− l
(‖un‖p+1 + ‖un‖p‖u‖).

(3.6)

Since 3 < p+ 1 < 6, un → u in Lp+1(BR(0)). Therefore, by (3.4)-(3.6), we can find
R > 1 large enough such that∫

R3
K(x)|un|p−1un(un − u)dx→ 0 as n→∞. (3.7)

Note that (JTλ,µ)′(un)→ 0. Then by (3.7), we deduce that

0← 〈(JTλ,µ)′(un), un − u〉
= a(un, un − u) + λhT (un)‖un‖2(un, un − u)

+
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4(un, un − u)− µ

∫
R3
K(x)|un|p−1un(un − u)dx

= [a+ λhT (un)‖un‖2 +
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4](un, un − u) + o(1).

So

(a+ λhT (un)‖un‖2 +
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4)(un, un − u)→ 0. (3.8)
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Next, we claim that
(un, un − u)→ 0 as n→∞. (3.9)

Note that if ‖un‖2 > 2T 2, then hT (un) = 0 and φ′(‖un‖
2

T 2 ) = 0. If ‖un‖2 ≤ 2T 2,
then

|φ′(‖un‖
2

T 2
)‖un‖4| ≤ 8T 4.

Since 4λT 2 < a, we have

a+ λhT (un)‖un‖2 +
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4 ≥ a+

λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4

≥ a+
λ

2T 2
(−8T 4)

= a− 4λT 2 > 0

and

a+ λhT (un)‖un‖2 +
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4 ≤ a+ λ‖un‖2 +

λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4

≤ a+ 2λT 2 +
λ

2T 2
(8T 4)

= a+ 6λT 2 ≤ 5a
2
.

This combined with (3.8) yields that (3.9) holds.
Since un ⇀ u in H1

r (R3), we infer from the above claim that up to a subsequence,

un → u in H1
r (R3).

The proof is complete. �

Lemma 3.6. Let 4λT 2 < a. For almost every µ ∈ I, there exists uµ ∈ H1
r (R3)\{0}

such that
(JTλ,µ)′(uµ) = 0 and JTλ,µ(uµ) = cµ. (3.10)

Proof. By Lemma 3.3, Lemma 3.4 and Theorem 3.2, for almost every µ ∈ I, we
can find a bounded sequence {uµn} ⊂ H1

r (R3) satisfying

JTλ,µ(uµn)→ cµ,

(JTλ,µ)′(uµn)→ 0.

Furthermore, by using Lemma 3.5, we conclude that there is uµ ∈ H1
r (R3) such

that uµn → uµ in H1
r (R3). So the continuity of JTλ,µ and (JTλ,µ)′ imply that (3.10)

holds. This completes the proof. �

According to Lemma 3.6, we obtain that there exist sequences {µn} ⊂ I with
µn → 1− and {un} ⊂ H1

r (R3) such that

JTλ,µn(un) = cµn , (JTλ,µn)′(un) = 0. (3.11)

In what follows, we shall show ‖un‖ ≤ T , which is a critical key in the proof of
existence of solutions to (1.1).

Lemma 3.7. Assume {µn} ⊂ I with µn → 1− and {un} satisfies (3.11). Then for
T > 0 sufficiently large, there exists λ0 = λ0(T ) with 4λ0T

2 < a such that for any
λ ∈ [0, λ0), up to a subsequence,

‖un‖ ≤ T ∀n.
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Proof. The proof consists of three steps.
Step 1. By the definition of cµ and Lemma 3.4, we conclude that

α ≤ cµn ≤ sup
t∈[0,∞)

JTλ,µn(tϕ)

= sup
t∈[0,∞)

[1
2
at2 +

1
4
λφ(

t2

T 2
)t4 − µn

p+ 1
|t|p+1

∫
R3
K(x)ϕp+1dx

]
≤ max
t∈[0,∞)

[1
2
at2 − 1

2(p+ 1)
|t|p+1

∫
BR(0)

K(x)ϕp+1dx
]

+ sup
t∈[0,∞)

1
4
λφ(

t2

T 2
)t4

=
a(p− 1)
2(p+ 1)

(
2a∫

BR(0)
K(x)ϕp+1dx

)
2
p−1 + sup

t∈[0,∞)

1
4
λφ(

t2

T 2
)t4

=: A+ sup
t∈[0,∞)

1
4
λφ(

t2

T 2
)t4,

(3.12)

where ϕ is defined in Lemma 3.3.

Step 2. It is easy to see that if t2 ≥ 2T 2, then φ( t
2

T 2 ) = 0 and so

sup
t∈[
√

2T,∞)

1
4
λφ(

t2

T 2
)t4 = 0,

while if t2 < 2T 2, then

sup
t∈[0,

√
2T )

1
4
λφ(

t2

T 2
)t4 < λT 4.

This, combined with (3.12), yields

0 < α ≤ cµn ≤ A+ λT 4.

Step 3. Note that

cµn = JTλ,µn(un) =
1
2
a‖un‖2 +

1
4
λhT (un)‖un‖4 −

µn
p+ 1

∫
R3
K(x)|un|p+1dx

and

0 = 〈(JTλ,µn)′(un), un〉
= a(un, un) + λhT (un)‖un‖2(un, un)

+
λ

2T 2
φ′(
‖un‖2

T 2
)‖un‖4(un, un)− µn

∫
R3
K(x)|un|p+1dx.

Thus, we have that

cµn = JTλ,µn(un)− 1
p+ 1

〈(JTλ,µn)′(un), un〉

= a(
1
2
− 1
p+ 1

)‖un‖2 + (
1
4
− 1
p+ 1

)λhT (un)‖un‖4

− λ

2(p+ 1)T 2
φ′(
‖un‖2

T 2
)‖un‖6.

(3.13)
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We claim: there exists a subsequence of {un} which is uniformly bounded by T .
By way of contradiction, we distinguish two cases to prove the claim.
Case 1. Up to a subsequence, ‖un‖2 > 2T 2 for all n. It is easy to check that
hT (un) = 0 and φ′(‖un‖

2

T 2 ) = 0. Then we deduce from (3.13) and Step 2 that(1
2
− 1
p+ 1

)
a‖un‖2 = cµn ≤ A+ λT 4.

Since 4λT 4 < a,

2T 2 < ‖un‖2 ≤
[(1

2
− 1
p+ 1

)
a
]−1

(A+ λT 4) ≤
[(1

2
− 1
p+ 1

)
a
]−1

(A+
a

4
),

which contradicts with the assumption that T is sufficiently large.
Case 2. Up to a subsequence, T 2 < ‖un‖2 ≤ 2T 2 for all n. By (3.13) and Step 2,
we have cµn ≤ A+ λT 4. Furthermore, since p ∈ (2, 5), we obtain

(
1
2
− 1
p+ 1

)aT 2

< (
1
2
− 1
p+ 1

)a‖un‖2

= cµn +
λ

2(p+ 1)T 2
φ′(
‖un‖2

T 2
)‖un‖6 − (

1
4
− 1
p+ 1

)λhT (un)‖un‖4

≤ A+ λT 4 +
λ

2(p+ 1)T 2

∣∣φ′(‖un‖2
T 2

)
∣∣‖un‖6 + (

1
4

+
1

p+ 1
)λhT (un)‖un‖4

≤ A+ λT 4 +
8

p+ 1
λT 4 + (

1
4

+
1

p+ 1
)× 4λT 4

≤ A+
a(p+ 14)
4(p+ 1)

,

which contradicts the assumption that T is sufficiently large. Then the claim holds
and we complete the proof. �

Proof of Theorem 1.1. We assume T, λ0 are defined as in Lemma 3.7 and for each
µn ∈ I, un is a critical point for JTλ,µn at level cµn . By using Lemma 3.7, up to a
subsequence, we can also assume ‖un‖ ≤ T . Hence, hT (un) = 1 and

JTλ,µn(un) =
1
2
a‖un‖2 +

1
4
λ‖un‖4 −

µn
p+ 1

∫
R3
K(x)|un|p+1dx.

Next, we claim that {un} is a Palais-Smale sequence of Jλ. Indeed, since ‖un‖
is bounded for all n, we conclude that |Jλ(un)| is bounded for all n. Moreover, we
have

〈J ′λ(un), v〉 = 〈(JTλ,µn)′(un), v〉+ (µn − 1)
∫

R3
K(x)|un|p−1unvdx,

for any v ∈ H1
r (R3). Note that (JTλ,µn)′(un) = 0 and µn → 1−. Then we obtain

J ′λ(un) → 0 and the claim holds. By Lemma 3.5, {un} has a convergent subse-
quence. We may assume that un → ū in H1

r (R3). Therefore, J ′λ(ū) = 0 and by
Lemma 3.4,

Jλ(ū) = lim
n→∞

Jλ(un) = lim
n→∞

JTλ,µn(un) = cµn ≥ α > 0.

Consequently, ū is nontrivial solution of (1.1). The proof is complete. �
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