
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 181, pp. 1–19.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

PERIODIC SOLUTIONS AND ASYMPTOTIC BEHAVIOR FOR
CONTINUOUS ALGEBRAIC DIFFERENCE EQUATIONS

EL HADI AIT DADS, LAHCEN LHACHIMI

Communicated by Mokhtar Kirane

Abstract. Many phenomena in mathematical physics and in the theory of
dynamical populations are described by difference equations. The aim of this

work is to study existence of periodic solutions and the asymptotic behavior

for some algebraic difference equations. The technique used is based on con-
vergence of series associated with the forcing term and the characterization

by Fourier coefficients. Our results generalize the main results of our previous

results in [3]. For illustration, we provide some examples.

1. Introduction

The existence problem of bounded solutions has been one of the most attractive
topics in the qualitative theory of ordinary or functional differential equations for
its significance in the physical sciences. In many cases, it is of interest to model the
evolution of some system over time. There are two distinct cases. One can think of
time as a continuous variable, or one can think of time as a discrete variable. The
first case often leads to differential equations, the second case leads to difference
equations. We will not discuss differential equations in this note.

Difference equations have many applications in population dynamics, they can
be used to describe the evolution of many phenomena over the course of time. For
example, if a certain population has discrete generations, the size of the (n+ 1)th
generation x(n+ 1) is a function of the nth generation x(n). This relation express
in the following difference equation (see [6])

x(n+ 1) = f(x(n)). (1.1)

The main goal of this article is to study the problem of existence of periodic
solutions and their asymptotic behaviour of the equation

x(t+ 1)− x(t) = f(t). (1.2)

Before, in its first part we consider the qualitative properties and behavior at
infinity of real continuous solutions of algebraic difference equations of the form

P (x(t+m), . . . , x(t), t) = 0. (1.3)
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Where P is a polynomial with real coefficients in its arguments x(t+m), . . . , x(t)
and t. The problem was first treated by Lancaster [12], who obtained an upper
bound for the rate of increase of the solutions of algebraic difference equations of
a given order and pointed out the surprising dissimilarity with the known rates of
increase for solutions of differential equations of the same order. The main goal of
the second part of this work is to investigate the problem of existence of periodic
solutions of the special difference equation (1.2). The work is motivated by some
quantitative and qualitative results of the difference equation considered in Ait
Dads et al [3].

In the first section, we are concerned with the algebraic equation: Let d ∈ N∗,
(a0, a1, .., ad−1) ∈ Cd, with a0 6= 0. Let us consider the following difference equation:

f(t+ d) =
d−1∑
i=0

aif(t+ i), ∀t ∈ R, (1.4)

where f ∈ C(R,C), for which we associate the polynomial

P (X) = Xd −
d−1∑
i=0

aiX
i =

r

Π
k=1

(X − λk)mk , r ≤ d

with the λ′ks are non null complexes which are two by two distinct. And we have
the first result concerning this equation.

The organization of the paper is as follows. Section 2 concerns the study of
algebraic properties of some difference equation. In section 3, we consider the
asymptotic behavior for solutions of special difference equation (1.2). Section 4
deals with the characterization of bounded solutions of the equation (1.2), this last
section is divided into three subsections, in the first one, we study the existence of
periodic solutions in connection with the forcing term of equation (1.2), the second
one is concerned with the charaterization of periodic solution with respect to the
Fourier coefficients. The third subsection considers the case where the period is an
irrational number. In the last section, to illustrate the work, some examples are
given in the paper.

2. Difference Equations

2.1. General solution of (1.4).

Definition 2.1. The function f is called general solution of equation (1.4) if f is
continuous from R to C and satisfies (1.4).

Proposition 2.2. If we put λk = eck . Then the solutions of (1.4) are of the form:

f(t) =
r∑

k=1

eckt
mk−1∑
i=0

pi(t)ti

where the p′is are continuous and 1-periodic functions.

Proof. Let E = C(R,C), and τ : E → E, defined by

τ(f)(t) = f(t+ 1),∀f ∈ E.
Then the set of solutions of (1.4) is kerP (τ), and by the Kernels decomposition
theorem we have

kerP (τ) =
r
⊕
k=1

ker(τ − λk id)mk .
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Let Mk : E → E be defined for all f ∈ E by Mk(f)(t) = ecktf(t). One has

τ ◦Mk(f)(t) = eck(t+1)f(t+ 1) = λke
cktf(t+ 1) = λkMk ◦ τ(f)(t).

Then τ ◦Mk = λkMk ◦ τ , Mk is reversible and M−1
k (f)(t) = e−cktf(t). Moreover

M−1
k ◦ τ ◦Mk = λkτ,

henceforth
M−1
k ◦ (τ − λk id) ◦Mk = λk(τ − id),

and consequently

M−1
k ◦ (τ − λk id)mk ◦Mk = λmkk (τ − id)mk .

Then
ker(τ − λk id)mk = ker(τ − id)mk ◦M−1

k = Mk(ker(τ − id)mk).
So, to complete the proof, it suffices to show that for all n ≥ 1,

ker(τ − id)n = {t 7→
n−1∑
i=0

pi(t)ti, with the pi continuous and 1-periodic}.

Denote by En the set of polynomial applications from R to C with degree ≤ n. Let
us verify that ∀n ≥ 1, (τ−id)(En) = En−1. Indeed, one has ∀k ≤ n, t 7→ (t+1)k−tk
is a polynomial of degree ≤ k − 1, then

(τ − id)(En) ⊂ En−1.

Since all polynomial which is periodic is a constant function. Then dim ker(τ −
id) ∩ En = 1. Consequently, by Rank formula one has

dim(τ − id)(En) = (dimEn)− 1 = dimEn−1.

So, (τ − id)(En) = En−1, it results that

(τ − id)n(Ei) = {0} ∀i ≤ n− 1.

If p is continuous and 1-periodic, one has for f ∈ E,

(τ − id)(pf)(t) = p(t+ 1)f(t+ 1)− p(t)f(t) = p(t)(f(t+ 1)− f(t)).

Then
(τ − id)(pf) = p(τ − id)(f),

it follows that

(τ − id)n(pf) = p(τ − id)n(f), ∀i ≤ n− 1, ∀fi ∈ Ei, (τ − id)n(pfi) = 0,

from where, we have that

{t 7→
n−1∑
i=0

pi(t)ti, with the pi continuous and 1-periodic} ⊂ ker(τ − id)n.

Let us prove the other inclusion by recurrence on n. For n = 1, one has all
element of ker(τ − id) is continuous and 1-periodic. Let n ≥ 2, assume that the
result is hold for n − 1, and let us prove that the result remains true for n. Let
f ∈ ker(τ − id)n, then (τ − id)(f) ∈ ker(τ − id)n−1 and by recurrent hypothesis one
has (τ − id)(f)(t) =

∑n−2
i=0 pi(t)t

i, but the map t 7→ ti is in Ei = (τ − id)(Ei+1),
then there exists qi+1 ∈ Ei+1 such that ti = (τ − id)(qi+1)(t), from which one
has f −

∑n−2
i=0 piqi+1 ∈ ker(τ − id). Then there exists a continuous and 1-periodic
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function p such that f −
∑n−2
i=0 piqi+1 = p, thus f = p +

∑n−2
i=0 piqi+1 with qi+1 ∈

En−1, consequently f is in the required form. �

3. Asymptotic behavior for solutions of the special difference
equation

Proposition 3.1. Let f ∈ C(R,C), then the following three properties are equiva-
lent:

(1) Equation (1.2) admits a solution x ∈ C(R,C) such that limt→+∞ x(t) = 0.
(2) for all a ∈ R, the series

∑
n≥0 f(t+ n) converges uniformly on [a,+∞[.

(3) The series
∑
n≥0 f(t+n) converges pointwise on R and limt→+∞

∑+∞
n=0 f(t+

n) = 0.
Under these conditions, x is unique and is given by x(t) = −

∑+∞
n=0 f(t+n).

Proof. (1)⇒ (2) One has
∑n
k=0 f(t+k) = x(t+n+1)−x(t) with limt→+∞ x(t) = 0,

then the series
∑
n≥0 f(t+n) converges pointwise on R and x(t) = −

∑+∞
k=0 f(t+k)

which ensures the uniqueness of x. On the other hand, for t ∈ [a,+∞[ one has
+∞
−
∑

k=n+1

f(t + k) = x(t + n + 1). For ε > 0, ∃ A > 0, ∀t ≥ A, |x(t)| ≤ ε. Let

n0 ∈ N be such that a + n0 + 1 ≥ A, then for all n ≥ n0, for all t ∈ [a,+∞[,
|
∑+∞
k=n+1 f(t + k)| ≤ ε, which leads to the uniformly convergence of the series∑
n≥0 f(t+ n) on [a,+∞[.
(2)⇒ (1) One has that for all a ∈ R, the series

∑
n≥0 f(t+n) converges uniformly

on [a,+∞[, and t 7→ f(t + n) is continuous on R, then by the continuity theorem,
the map x : t 7→ −

∑+∞
n=0 f(t+n) is continuous on R, and one has limt→+∞ x(t) = 0,

x(t+ 1)− x(t) = −
+∞∑
n=1

f(t+ n) +
+∞∑
n=0

f(t+ n) = f(t).

(2)⇒ (3) for all a ∈ R, the series
∑
n≥0 f(t+n) converges uniformly on [a,+∞[.

In particular, the series
∑
n≥0 f(t+n) converges pointwise on R, in the other part,

the uniform convergence on R+ gives that supt∈R+ |f(t + n)| → 0 as n → +∞.
Then for ε > 0, there exists n0 ∈ N, such that for all n ≥ n0, and all t ∈ R+,
|f(t + n)| ≤ ε implies |f(t)| ≤ ε for all t ≥ n0, hence limt→+∞ f(t) = 0; on the
other hand the series

∑
n≥0 f(t + n) converges uniformly on R+, hence by the

inversion limit theorem one has

lim
t→+∞

+∞∑
n=0

f(t+ n) =
+∞∑
n=0

lim
t→+∞

f(t+ n) = 0.

(3) ⇒ (2) Let a ∈ R and ε > 0, since limt→+∞
∑+∞
n=0 f(t + n) = 0, there exists

A > 0, |
∑+∞
k=0 f(t+ k)| ≤ ε for all t ≥ A. Let n0 ∈ N such that a+n0 + 1 ≥ A and

t ∈ [a,+∞[, for n ≥ n0 one has

|
+∞∑

k=n+1

f(t+ k)| = |
+∞∑
k=0

f(t+ 1 + n+ k)| ≤ ε,

because t+ 1 + n ≥ a+ 1 + n0 ≥ A, from what the series
∑
n≥0 f(t+ n) converges

uniformly on [a,+∞[. �
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Proposition 3.2. Let f ∈ C(R,C). Then the following three properties are equiv-
alent:

(1) Equation (1.2) has a solution x ∈ C(R,C) such that limt→−∞ x(t) = 0.
(2) for all a ∈ R, the series

∑
n≥1 f(t− n) converges uniformly on ]−∞, a].

(3) The series
∑
n≥1 f(t−n) converges pointwise on R and limt→−∞

∑+∞
n=1 f(t−

n) = 0. Under these conditions x is unique and is defined by x(t) =∑+∞
n=1 f(t− n).

Proof. Putting G(t) = x(−t) and F (t) = −f(−t−1), the equation can be rewritten
as

G(t+ 1)−G(t) = F (t), ∀t ∈ R
and the proposition 3.1 yields the conclussion. �

Theorem 3.3 (Tauberian Theorem of Hardy [11]). Let (un)n≥0 be a complex se-
quence such that un = O(1/n) as n → +∞, sn =

∑n
k=0 uk, σn = 1

n

∑n−1
k=0 sk. If

(σn)n≥0 is convergent, then (sn)n≥0 converges to the same limit.

Proposition 3.4 (Poisson summation Formula). Let f ∈ C(R,C) such that for
all a ∈ R, the series

∑
n≥0 f(t+ n) converges uniformly on [a,+∞[ and the series∑

n≥0 f(t− n) is also uniformly convergent on ]−∞, a]. Then:

(1) The function p(t) =
∑
n∈Z f(t+ n) is defined and continuous 1-periodic on

R, for all n ∈ Z,
∫

R f(t)ei2nπtdt converges and

cn(p) = f̂(2πn) =
∫

R
f(t)e−i2πntdt.

(2) If moreover f̂(2πn) = O(1/|n|) as |n| → +∞, then the Fourier series of p
converges pointwise on R and one has. The Poisson summation formula is∑

n∈Z
f(t+ n) =

∑
n∈Z

∑
f̂(2πn)ei2nπt ∀t ∈ R.

Proof. By uniform convergence of the series
∑
n≥0 f(t+n) and

∑
n≥0 f(t−n), one

has p is well defined and continuous on R, and it is clear that p is 1-periodic,

ck(p) =
∫ 1

0

p(t)e−2ikπtdt =
∫ 1

0

∑
n∈Z

f(n+ t)e−2ikπtdt.

One has
∑
n≥0 f(t+ n) converges uniformly on [0, 1]. Since e−2ikπt is independent

from n and |e−2ikπt| = 1, it follows that
∑
n≥0 f(t + n)e−2ikπt is also uniformly

convergent on [0, 1]. Then∫ N

0

f(t)e−2ikπtdt =
N−1∑
n=0

∫ n+1

n

f(t)e−2ikπtdt

=
N−1∑
n=0

∫ 1

0

f(t+ n)e−2ikπtdt

=
∫ 1

0

N−1∑
n=0

f(t+ n)e−2ikπtdt
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→
∫ 1

0

+∞∑
n=0

f(t+ n)e−2ikπtdt

as N → +∞. If A > 0, let N = E(A) (where E denotes the greatest integer
function) one has∣∣∣ ∫ A

N

f(t)e−2ikπtdt
∣∣∣ ≤ ∫ A

N

|f(t)|dt ≤
∫ N+1

N

|f(t)|dt =
∫ 1

0

|f(t+N)|dt

approaches 0 because f(t + N) converges uniformly to 0. Then we conclude that∫
R+ f(t)e−2ikπtdt converges and∫

R+
f(t)e−2ikπtdt =

∫ 1

0

+∞∑
n=0

f(t+ n)e−2ikπtdt.

In the same manner the uniform convergence on [0, 1] of the series
∑
n≥1 f(t − n)

implies that
∫

R− f(t)e−2ikπtdt converges and∫
R−

f(t)e−2ikπtdt =
∫ 1

0

+∞∑
n=1

f(t− n)e−2ikπtdt.

So
∫

R f(t)e−2ikπtdt converges and∫
R
f(t)e−2ikπtdt =

∫ 1

0

∑
n∈Z

f(t+ n)e−2ikπtdt = ck(p).

Putting u0 = c0 and for n ≥ 1, un = cne
i2πnt + c−ne

−i2πnt, sn =
∑n
k=0 uk, sn is

the Fourier series of p, moreover, since p is continuous, then from Fejer, we know
that σn (The Césaro mean of sn) converges to p(t) and since cn(p) =

|n|→+∞
O( 1
|n| ),

un = O( 1
n ) from Hardy one has sn converges to p(t) which yields the Poisson

summation formula : p(t) =
∑
n∈Z cne

i2nπt. �

Remark 3.5. In the literature, one finds often the main conditions as for example:
there exists α > 1 such that f(t) = O(1/|t|α) as |t| → +∞, and

∑
n∈Z |f̂(2πn)| <

+∞. Here we have conditions which are weaker namely:
∑
n≥0 f(t + n) (resp∑

n≥0 f(t − n)) converges uniformly on [a,+∞[ (resp. ] − ∞, a]) and f̂(2πn) =
O(1/n).

Proposition 3.6. Let f ∈ C(R,C), then the following properties are equivalent:
(1) Equation (1.2) has a solution x ∈ C(R,C) such that lim|t|→+∞ x(t) = 0;
(2) for all a ∈ R, the series

∑
n≥0 f(t + n) (resp.

∑
n≥1 f(t − n)) converges

uniformly on [a,+∞[ (resp. ]−∞, a]) and for all t ∈ R,
∑
n∈Z f(t+n) = 0;

(3) for all a ∈ R, the series
∑
n≥0 f(t+n) (resp.

∑
n≥1 f(t−n)) converges uni-

formly on [a,+∞[ (resp. on ]−∞, a]) and for all n ∈ Z,
∫

R f(t)e−2inπtdt =
0.

Under these conditions x is unique and is given by

x(t) =
+∞∑
n=1

f(t− n) = −
+∞∑
n=0

f(t+ n).

The above proposition is an immediate consequence of the propositions 3.1, 3.2
and 3.4.
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Proposition 3.7. Let f ∈ C(R,C) such that f is C1 piecewise.
(1) If f ′ is integrable on R+ and

∫
R+ f (t)dt converges, then for all a ∈ R, the

series
∑
n≥0 f(t+ n) converges uniformly on [a,+∞[.

(2) If f ′ is integrable on R− and
∫

R− f(t)dt converges, then for all a ∈ R, the
series

∑
n≥0 f(t− n) converges uniformly on ]−∞, a].

Proof. (1) Let s ∈ R. One has∫ n+1

n

f(s+ t)dt = [(t− n− 1)f(s+ t)]n+1
n −

∫ n+1

n

(t− n− 1)f ′(s+ t)dt

= f(s+ n)−
∫ n+1

n

(t− n− 1)f ′(s+ t)dt,

then

|f(s+ n)−
∫ n+1

n

f(s+ t)dt| ≤
∫ n+1

n

|f ′(s+ t)|dt.

Since f ′ is integrable on R+ and
∫

R+ f(t)dt converges, then the series∑
n≥0

∫ n+1

n

|f ′(s+ t)|dt

and ∑
n≥0

∫ n+1

n

f(s+ t)dt

are convergent. Hence the series
∑
n≥0 f(s+ n) is also convergent and∣∣∣ +∞∑

k=n+1

f(s+ k)−
∫ +∞

n+1+s

f(t)dt
∣∣ ≤ ∫ +∞

n+1+s

|f ′(t)|dt.

For a ∈ R and s ∈ [a,+∞[, we have∣∣ +∞∑
k=n+1

f(s+ k)
∣∣ ≤ ∣∣ ∫ +∞

n+1+s

f(t)dt|+
∫ +∞

n+1+a

∣∣f ′(t)|dt.
Since

∫
R+ f(t)dt converges, for ε > 0 there exists A > 0 such that

|
∫ +∞

s

f(t)dt| ≤ ε ∀s ≥ A, .

Let n0 ∈ N such that n0 + 1 + a ≥ A, then for all n ≥ n0 and all s ∈ [a,+∞[,

|
∫ +∞

n+1+s

f(t)dt| ≤ ε.

It results that the series
∑
n≥0 f(s+ n) converges uniformly on [a,+∞[.

(2) follows from (1) by putting ϕ(t) = f(−t). �

Proposition 3.8. Let f ∈ C(R,C) such that f is C1 piecemeal, f ′ is integrable on
R and

∫
R f(t)dt converges. Then p(t) =

∑
n∈Z f(n + t) is well defined continuous

and 1-periodic on R, for all n ∈ Z,
∫

R f(t)ei2nπtdt converges and

cn(p) = f̂(2πn) =
∫

R
f(t)e−i2πntdt.
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The Fourier series of p converges pointwise on R and one has the Poisson summa-
tion formula: ∑

n∈Z
f(n+ t) =

∑
n∈Z

f̂(2πn)ei2nπt ∀t ∈ R.

Proof. From Propositions 3.4 and 3.7, it suffices to verify that cn(p) = O(1/|n|)
as |n| → +∞. Since f ′ is integrable on R and

∫
R f(t)dt converges, it follows that

lim|t|→+∞ f(t) = 0. An integration by parts leads to

|cn(p)| = | 1
2niπ

∫
R
f ′(t)e−i2nπtdt| ≤ 1

2|n|π

∫
R
|f ′(t)|dt,

from which, we have that cn(p) = O(1/|n|) as |n| → +∞. �

3.0.1. Characterization of bounded solutions. Let B = CB(R,C) be the space of
bounded and continuous functions from R to C. We have seen for f ∈ C(R,C),
that equation (1.2) has a solution in B if and only if there exists c > 0 such that
for all t ∈ R, and alln ∈ N, |

∑n
k=0 f(t+ k)| ≤ c, see [3]. In the sequel , we consider

the case where the period of f is in R \Q. Let CT be the space of continuous and
T -periodic functions from R to C.

Proposition 3.9. Let f ∈ CT with T /∈ Q, then equation (1.2) has a solution in
B if and only if the sequence

∑n
k=0 f(k) is bounded.

Proof. If (1.2) admits a solution in B, then there exists c > 0 such that for all t ∈ R
and all n ∈ N, |

∑n
k=0 f(t + k)| ≤ c in particular for t = 0 one has the sequence∑n

k=0 f(k) is bounded. Reciprocally suppose that there exists c > 0 such that for
all n ∈ N, |

∑n
k=0 f(k)| ≤ c, then∣∣ n∑

k=0

f(k +m)
∣∣ =

∣∣ n+m∑
k=m

f(k)
∣∣ =

∣∣ n+m∑
k=0

f(k)−
m−1∑
k=0

f(k)| ≤ 2c ∀m ∈ N,

and since f ∈ CT , we have

|
n∑
k=0

f(k +m− Tq)| ≤ 2c ∀q ∈ N,

but T /∈ Q then N− TN is dense in R, from which∣∣ n∑
k=0

f(k + t)
∣∣ ≤ 2c, ∀t ∈ R, ∀n ∈ N.

It follows that equation (1.2) has a solution in B. �

3.0.2. Existence of periodic solutions.

Lemma 3.10. Let g be a continuous function which has a period m ∈ N∗. Then

lim
n→+∞

1
n

n−1∑
k=0

g(t+ k) =
1
m

m−1∑
k=0

g(t+ k) ∀t ∈ R.

Proof. Since u 7→ g(u + t) has a same period as g, it suffices to consider the case
t = 0. Let n ∈ N∗, making the Euclidean division of n by m : n = qnm + rn,
0 ≤ rn ≤ m− 1.

n−1∑
k=0

g(k) =
qn−1∑
k=0

m−1∑
i=0

g(km+ i) +
rn−1∑
i=0

g(qnm+ i) = qn

m−1∑
i=0

g(i) +
rn−1∑
i=0

g(i),
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then
1
n

n−1∑
k=0

g(k) =
qn
n

m−1∑
i=0

g(i) +
1
n

rn−1∑
i=0

g(i) →
n→+∞

1
m

m−1∑
i=0

g(i).

�

Proposition 3.11. Let f be a continuous function on R, which has a period m ∈
N∗. If equation (1.2) has a continuous solution x defined on R and bounded on R+,
then

m−1∑
k=0

f(t+ k) = 0 ∀t ∈ R.

Proof. Assume that (1.2) has a solution x which is bounded on R+. Then
n−1∑
k=0

f(t+ k) =
n−1∑
k=0

x(t+ k + 1)− x(t+ k) = x(t+ n)− x(t),

then limn→+∞
1
n

∑n−1
k=0 f(t+ k) = 0 and from Lemma 3.10 one has

m−1∑
k=0

f(t+ k) = 0 ∀t ∈ R.

�

Corollary 3.12. Let f be a continuous function defined on R, which is not zero
with period 1. Then (1.2) has not a continuous solution x on R and bounded on
R+.

Proposition 3.13. Let f be a continuous function on R, with a period m ∈ N∗
and m ≥ 2. Then (1.2) has a solution x which is continuous on R and bounded on
R+ if and only if f is of the form

f(t) =
m−1∑
k=1

fk(t) exp(
2ikπ
m

t),

where the fk are continuous and 1-periodic. In this case all solutions of (1.2) are
m-periodic of the form

f(t) = f0(t) +
m−1∑
k=1

fk(t)
exp( 2ikπ

m t)
exp( 2ikπ

m )− 1

where f0 is continuous and 1-periodic.

Proof. If f(t) =
∑m−1
k=1 fk(t) exp( 2ikπ

m t), then it is clear that

f0(t) =
m−1∑
k=1

fk(t)
exp( 2ikπ

m t)
exp( 2ikπ

m )− 1

is a particular solution of equation (1.2), since ker(τ − id) is formed by contin-
uous and 1-periodic functions, then x is of the request form and is m-periodic.
Conversely, if equation (1.2) has a bounded solution defined on R+, then from
proposition 3.11, for all t ∈ R,

∑m−1
k=0 f(t+ k) = 0. On the other hand,

1 +X +X2 + ..+Xm−1 =
m−1∏
k=1

(X − e 2ikπ
m )
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and from proposition 2.2,

f(t) =
m−1∑
k=1

fk(t) exp(
2ikπ
m

t)

where the fk are any continuous and 1-periodic. �

Proposition 3.14. Let f : R→ R be a continuous function which is T -periodic
with T = n

p ∈ Q+∗, n ∧ p = 1. Then the following statements are equivalent:

(1) Equation (1.2) has a solution x continuous on R and bounded on R+;
(2) for all t ∈ R,

∑p−1
k=0 f(t+ k) = 0;

(3) for all k ∈ Z, c2kπ(f) = 0.
Under these conditions equation (1.2) has a unique T -periodic solution x such that
for all k ∈ Z, c2kπ(x) = 0. Moreover x is given by

x(t) =
1
p

p∑
k=1

kf(t+ k − 1).

Proof. Let x1, x2 be two solutions of equation (1.2) satisfying c2kπ(x1) = c2kπ(x2) =
0 for all k ∈ Z. Then x = x1−x2 is 1-periodic and for all k ∈ Z, c2kπ(x) = 0. Then
x = 0 and x1 = x2.

(1) =⇒ (2) If f is T = n
p periodic, then it is p periodic and the end of the proof

results from proposition 3.11.
(2) ⇔ (3) The application x : t 7→

∑p−1
k=0 f(t + k) is 1 periodic, then x = 0 ⇔

∀m ∈ Z, c2mπ(x) = 0. However

c2mπ(x) =
p−1∑
k=0

e2mkπic2mπ(f) = pc2mπ(f)

then (2)⇔ (3).
(2) =⇒ (1) One has

p−1∑
k=0

(Xk − 1) = (X − 1)
p−1∑
k=1

k−1∑
j=0

Xj = (X − 1)
p−2∑
j=0

p−1∑
k=j+1

Xj

= (X − 1)
p−2∑
j=0

(p− 1− j)Xj = (X − 1)
p−1∑
k=1

(p− k)Xk−1

= (X − 1)
p∑
k=1

(p− k)Xk−1,

it follows that
p−1∑
k=0

τk = p id +(τ − id)
p∑
k=1

(p− k)τk−1.

Then

0 =
p−1∑
k=0

f(t+ k) = pf(t) + (τ − id)
p∑
k=1

(p− k)f(t+ k − 1).

But
p∑
k=1

pf(t+ k − 1) = p

p−1∑
k=0

f(t+ k) = 0,
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hence

f(t) =
1
p

(τ − id)
p∑
k=1

kf(t+ k − 1).

Consequently

x(t) =
1
p

p∑
k=1

kf(t+ k − 1),

is a solution of (1.2) which is continuous on R and T -periodic, in particular it is
bounded on R+. Moreover one has that for all m ∈ Z,

c2mπ(x) =
1
p

p∑
k=1

ke2m(k−1)iπc2mπ(f) = 0,

because c2mπ(f) = 0. �

Proposition 3.15. Suppose that f is continuous T -periodic with mean value zero
for T /∈ Q. Then (1.2) has a T -periodic solution if and only if 1

n

∑n−1
k=0(n− k)τkf

converges uniformly on R. Under these conditions,

x0(t) = − lim
n→+∞

1
n

n−1∑
k=0

(n− k)f(t+ k),

is a unique T -periodic solution of (1.2) with mean value zero.

Proof. One has f is T periodic with T /∈ Q then for all λ ∈ 2πZ∗, cλ(f) = 0.
In fact if there exists k ∈ Z such that λ = 2kπ

T , we will have T ∈ Q which is
absurd. Moreover one has f is mean value zero then for all λ ∈ 2πZ, cλ(f) = 0
namely f ∈ F . From the almost periodic case [4] equation (1.2) has a solution in

AP (R,C) if and only if the sequence 1
N+1

N∑
n=0

sn converges uniformly on R, where

sn =
∑n
k=0 f(t + k) and under these conditions x0(t) = − limN→+∞

1
N+1

N∑
n=0

sn(t)

is the unique solution in F of equation (1.2) and as f is T -periodic, then x is also,
on the other hand the set of functions which are T -periodic with mean value zero
is include in F , (since T /∈ Q) then x is the unique T -periodic solution with mean
value zero. As

1
N + 1

N∑
n=0

sn(t) =
1

N + 1

N∑
k=0

(N + 1− k)f(t+ k),

then x0 is written as

x0(t) = − lim
n→+∞

1
n

n−1∑
k=0

(n− k)f(t+ k).

�

Remark 3.16. The set of T -periodic solutions of equation (1.2) is of the form
x0 + c where c ∈ C.
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3.0.3. Characterization of sequences which are Fourier coefficients of periodic and
continuous functions. Let f ∈ CT , ωn = 2nπ

T , (cn(f))n∈Z the family of Fourier
coefficients of f :

cn(f) =
1
T

∫ T

0

f(t)e−iωntdt.

From Féjer results, we know that the Césaro mean of the sequence Sn(f)(t) =∑n
k=−n ck(f)eiωkt converges uniformly to f on R. Now, we give the proof of the

reciprocal result.

Proposition 3.17. Let (λn)n∈Z be a family of complex numbers such that the

Césaro mean of the sequence
n∑

k=−n
λke

iωkt is uniformly convergent on R, then its

limit x is the unique function in CT , such that ∀n ∈ Z, cn(x) = λn.

Proof. Denote Sn(t) =
∑n
k=−n λke

iωkt and x(t) = limN→+∞
1
N

∑N−1
n=0 Sn(t). Since

1
N

∑N−1
n=0 Sn ∈ CT and the uniform convergence of the series, then f ∈ CT . Now

let us verify that for all p ∈ Z, cp(x) = λp. In fact, for n ≥ |p|, cp(Sn) = λp, then

cp(
1
N

N−1∑
n=|p|

Sn) =
N − |p|
N

λp ∀N > |p|,

and as 1
N

∑N−1
n=|p| Sn converges uniformly to f , then

lim
N→+∞

cp(
1
N

N−1∑
n=|p|

Sn) = cp(x)

from what, for all p ∈ Z, cp(x) = λp. The uniqueness of x results from that the
elements of CT which have the same Fourier coefficients are equal . �

Let T ∈ R \Q which is non negative, f ∈ CT : We will give a characterization of
the solutions x ∈ CT of (1.2) by the Fourier coefficients of f .

Proposition 3.18. Equation (1.2) has a solution f ∈ CT if and only if c0(f) = 0
and the Césaro mean of the sequence

∑
1≤|k|≤n

ck(f)

eiωk−1
eiωkt is uniformly convergent,

its limit x0 is the unique solution of (1.2) satisfying c0(x0) = 0. The solutions in
CT of (1.2) are of the form x = c+ x0, where c is a constant.

Proof. Note that for k 6= 0, ck(f)

eiωk−1
is well definite because T /∈ Q.

(⇒) Let x ∈ CT be a solution of (1.2), then

c0(x) = c0(t→ x(t+ 1))− c0(x) = c0(x)− c0(x) = 0,

for k 6= 0 one has eiωkck(x)− ck(x) = ck(f), from where ck(x) = ck(f)

eiωk−1
and then∑

1≤|k|≤n

ck(f)
eiωk − 1

eiωkt =
∑

1≤|k|≤n

ck(x)eiωkt.

From Fejer, we conclude that the Césaro mean of the following sequence∑
1≤|k|≤n

ck(f)

eiωk−1
eiωkt converges uniformly to x0 = x−c0(x). If moreover c0(x) = 0,

then the Fourier coefficients of x are unique; which gives the uniqueness of the
solution x ∈ CT such that c0(x) = 0, and the solutions in CT of (1.2) are of the
form x = c+ x0 where c is a constant.
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(⇐) We have the Césaro mean of the sequence

Sn =
∑

1≤|k|≤n

ck(f)
eiωk − 1

eiωkt

is uniformly convergent, then thinks to proposition 3.17 its limit x0 ∈ CT is such
that c0(x0) = 0 and for all k ∈ Z∗, ck(x0) = ck(f)

eiωk−1
, furthermore one has c0(f) = 0,

then the application t 7→ x0(t + 1) − x0(t) has the same Fourier coefficients as f ,
from which x0(t+ 1)− x0(t) = f(t). �

3.0.4. Characterization of irrational periodic solutions. In this section, we discuss
the characterization of irrational periodic solution. Let T be a nonnegative irra-
tional number, then R/TZ is a metric space with respect to the distance defined
by

d(x̄, ȳ) = | exp(
2πi
T
x)− exp(

2πi
T
y)|.

We denote
U = {z ∈ C : |z| = 1}.

Proposition 3.19. (1) The map φ : R→ R/TZ defined by φ(x) = x̄ is continuous
on R.

(2) The map r : R→[0, T [, x 7→ x− T [ xT ] ([·] denotes the greatest integer func-
tion) is T -periodic and r(x) = x.

(3) The metric space (R/TZ, d) is compact.
(4) The map h : R/TZ→ U, x̄ 7→ exp( 2πi

T x) is an homeomorphism.
(5) Let x̄0 ∈ R/TZ, then {x̄0 + n̄, n ∈ N} is dense in R/TZ.

Proof. (1) results from x 7→ x̄ begin 2π
T Lipschitzian, thus continuous.

(2) is a consequence of the facts that E( xT ) ≤ x
T < 1 + E( xT ) and x 7→ E(x) is

1-periodic.
(3) Let (x̄n)n be a sequence of R/TZ, r(xn) is bounded, which has a convergent

subsequence r(xϕ(n)), let ` be its limit, and by continuity of x 7→ x̄ one has x̄ϕ(n)

tends to ¯̀.
(4) It is clear that h is bijective and one has d(x̄n, x̄) = |h(x̄n)− h(x̄)|, then h is

bicontinuous.
(5) As T is a nonnegative irrational number, then N−TN is dense in R, it follows

that x0 + N− TN is also dense, and by continuity of x 7→ x̄, we have that {x̄0 + n̄,
n ∈ N} is dense in R/TZ. �

Notation We denote by PT the space of continuous functions defined from R to C
which are T -periodic.

Proposition 3.20. The map ψ : PT → C(R/TZ, C), defined by f 7−→ f̃ , where
f̃(x̄) = f(x), is a bijection.

Proof. f̃ is well defined since f is T -periodic. Let us prove that it is continuous:
In deed if x̄n tends to x̄. Then using (4) of proposition 3.19 one has that for all
k ∈ Z, [exp( 2πi

T xn)]k tends to [exp( 2πi
T x)]k, hence for all trigonometric polynomial

P ∈ PT , one has P (xn) goes to P (x) and since f is a uniform limit of trigonometric
polynomials, then f(xn) tends to f(x), from where f̃ is continuous, it is clear that
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ψ is one to one. It remains to prove that it is surjective, let g ∈ C(R/TZ,C),
putting f = g ◦ p where p : x 7→ x̄, then

f(x+ T ) = g(x+ T ) = g(x̄) = f(x)

and f is continuous as composition of continuous functions, then g = f̃ , so ψ is
surjective. �

Corollary 3.21. Let u ∈ PT . Then f is a solution in PT of the equation f(x+1)−
f(x) = u(x) if and only if f̃ is a solution in C(R/TZ,C) of the following equation:

g(x̄+ 1̄)− g(x̄) = ũ(x̄). (3.1)

Proposition 3.22. Let u ∈ PT and g a solution in C(R/TZ,C) of equation (3.1).
Let K = {(x̄, f(x̄)), for x̄ ∈ R/TZ}. Then K is a non empty compact subset which
is stable by the map

s : (x̄, y) 7→ (x̄+ 1̄, y + u(x))
and K is minimal for the inclusion, namely for all non empty compact K ′ which is
invariant under s, one has K ′ ⊂ K ⇒ K ′ = K.

Proof. One has K is a range of the compact R/TZ by a continuous map x̄ 7→
(x̄, g(x̄)), then K is a non empty compact set. Let (x̄, g(x̄)) ∈ K. Then

s(x̄, g(x̄)) = (x̄+ 1̄, g(x̄) + u(x)) = (x̄+ 1̄, g(x̄+ 1̄)),

from where K is invariant under s. Let K ′ a non empty compact stable by s such
that K ′ ⊂ K, (x̄0, f(x̄0)) ∈ K ′, hence for all n ≥ 1, sn((x̄0, f(x̄0))) ∈ K ′, namely
(x̄0 + n̄, f(x̄0 + n̄)) ∈ K ′. We have {x̄0 + n̄, n ∈ N} is dense in R/TZ, but as g is
continuous and K ′ is closed, then for all x̄ ∈ R/TZ, (x̄, f(x̄)) ∈ K ′, namely K ⊂ K ′
so K ′ = K. �

Proposition 3.23. Let u ∈ PT and K a non empty compact invariant under the
application s : (x̄, y) 7→ (x̄+ 1̄, y+ u(x)) and K is minimal for the inclusion. Then
(3.1) has a solution f in C(R/TZ,C) such that K = {(x̄, f(x̄)), for all x̄ ∈ R/TZ}.

Proof. One has K 6= ∅, let (x̄0, y0) ∈ K, stable by s, then for all n ≥ 1, sn(x̄0, y0) ∈
K, namely

(x̄0 + n̄, y0 +
n−1∑
k=0

u(x+ k)) ∈ K,

one has p : (x̄, y) 7→ x̄ is continuous and x̄0 + n̄ ∈ p(K) which is compact, but
{x̄0 + n̄, n ∈ N} is dense in R/TZ. Then R/TZ ⊂p(K) from where p(K) = R/TZ.
Let (x̄, y) ∈ K and d ∈ C∗. Consider f : R/TZ× C→ R/TZ× C defined by

f(w̄, λ) = (w̄, λ+ d).

One has f is continuous and commutes with s. Then f(K) ∩K is also a compact
stable by s. As K is minimal then

f(K) ∩K = K or f(K) ∩K = ∅,
similarly f−1(K) ∩K is a compact stable by s, leads to

f−1(K) ∩K = K or f−1(K) ∩K = ∅
which is equivalent to K ∩ f(K) = ∅. Then if we assume that f(K) ∩K 6= ∅, we
will have at once

f(K) ∩K = K and f−1(K) ∩K = K
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which gives
K ⊂ f(K) and K ⊂ f−1(K),

then f(K) = K. It follows that for all n ≥ 1, fn(K) = K and for all n ≥ 1,
(x̄, y+nd) ∈ K which contradicts the boundedness of K, then K∩f(K) = ∅, hence
for all d ∈ C∗, (x̄, y + d) /∈ K. So (x̄, y) ∈ K and (x̄, z) ∈ K implies that y = z.
Moreover p(K) = R/TZ, then for all x̄ ∈ R/TZ, there exists a unique y ∈ C such
that (x̄, y) ∈ K; so we will define a map g : R/TZ→ C such that

K = {(x̄, g(x̄)) : such that x̄ ∈ R/TZ}.

Let us prove that g is continuous, indeed if x̄n goes to ā, as K is compact then its
projections are compact, then g(x̄n) is a sequence in the compact. To prove that it
converges to g(ā) it suffices to prove that g(ā) is the alone adhesion value of g(x̄n).
Let ` an adhesion value of g(x̄n), ` = limn→+∞ g(x̄ϕ(n)), one has

(x̄ϕ(n), g(x̄ϕ(n))) →
n→+∞

(ā, `) ∈ K,

hence ` = g(ā). As K is invariant under s, then (x̄ + 1̄, g(x̄) + u(x)) ∈ K; from
where

g(x̄+ 1̄) = g(x̄) + u(x).

�

Proposition 3.24. Let T ∈ R+∗\Q, u ∈ PT , such that the sequence
∑n
k=0 u(k) is

bounded, then for all (x0, y0) ∈ R × C, the equation f(x + 1) − f(x) = u(x) has a
unique solution in PT such that f(x0) = y0.

Proof. Uniqueness: Let f and g be two solutions, then f − g ∈ PT ∩ P1, but the
set of periods of f − g is a group G, and as it contains TZ + Z which is dense in
R and that G is closed then G = R, hence f − g is constant, but (f − g)(x0) = 0
consequently f − g = 0 which leads to the uniqueness.

Existence: Let s : (x̄, y) 7→ (x̄ + 1̄, y + u(x)) and A = {sn(0, 0), n ∈ N}, one
has that for all n ≥ 1, sn(0, 0) = (n̄,

∑n−1
k=0 u(k)), then there exists c > 0 such that

A ⊂ (R/TZ) × {z ∈ C, |z| ≤ c} which is compact and non empty then L = Ā is a
non empty compact and as A is invariant under s and s is continuous, then L is
compact and invariant under s. Let

E = {K non empty compact subset of (R/TZ)× C stable by s},

one has E is non empty because L ∈ E. Let (Ki)i∈I a family totally ordinate of
E, then ∩i∈IKi is also compact invariant under s, if it was empty, it could exist
a finite subset J of I, such that ∩i∈JKi = ∅ and as the family (Ki)i∈I is a family
totally ordinate of E, then there exists j ∈ J such that ∩i∈JKi = Kj ; hence Kj = ∅
absurd. Then ∩i∈IKi 6= ∅ and by the Zorn lemma one has E has a minimal element
then thanks to proposition 3.23, the equation g(x̄+ 1̄)− g(x̄) = ũ(x̄) has a solution
in C(R/TZ,C) and from the corollary 3.21 the equation f(x + 1) − f(x) = u(x)
has a solution f0 in PT . Then if we put f(x) = f0(x) + y0 − f0(x0) then f is an
answer to the question. �

4. Examples

In this section, we give some examples to demonstrate the results obtained in
previous sections.
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Example 4.1 (Solutions which go to 0). Let λ ∈ R∗, I an interval in R and
ϕ : I 7→ C such that u 7→ ϕ(u)

eiλu−1
is integrable on I. Then for all n ∈ Z,∫

R

(∫
I

ϕ(u)eit(λu+2nπ)du
)
dt = 0 and

∑
n∈Z

∫
I

ϕ(u)eiλ(t+n)udu = 0.

In fact, we consider the equation (1.2), where

f(t) =
∫
I

ϕ(u)eiλtudu.

Since u 7→ ϕ(u)
eiλu−1

is integrable on I, then ϕ is also. Thus f is defined and con-
tinuous on R, on the other hand, thanks to Riemann Lebesgue lemma, we have
lim|t|→+∞ f(t) = 0, and

x(t) =
∫
I

ϕ(u)
eiλu − 1

eiλtudu

is the unique solution of equation (1.2) such that lim|t|→+∞ x(t) = 0. Hence, from
proposition 3.6, it follows that for all n ∈ Z,∫

R
f(t)e2inπtdt = 0 and

∑
n∈Z

f(t+ n) = 0.

Example 4.2 (Examples of periodic solutions). (1) Thanks to proposition (3.17),
if the Césaro mean of

sn(t) =
∑

1≤|k|≤n

ck(f)
eiωk − 1

eiωkt

converges uniformly, in particular if sn is uniformly convergent, then its limit x0 is
a solution of equation (1.2).

(2) Let (αn)n∈N∗ be a nonnegative non increasing sequence such that αn = o(1/n)
(for example αn = 1

n ln(n+1) ),

f(t) =
+∞∑
n=1

αn sin(n) cos(2t+ 1)n,

then equation (1.2) has as a π-periodic solution

x0(t) =
+∞∑
n=1

αn sin(2nt)
2

which has mean value zero. In fact we have

αn sin(n) cos(2t+ 1)n =
1
2
αn sin(n)(e(2t+1)in + e−(2t+1)in)

Hence, if we assume in first time that the series which defines f is uniformly con-
vergent, we will have c0(f) = 0, and for n ≥ 1,

cn(f) =
1
2
αn sin(n)ein, c−n(f) = cn(f).

So

cn(x0) =
cn(f)
e2in − 1

=
αn sin(n)

2
ein

e2in − 1
= − i

4
αn

Thus we obtain

cn(x0)e2int + c−n(x0)e−2int = 2 Re(cn(x0)e2int)
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= 2
αn
4

Re(−ie2int) =
αn sin(2nt)

2
it follows that

x0(t) =
+∞∑
n=1

αn sin(2nt)
2

and we have

x0(t+ 1)− x0(t) =
+∞∑
n=1

αn
sin(2nt+ 2n)− sin(2nt)

2

=
+∞∑
n=1

2αn sin( 2nt+2n−2nt
2 ) cos( 2nt+2n+2nt

2 )
2

=
+∞∑
n=1

αn sin(n) cos(2t+ 1)n = f(t).

To complete the proof, it suffices to verify the uniform convergence on R of the
series ∑

n≥1

αn sin(2nt).

For this, it suffices to prove the uniform convergence of
∑
n≥1 αn sin(nt) on [0, π].

For m > n ≥ 1; and t ∈ [0;π] one has
n∑
k=n

2αk sin(kt) sin(
t

2
)

=
m∑
k=n

αk(cos(k − 1
2

)t− cos(k +
1
2

)t)

=
m−1∑
k=n−1

αk+1 cos(k +
1
2

)t−
m∑
k=n

αk cos(k +
1
2

)t

= αn cos(n− 1
2

)t− αm cos(m+
1
2

)t+
m−1∑
k=n

(αk+1 − αk) cos(k +
1
2

)t.

Hence ∣∣ m∑
k=n

2αk sin(kt) sin
t

2

∣∣ ≤ αn + αm +
m−1∑
k=n

(αk − αk+1)

which implies ∣∣ m∑
k=n

αk sin(kt)
∣∣ sin t

2
≤ αn

which allows us to see that the series∑
n≥1

αn sin(nt)

is pointwise convergent on [0, π]; and if m goes to +∞ and t ∈]0, π]; one has∣∣ +∞∑
k=n

αk sin(kt)| ≤ αn
sin t

2
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Let t ∈]0, π], and put E = [πt ], the greatest integer part of πt , and un = supk≥n kαk.
Then we ∣∣ +∞∑

k=n+E

αk sin(kt)
∣∣ ≤ αn+E

sin t
2

≤ αn+E
2
π
t
2

≤ π

t
αn+E ≤ (1 + E)αn+E

≤ (n+ E)αn+E ≤ un

which leads to

|
+∞∑
k=n

αk sin(kt)| ≤ (1 + π)un

and the inequality remains valid for t = 0. Tt follows that the series
∑
n≥1 αn sin(nt)

converges uniformly on [0, π].
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