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SIGN-CHANGING SOLUTIONS FOR NON-LOCAL ELLIPTIC
EQUATIONS
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Abstract. This article concerns the existence of sign-changing solutions for

equations driven by a non-local integrodifferential operator with homogeneous

Dirichlet boundary conditions,

−LKu = f(x, u), x ∈ Ω,

u = 0, x ∈ Rn \ Ω,

where Ω ⊂ Rn (n ≥ 2) is a bounded, smooth domain and the nonlinear term

f satisfies suitable growth assumptions. By using Brouwer’s degree theory

and Deformation Lemma and arguing as in [2], we prove that there exists a
least energy sign-changing solution. Our results generalize and improve some

results obtained in [27].

1. Introduction

In recent years, fractional and non-local operators of elliptic type have been
widely investigated. This type of operators arises in several areas such as anoma-
lous diffusion, the thin obstacle problem, optimization, finance, phase transitions,
stratified materials, crystal dislocation, soft thin films, semipermeable membranes,
flame propagation, conservation laws, quasi-geostrophic flows, multiple scattering
and materials science. One can see [8, 9, 12, 14, 20, 21, 22, 23, 24, 25, 26, 28] and
their references. Many publications [3, 4, 5, 6, 7, 10, 11, 13, 15, 17, 18, 19] are
devoted to the study of the existence of sign-changing solutions of classical elliptic
boundary value problems such as

−∆u = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where f ∈ C(Ω̄×R,R), Ω ⊂ Rn(n ≥ 2) is a bounded domain with smooth boundary
∂Ω. There have been several methods developed in studying sign-changing solu-
tions of nonlinear elliptic equations, such as the invariant sets of descending flow
method developed by Liu and Sun [4, 15, 19], and the minimax method which is es-
tablished by Berestycki and Lions in the classical paper [7]. Teng, Wang and Wang
[27] established the existence of a least energy sign-changing solution for nonlinear
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problems involving the fractional Laplacian by using a constrained minimization
method.

Ambrosio and Isernia [2] studied the fractional Schrödinger equation

(−∆)su+ V (x)u = K(x)f(u) in Rn, (1.2)

where 0 < s < 1, n > 2s, (−∆)s is the fractional Laplacian operator, which (up to
normalization factors) may be defined as

− (−∆)su(x) =
1
2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)
|y|n+2s

dy.

By using a minimization argument and a quantitative deformation Lemma, Am-
brosio and Isernia proved the existence of sign-changing solutions for (1.2).

Motivated by the above works, in this article, we study the non-local elliptic
problems

−LKu = f(x, u), x ∈ Ω,

u = 0, x ∈ Rn \ Ω,
(1.3)

where f satisfies the following assumptions

(A1) f ∈ C1(Ω̄× Rn), limτ→0
f(x,τ)
τ = 0, uniformly in x ∈ Ω̄;

(A2) |f(x, τ)| ≤ C(1 + |τ |p−1) for some C > 0 and p ∈ (2, 2∗s), where 2∗s = 2n
n−2s ;

(A3) There exists a constant µ > 2 such that

0 < µF (x, τ) ≤ τf(x, τ), ∀x ∈ Ω̄, τ ∈ R \ {0},
where F (x, τ) =

∫ τ
0
f(x, t)dt;

(A4) For every x ∈ Ω̄ the function τ 7→ f(x,τ)
|τ | is strictly increasing for all |τ | > 0.

The non-local integrodifferential operator LK is defined as follows

LKu(x) =
1
2

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ Rn,

where K : Rn \ {0} → (0,+∞) is a function with the properties
(A5) γK ∈ L1(Rn), where γ(x) = min{|x|2, 1};
(A6) there exists λ > 0 such that K(x) ≥ λ|x|−(n+2s) for any x ∈ Rn \ {0}.

A typical example for K is given by K(x) = |x|−(n+2s). In this case LK is the
fractional Laplace operator −(−∆)s.

To prove the existence of sign-changing solutions for (1.3), we argue exactly as
in [2], where the authors deal with fractional Schrödinger equations.

We remark that the Dirichlet datum is given in Rn \ Ω and not simply on ∂Ω,
consistent with the non-local character of the operator LK .

As is explained in [7, Remark 9.2], the minimax method of Berestycki and Lions
strongly depends on a kind of nodal structure associated with equation (1.1), which
is unknown for problem (1.3). The variational methods used in [4, 17] heavily rely
on the following decomposition, for u ∈ H1

0 (Ω),

〈Φ′(u), u+〉 = 〈Φ′(u+), u+〉, 〈Φ′(u), u−〉 = 〈Φ′(u−), u−〉,
Φ(u) = Φ(u+) + Φ(u−),

(1.4)

where u+ := max{u, 0}, u− := min{u, 0} and Φ is the energy functional of (1.1)
given by

Φ(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx.
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But for problem (1.3) and u ∈ X0 (the space X0 was introduced in [20, 21], and
will also be defined in Section 2), we have

I(u) = I(u+) + I(u−)−
∫

R2n

(u−(x)u+(y) + u−(y)u+(x))K(x− y) dx dy,

〈I ′(u), u+〉 = 〈I ′(u+), u+〉 −
∫

R2n

(u−(x)u+(y) + u−(y)u+(x))K(x− y) dx dy,

where I is the energy functional of (1.3) given by

I(u) =
1
2

∫
R2n

|u(x)− u(y)|2K(x− y) dx dy −
∫

Ω

F (x, u)dx.

Clearly, the functional I does no longer satisfy the decomposition (1.4). In this
article, motivated by [4, 5, 17], we try to get sign-changing solutions for (1.3) by
seeking the minimizer of the energy functional I over the following constraint:

M := {u ∈ N : u± 6≡ 0, 〈I ′(u), u+〉 = 〈I ′(u), u−〉 = 0},

where the set N defined as

N := {u ∈ X0 \ {0} : 〈I ′(u), u〉 = 0}.

Since LK is nonlocal, we need some technical analysis to show that M 6= ∅. Since
we look for sign-changing solution to (1.3), it is natural to seek functions w ∈ M
such that

I(w) = inf
v∈M

I(v).

As in [1, 3], we are able to prove the existence of a minimizer of I on M and that
it is a weak solution to (1.3) by using a suitable deformation argument. Now, we
are ready to state the main results of this paper.

Theorem 1.1. Suppose that (A1)–(A4) hold. Then problem (1.3) admits a least
energy sign-changing solution.

For equation (1.1), we can follow the argument of [4] to show that the least energy
sign-changing solution has exactly two nodal domains. But in this framework,
because there is a nonlocal term LKu, we can not get the same result.

The rest of this article is organized as follows. In Section 2, we prove some
lemmas, which are crucial to investigate our main result. The proof of Theorem
1.1 is given in Section 3.

2. Preliminaries

Recall that the space X introduced by Servadei and Valdinoci [20, 21, 22, 23,
24, 25] is defined as a linear space of Lebesgue measurable functions from Rn to R,
such that, any function u restricted in X belongs to L2(Ω) and the map (x, y) 7→
(u(x) − u(y))

√
K(x− y) is in L2(R2n \ (CΩ × CΩ), dx dy), where CΩ := Rn \ Ω.

Moreover,
X0 = {u ∈ X : u = 0 a.e. in Rn \ Ω}.

The function space X is equipped with the norm

‖u‖X =
(
‖u‖2L2(Ω) +

∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)1/2

, (2.1)
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where Q = R2n \ (CΩ × CΩ). For any u ∈ X0, the space X0 is endowed with the
norm

‖u‖X0 =
(∫

Q

|u(x)− u(y)|2K(x− y) dx dy
)1/2

,

which is equivalent to the usual one defined in (2.1). In the following, we also
denote the norm ‖ · ‖X0 as ‖ · ‖.

For the reader’s convenience, we review the main embedding results for the space
X0.

Lemma 2.1 ([20, 21, 22, 23, 24, 25]). The embedding X0 ↪→ Lr(Ω) is continuous
for any r ∈ [2, 2∗s], and compact for any r ∈ [2, 2∗s).

Now, we collect some preliminary lemmas which will be used in the last section
to prove our main result.

Lemma 2.2. Let {uj} be a sequence such that uj ⇀ u in X0, then, up to a
subsequence,

(i)

lim
j→∞

∫
Ω

f(x, uj)ujdx =
∫

Ω

f(x, u)udx,

(ii)

lim
j→∞

∫
Ω

F (x, uj)dx =
∫

Ω

F (x, u)dx,

(iii)

lim inf
j→∞

∫
R2n

(−u−j (x)u+
j (y)− u−j (y)u+

j (x))K(x− y) dx dy

≥
∫

R2n

(−u−(x)u+(y)− u−(y)u+(x))K(x− y) dx dy.
(2.2)

Proof. (i) By the compact embedding X0 ↪→ Lp(Ω)(2 ≤ p < 2∗s), taking if necessary
a subsequence, we have uj → u in Lp(Ω) and uj(x) → u(x) a.e. on Rn. By a
standard discussion, there exists a function g ∈ Lp(Ω) such that

|u(x)|, |uj(x)| ≤ g(x).

By (A2) and u ∈ Lp(Ω), we have

|f(x, u)|
p

p−1 ≤ C
p

p−1 (1 + |u|p−1)
p

p−1 ≤ C
p

p−1 2
p

p−1 (1 + |u|p) ∈ L1(Ω),

it follows that f(·, u) ∈ L
p

p−1 (Ω). Since

|f(x, uj)− f(x, u)|
p

p−1 ≤ 2
p

p−1C
p

p−1 (1 + |g|p−1)
p

p−1 ∈ L1(Ω),

it follows from the Lebesgue dominated convergence theorem that∫
Ω

|f(x, uj)− f(x, u)|
p

p−1 dx→ 0, as j →∞.

By the Hölder inequality, we have∫
Ω

(f(x, uj)− f(x, u))ujdx ≤
(∫

Ω

|f(x, uj)− f(x, u)|
p

p−1 dx
) p−1

p
(∫

Ω

|uj |pdx
)1/p

→ 0, as j →∞.
Thus

lim
j→∞

∫
Ω

f(x, uj)uj dx = lim
n→∞

∫
Ω

f(x, u)uj dx =
∫

Ω

f(x, u)u dx.
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(ii) By the mean value theorem, there exists λ ∈ [0, 1] such that∣∣ ∫
Ω

(F (x, uj)− F (x, u))dx
∣∣

=
∣∣ ∫

Ω

f(x, u+ λ(uj − u))(uj − u)dx
∣∣

≤
∫

Ω

C(1 + |u+ λ(uj − u)|p−1)|uj − u|dx

≤ C
∫

Ω

|uj − u|dx+ 2pC
∫

Ω

|u|p−1|uj − u|dx+ 2pC
∫

Ω

|uj − u|pdx

≤ C‖uj − u‖1 + 2pC‖u‖p−1
p ‖ui − u‖p + 2pC‖uj − u‖p.

Thus

lim
j→∞

∫
Ω

(F (x, uj)− F (x, u))dx = 0.

(iii) By using uj(x)→ u(x) a.e. on Rn, Fatou’s Lemma and

(−u−j (x)u+
j (y)− u−j (y)u+

j (x))K(x− y) ≥ 0,

we have that (2.2) holds. �

Lemma 2.3. (i) For all u ∈ N such that ‖u‖ → +∞, we have I(u)→ +∞;
(ii) There exists ρ > 0 such that ‖u‖ ≥ ρ for all u ∈ N and ‖w±‖ ≥ ρ for all

w ∈M.

Proof. (i) By the definition of N and assumption (A3), we have

I(u) = I(u)− 1
µ
〈I ′(u), u〉

= (
1
2
− 1
µ

)‖u‖2 −
∫

Ω

(F (x, u)− 1
µ
f(x, u)u)dx

≥ (
1
2
− 1
µ

)‖u‖2.

Thus, I(u)→ +∞ as ‖u‖ → +∞.
(ii) By assumptions (A1) and (A2), we have that for any ε > 0, there exists a

positive constant Cε such that

|f(t)t| ≤ ε|t|2 + Cε|t|p, for all t ∈ R, (2.3)

where 2 < p < 2∗s. Since u ∈ N we have 〈I ′(u), u〉 = 0, that is

‖u‖ =
∫

Ω

f(x, u)udx.

By (2.3), X0 ↪→ L2(Ω) and X0 ↪→ Lp(Ω), we have

‖u‖2 ≤ ε
∫

Ω

|u|2dx+ Cε

∫
Ω

|u|pdx ≤ εγ2‖u‖2 + Cεγp‖u‖p, (2.4)

where γ2 and γp are the embedding constants. We can choose ε small enough in
order to find ρ > 0 such that ‖u‖ ≥ ρ. Now, for w ∈M, we have that 〈I ′(w), w±〉 =
0, so

〈I ′(w±), w±〉 =
∫

R2n

(u−(x)u+(y) + u−(y)u+(x))K(x− y) dx dy ≤ 0,
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which gives

‖w±‖2 ≤
∫

Ω

w±f(x,w±)dx.

Then we can proceed as in the proof of (i). �

Lemma 2.4. Let {wj} ⊂ M such that wj ⇀ w in X0. Then w± 6= 0.

Proof. Firstly we observe that by Lemma 2.3 there exists ρ > 0 such that

‖w±j ‖ ≥ ρ for all j ∈ N. (2.5)

Since wj ∈M, we have 〈I ′(wj), w±j 〉 = 0; that is,

‖w±j ‖
2 −

∫
R2n

(w−j (x)w+
j (y) + w−j (y)w+

j (x))K(x− y) dx dy

=
∫

Ω

f(x,w±j )w±j dx.
(2.6)

At this point, recalling that

−
∫

R2n

(w−j (x)w+
j (y) + w−j (y)w+

j (x))K(x− y) dx dy ≥ 0,

by (2.5) and (2.6) we deduce that

ρ2 ≤ ‖w±j ‖
2 ≤

∫
Ω

f(x,w±j )w±j dx. (2.7)

Now, by the fact that wj ⇀ w inX0 and the compactly embeddingX0 ↪→ Lq(Ω)(q ∈
[2, 2∗s)), we know that wj → w in Lq(Ω). Moreover, by using that |t±−s±| ≤ |t−s|
for all t, s ∈ R, we can deduce that w±j → w± in Lq(Ω), and for all x ∈ Ω, we also
have w±j → w± a.e. in Ω. Similarly to Lemma 2.2, it is easy to see that∫

Ω

f(x,w±j )w±j dx→
∫

Ω

f(x,w±)w±dx. (2.8)

Putting together (2.7) and (2.8) we have

0 < ρ2 ≤
∫

Ω

f(x,w±)w±dx

showing that w± 6= 0. �

Lemma 2.5. If v ∈ X0 : v± 6= 0, then there exist s, t > 0 such that

〈I ′(tv+ + sv−), v+〉 = 0 and 〈I ′(tv+ + sv−), v−〉 = 0.

As a consequence tv+ + sv− ∈M.

Proof. Let W : (0,+∞)× (0,+∞)→ R2 be a continuous vector field given by

W (t, s) = (〈I ′(tv+ + sv−), tv+〉, 〈I ′(tv+ + sv−), sv−〉)
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for every t, s ∈ (0,+∞)× (0,+∞). By using (2.3), X0 ↪→ L2(Ω) and X0 ↪→ Lp(Ω),
we have

〈I ′(tv+ + sv−), tv+〉

= t2‖v+‖2 − st
∫

R2n

(v−(x)v+(y) + v−(y)v+(x))K(x− y) dx dy

−
∫

Ω

tv+f(x, tv+)dx

≥ t2‖v+‖2 −
∫

Ω

tv+f(x, tv+)dx ≥ t2‖v+‖2 − εt2‖v+‖22 − Cεtp‖v+‖pp

≥ (1− εγ2)t2‖v+‖2 − Cεγptp‖v+‖pp.

(2.9)

We choose ε = 1
2γ2

, then there exists r > 0 small enough such that 〈I ′(rv+ +
sv−), rv+〉 > 0 for all s > 0, and similarly there exists r̄ > 0 small enough such
that 〈I ′(tv+ + r̄v−), r̄v−〉 > 0 for all t > 0. By assumption (A3) there exists a
positive constant C1 such that

F (x, t) ≥ C1t
µ, for every t sufficiently large, uniformly in x ∈ Ω̄. (2.10)

Hence, taking into account that µ > 2, we obtain

〈I ′(tv+ + sv−), tv+〉

= t2‖v+‖2 − st
∫

R2n

(v−(x)v+(y) + v−(y)v+(x))K(x− y) dx dy

−
∫

Ω

tv+f(x, tv+)dx

≤ t2‖v+‖2 − st
∫

R2n

(v−(x)v+(y) + v−(y)v+(x))K(x− y) dx dy

− µ
∫

Ω

F (x, tv+)dx

≤ t2‖v+‖2 − st
∫

R2n

(v−(x)v+(y) + v−(y)v+(x))K(x− y) dx dy

− tµC1µ

∫
Ω

|v+|µdx→ −∞ as t→ +∞.

Then, there exists R > 0 sufficiently large such that 〈I ′(Rv+ + sv−), Rv+〉 < 0 for
all s > 0 and similarly we can find R̄ > 0 such that 〈I ′(tv+ + R̄v−), R̄v−〉 < 0 for
all t > 0. As a consequence, we have proved the existence of suitable 0 < r < R
such that, for all t, s ∈ [r,R] it holds

〈I ′(rv+ + sv−), rv+〉 > 0, 〈I ′(tv+ + r̄v−), r̄v−〉 > 0,

〈I ′(Rv+ + sv−), Rv+〉 < 0, 〈I ′(tv+ + R̄v−), R̄v−〉 < 0.
(2.11)

By applying Miranda’s theorem [16] we have the conclution. �

Definition 2.6. For each v ∈ X0 with v± 6= 0, let us consider the function hv :
[0,+∞)× [0,+∞)→ R given by

hv(t, s) = I(tv+ + sv−)
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and its gradient Φv : [0,+∞)× [0,+∞)→ R2 defined by

Φv(t, s) = (Φv1(t, s),Φv2(t, s)) =
(∂hv
∂t

(t, s),
∂hv

∂s
(t, s)

)
= (〈I ′(tv+ + sv−), v+〉, 〈I ′(tv+ + sv−), v−〉).

(2.12)

Furthermore, we consider the Jacobian matrix of Φv:

(Φv)′(t, s) =

(
∂Φv

1
∂t (t, s) ∂Φv

1
∂s (t, s)

∂Φv
2

∂t (t, s) ∂Φ12v

∂s (t, s)

)
.

In the following we aim to prove that, if w ∈ M, the function hw has a critical
point and in particular a global minimum in (t, s) = (1, 1).

Lemma 2.7. If w ∈M, then
(i) hw(t, s) < hw(1, 1) = I(w), for all t, s ≥ 0 such that (t, s) 6= (1, 1);

(ii) det(Φw)′(1, 1) > 0.

Proof. (i) Since w ∈M, then 〈I ′(w), w±〉 = 0, that is

‖w+‖2 −
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy =
∫

Ω

f(x,w+)w+dx,

‖w−‖2 −
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy =
∫

Ω

f(x,w−)w−dx.

From this and by the definition of Φw, it follows that (1, 1) is a critical point of hw.
By (A3), there exists constants C1 > 0 and C2 > 0 such that

F (x, τ) ≥ C1|τ |µ − C2, ∀x ∈ Ω̄.

It follows that

hw(t, s) = I(tw+ + sw−)

≤ 1
2
‖tw+ + sw−‖2 − C1

∫
Ω

|tw+ + sw−|µdx+ |Ω|C2

≤ t2 + s2

2

[
‖w+‖2 + ‖w−‖2

−
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]

− C1t
µ

∫
Ω

|w+|µdx− C1s
µ

∫
Ω

|w−|µdx+ |Ω|C2

≤ t2 + s2

2

[
‖w+‖2 + ‖w−‖2

−
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]

− C1t
µ

∫
Ω

|w+|µdx+ |Ω|C2.

Let us suppose that |t| ≥ |s| > 0, thus, by using t2 + s2 ≤ 2t2 we see that

hw(t, s)
t2 + s2

≤ 1
2

[
‖w+‖2 + ‖w−‖2 −

∫
R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]

− C1
tµ−2

2

∫
Ω

|w+|µdx+
|Ω|C2

t2 + s2
.
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Taking into account that µ > 2, we infer that

lim
|(t,s)|→+∞

hw(t, s) = −∞.

By using the continuity of hw we deduce the existence of (t̄, s̄) ∈ [0,+∞)× [0,+∞)
that is a global maximum point of hw.

Now we prove that t̄, s̄ > 0. Suppose by contradiction that s̄ = 0. Then
〈I ′(t̄w+), t̄w+〉 = 0, that is

‖w+‖2 =
∫

Ω

(w+)2 f(x, t̄w+)
t̄w+

dx. (2.13)

Since

〈I ′(w+), w+〉 = 〈I ′(w), w+〉+
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy

=
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy < 0,

we obtain

‖w+‖2 <
∫

Ω

(w+)2 f(x,w+)
w+

dx. (2.14)

Then, combining (2.13) and (2.14) we obtain

0 <
∫

Ω

(w+)2
[f(x,w+)

w+
− f(x, t̄w+)

t̄w+

]
dx.

So, by (A4), we deduce that t̄ < 1. It follows from the condition (A4) that for every
x ∈ Ω̄

τ 7→ 1
2
τf(x, τ)− F (x, τ) is strictly increasing for all τ > 0,

τ 7→ 1
2
τf(x, τ)− F (x, τ) is strictly decreasing for all τ < 0.

(2.15)

Thus
hw(t̄, 0) = I(t̄w+)

= I(t̄w+)− 1
2
〈I ′(t̄w+), t̄w+〉

=
∫

Ω

[1
2
t̄w+f(x, t̄w+)− F (x, t̄w+)

]
dx

≤
∫

Ω

[1
2
t̄w+f(x, t̄w+)− F (x, t̄w+)

]
dx+

∫
Ω

[1
2
t̄w−f(x, t̄w−)− F (x, t̄w−)

]
dx

<

∫
Ω

[1
2
w+f(x,w+)− F (x,w+)

]
dx+

∫
Ω

[1
2
w−f(x,w−)− F (x,w−)

]
dx

= I(w)− 1
2
〈I ′(w), w〉

= I(w) = hw(1, 1).

So hw(t̄, 0) < hw(1, 1), and this gives a contradiction because (t̄, 0) is a global
maximum point. Similarly we can prove that t̄ > 0.

Now we show that s̄, t̄ ≤ 1. Since (hw)′(t̄, s̄) = 0, we obtain

t̄2‖w+‖2 − s̄t̄
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
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=
∫

Ω

t̄w+f(x, t̄w+)dx,

s̄2‖w−‖2 − s̄t̄
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy

=
∫

Ω

s̄w−f(x, s̄w−)dx.

Assume that t̄ ≥ s̄. Since∫
R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy ≤ 0,

we have

t̄2‖w+‖2 − t̄2
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy

≥
∫

Ω

t̄w+f(x, t̄w+)dx.
(2.16)

Since 〈I ′(w), w+〉 = 0(w ∈M), we deduce that

‖w+‖2 −
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy =
∫

Ω

w+f(x,w+)dx

which together with (2.16) gives∫
Ω

[f(x, t̄w+)
t̄w+

− f(x,w+)
w+

]
dx ≤ 0.

By (A4) we can infer that t̄ ≤ 1.
Now we aim to prove that hw does not assume a global maximum in [0, 1] ×

[0, 1] \ {(1, 1)}, namely hw(t̄, s̄) < hw(1, 1) for every (t̄, s̄) ∈ [0, 1]× [0, 1] \ {(1, 1)}.
By the definition of hw and (2.15) we have

hw(t̄, s̄) = I(t̄w+ + s̄w−)− 1
2
〈I ′(t̄w+ + s̄w−), t̄w+〉 − 1

2
〈I ′(t̄w+ + s̄w−), s̄w−〉

=
∫

Ω∩{w≥0}

[1
2
t̄w+f(x, t̄w+)− F (x, t̄w+)

]
dx

+
∫

Ω∩{w≤0}

[1
2
s̄w−f(x, s̄w−)− F (x, s̄w−)

]
dx

<

∫
Ω∩{w≥0}

[
1
2
w+f(x,w+)− F (x,w+)

]
dx

+
∫

Ω∩{w≤0}

[1
2
w−f(x,w−)− F (x,w−)

]
dx

=
∫

Ω

[1
2
wf(x,w)− F (x,w)

]
dx = hw(1, 1).
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(ii) Firstly, let us observe that

∂Φw1
∂t

(t, s) = ‖w+‖2 −
∫

Ω

f ′(x, tw+)(w+)2dx

∂Φw2
∂s

(t, s) = ‖w−‖2 −
∫

Ω

f ′(x, tw−)(w−)2dx

∂Φw1
∂s

(t, s) =
∂Φw2
∂t

(t, s)

= −
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy.

(2.17)

By (A4), it is easy to see that for every x ∈ Ω̄,

τ2f ′(x, τ)− τf(x, τ) > 0 for all τ 6= 0. (2.18)

Then, by using the fact that w ∈M, (2.17) and (2.18), we have

det(Φw)′(1, 1)

=
[
‖w+‖2 −

∫
Ω

f ′(x,w+)(w+)2dx
][
‖w−‖2 −

∫
Ω

f ′(x,w−)(w−)2dx
]

−
[ ∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]2

=
[ ∫

Ω

((w+)2f ′(x,w+)− w+f(x,w+))dx

−
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]

×
[ ∫

Ω

((w−)2f ′(x,w−)− w−f(x,w−))dx

−
∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]

−
[ ∫

R2n

(w−(x)w+(y) + w−(y)w+(x))K(x− y) dx dy
]2
> 0.

�

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by following two steps.

Step 1. We show that there exists w ∈ M such that I(w) = infv∈M I(v). By
Lemma 2.3, there exists a minimizing sequence {wj} ⊂ M, bounded in X0, such
that

I(wj)→ inf
v∈M

I(v) =: c0 > 0. (3.1)

By Lemma 2.1, up to a subsequence, we have

w±j ⇀ w± in X0,

w±j → w± in Lp(Ω),

w±j → w± a.e. in Rn.
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From Lemma 2.4 we deduce that w± 6= 0, so w = w+ + w− is sign-changing. By
Lemma 2.5, there exist s, t > 0 such that

〈I ′(tw+ + sw−), w+〉 = 0, 〈I ′(tw+ + sw−), w−〉 = 0 (3.2)

and tw+ + sw− ∈ M. Now, we prove that s, t ≤ 1. Since wj ∈ M, we have
〈I ′(wj), w±j 〉 = 0 or equivalently

‖w+
j ‖

2 −
∫

R2n

(w−j (x)w+
j (y) + w−j (y)w+

j (x))K(x− y) dx dy

=
∫

Ω

w+
j f(x,w+

j )dx,

‖w−j ‖
2 −

∫
R2n

(w−j (x)w+
j (y) + w−j (y)w+

j (x))K(x− y) dx dy

=
∫

Ω

w−j f(x,w−j )dx.

(3.3)

The weak lower semicontinuity of the norm ‖ · ‖ in X0 yields

‖w±‖2 ≤ lim inf
n→∞

‖w±j ‖
2. (3.4)

By using (3.3), (3.4) and Lemma 2.2, we obtain

〈I ′(w), w+〉 ≤ 0 and 〈I ′(w), w−〉 ≤ 0. (3.5)

Then, we combine (3.2) with (3.5), and arguing similarly as in the proof of Lemma
2.7(i) we obtain that s, t ≤ 1.

Next, we show that I(tw+ + sw−) = c0 and t = s = 1. By using tw+ + sw− ∈
M, wj ∈M, (2.15), (3.1), s, t ∈ (0, 1] and Lemma 2.2 we can see

c0 ≤ I(tw+ + sw−) = I(tw+ + sw−)− 1
2
〈I ′(tw+ + sw−), tw+ + sw−〉

=
∫

Ω

[1
2
f(x, tw+ + sw−)(tw+ + sw−)− F (x, tw+ + sw−)

]
dx

=
∫

Ω∩{w≥0}

[1
2
tw+f(x, tw+)− F (x, tw+)

]
dx

+
∫

Ω∩{w≤0}

[1
2
sw−f(x, sw−)− F (x, sw−)

]
dx

≤
∫

Ω

[1
2
w+f(x,w+)− F (x,w+)

]
dx

+
∫

Ω

[
1
2
w−f(x,w−)− F (x,w−)

]
dx

= lim
j→∞

[ ∫
Ω

(1
2
w+
j f(x,w+

j )− F (x,w+
j )
)
dx+

∫
Ω

(1
2
w−j f(x,w−j )− F (x,w−j )

)
dx
]

= lim
j→∞

∫
Ω

(1
2
wjf(x,wj)− F (x,wj)

)
dx = lim

j→∞

[
I(wj)−

1
2
〈I ′(wj), wj〉

]
= lim
j→∞

I(wj) = c0.

Thus, we have proved that there exist t, s ∈ (0, 1] such that tw+ + sw− ∈ M and
I(tw+ + sw−) = c0. Let us observe that by the above calculation we can infer that
t = s = 1, so w = w+ + w− ∈M and I(w+ + w−) = c0.
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Step 2. Now, we prove that I ′(w) = 0. We argue by contradiction. Then,
we can find a positive constant β > 0 and v0 ∈ X0 with ‖v0‖ = 1, such that
〈I ′(w), v0〉 = 2β > 0. By the continuity of I ′, we can choose a radius R so that
〈I ′(v), v0〉 = β > 0 for every v ∈ BR(w) ⊂ X0 with v± 6= 0.

Let D := (a, b)× (a, b) ⊂ R2 with 0 < a < 1 < b such that
(i) (1, 1) ∈ D and Φw(t, s) = (0, 0) in D̄ if, and only if, (t, s) = (1, 1),
(ii) c0 6∈ hw(∂D),

(iii) {tw+ + sw− : (t, s) ∈ D̄} ⊂ BR(w),
where hw and Φw are defined by Definition 2.6, and satisfy Lemma 2.7. Then we
can choose a radius 0 < r < R such that

B = B̄r(w) ⊂ BR(w) and B ∩ {tw+ + sw− : (t, s) ∈ ∂D} = ∅. (3.6)

Now, let us define a continuous mapping ρ : X0 → [0,+∞) such that ρ(u) :=
dist(u,Bc) for all u ∈ X0, and we consider a bounded Lipschitz vector field V :
X0 → X0 given by V(u) = −ρ(u)v0. For every u ∈ X0, denoting by η(τ) = η(τ, u),
we consider the following Cauchy problem

η′(τ) = V(η(τ)) for all τ > 0,

η(0) = u.

We observe that there exist a continuous deformation η(τ, u) and τ0 > 0 such that
for all τ ∈ [0, τ0] the following properties hold:

(a) η(τ, u) = u for all u 6∈ B,
(b) τ → I(η(τ, u)) is decreasing for all η(τ, u) ∈ B,
(c) I(η(τ, w)) ≤ I(w)− rβ

2 τ .
(a) follows from the definition of ρ. Regarding (b), we observe that 〈I ′(η(τ)), v0〉 =
β > 0 for η(τ) ∈ B ⊂ BR(w), and, by the definition of ρ, we have ρ(η(τ)) > 0.
Then

d

dτ
(I(η(τ))) = 〈I ′(η(τ)), η′(τ)〉 = −ρ(η(τ))〈I ′(η(τ)), v0〉 = −ρ(η(τ))β < 0,

for all η(τ) ∈ B, that is I(η(τ, u)) is decreasing with respect to τ . Now we prove
(c). Being τ0 > 0 such that η(τ, u) ∈ B for every τ ∈ [0, τ0], we can assume that

‖η(τ, w)− w‖ ≤ r

2
, for any τ ∈ [0, τ0].

Since ρ(η(τ, w)) = dist(η(τ, w), Bc) ≥ r
2 , we deduce that

d

dτ
I(η(τ, w)) ≤ −ρ(η(τ, w))β ≤ −rβ

2
and, integrating on [0, τ0], we obtain

I(η(τ0, w))− I(w) ≤ −rβ
2
τ0.

Now, we consider a suitable deformed path η̄0 : D̄ → X0 defined by

η̄0(t, s) := η(τ0, tw+ + sw−), for all (t, s) ∈ D̄.
We note that

max
(t,s)∈D̄

I(η̄0(t, s)) < c0.

Indeed, by (b) and the fact that η(0, u) = u, we have

I(η̄0(t, s)) = I(η(τ0, tw+ + sw−)) ≤ I(η(0, tw+ + sw−))
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= I(tw+ + sw−) = hw(t, s)

< c0, ∀(t, s) ∈ D̄ \ {(1, 1)},

and for (t, s) = (1, 1), by (c) we have

I(η̄0(1, 1)) = I(η(τ0, w+ + w−)) = I(η(τ0, w))

=≤ I(w)− rβ

2
τ0 < I(w) = c0.

Then, η̄0(t, s) ∩M = ∅; that is,

η̄0(t, s) 6∈ M for all (t, s) ∈ D̄. (3.7)

On the other hand, defining Ψτ0 : D → R2 such that

Ψτ0 :=
(1
t
〈I ′(η̄0(t, s)), (η̄0(t, s))+〉, 1

s
〈I ′(η̄0(t, s)), (η̄0(t, s))−〉

)
.

We see that, for all (t, s) ∈ ∂D, by (3.6) and (a) for τ = τ0, it holds

Ψτ0(t, s) = (〈I ′(tw+ + sw−), w+〉, 〈I ′(tw+ + sw−), w−〉) = Φw(t, s).

Then, by using Brouwer’s topological degree, we have

deg(Ψτ0 , D, (0, 0)) = deg(Φw, D, (0, 0)) = sgn(det(Φw)′(1, 1)) = 1,

so we deduce that Ψτ0 has a zero (t̄, s̄) ∈ D, that is

〈I ′(η̄0(t̄, s̄)), (η̄0(t̄, s̄))±〉 = 0.

Therefore, there exists (t̄, s̄) ∈ D such that η̄0(t̄, s̄) ∈M and this contradicts (3.7).
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[6] T. Bartsch, T. Weth, M. Willem; Partial symmetry of least energy nodal solutions to some

variational problems, J. Anal. Math., 96 (2005), 1-18.

[7] H. Berestycki, P. L. Lions; Nonlinear scalar field equations, II, Existence of infinitely many
solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.

[8] L. Caffarelli, J. M. Roquejoffre, Y. Sire; Variational problems for free boundaries for the

fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.
[9] L. Caffarelli, S. Salsa, L. Silvestre; Regularity estimates for the solution and the free boundary

of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.

[10] A. Castro, J. Cossio, J. Neuberger; A sign-changing solution for a superlinear Dirichlet
problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.

[11] S. T. Chen, Y. B. Li, X. H. Tang; Sign-changing solutions for asymptotically linear

Schrodinger equation in bounded domains, Electron. J. Differ. Eq. 317 (2016), 1-9.
[12] E. Di Nezza, G. Palatucci, E. Valdinoci; Hitchhiker’s guide to the fractional sobolev spaces,

Bull. Sci. Math. 136 (2012), 521-573.
[13] S. Dipierro, M. Medina, E. Valdinoci; Fractional Elliptic Problems with Critical Growth in

the Whole of Rn, Lecture Notes, Scuola Normale Superiore, Vol. 15, 2017, pp. VIII+158.



EJDE-2017/180 SIGN-CHANGING SOLUTIONS 15

[14] Z. Gao, X. H. Tang, W. Zhang; Least energy sign-changing solutions for nonlinear problems

involving fractional laplacian, Electron. J. Differential Eq., 238 (2016), 1-6.

[15] Z. L. Liu, J. X. Sun; Invariant Sets of Descending Flow in Critical Point Theory with
Applications to Nonlinear Differential Equations, J. Diff. Eqns. 172 (2001), 257-299.

[16] C. Miranda; Un’osservazione sul teorema di Brouwer, Boll. Unione Mat. Ital., 3 (2) (1940),

5-7.
[17] E. S. Noussair, J. Wei; On the effect of the domain geometry on the existence and profile

of nodal solution of some singularly perturbed semilinear Dirichlet problem, Indiana Univ.

Math. J., 46 (1997), 1255-1271.
[18] M. Schechter, Z. Q. Wang, W. Zou; New Linking Theorem and Sign-Changing Solutions,

Commun. Part. Diff. Eq. 29 (2005), 471-488.

[19] M. Schechter, W. Zou; Sign-changing critical points from linking type theorems, Trans. Amer.
Math. Soc., 358 (2006), 5293-5318.

[20] R. Servadei, E. Valdinoci; Variational methods for non-local operators of elliptic type, Dis-
crete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[21] R. Servadei, E. Valdinoci; Mountain Pass solutions for non-local elliptic operators, J. Math.

Anal. Appl., 389 (2012), 887-898.
[22] R. Servadei, E. Valdinoci; The Brezis-Nirenberg result for the fractional Laplacian, Trans.

Amer. Math. Soc., 367 (2015), 67-102.

[23] R. Servadei, E. Valdinoci; A Brezis-Nirenberg result for non-local critical equations in low
dimension, Commun. Pure Appl. Anal. 12 (2013), 2445-2464.

[24] R. Servadei, E. Valdinoci; Weak and viscosity solutions of the fractional Laplace equation,

Publ. Mat. 58 (2014), 133-154.
[25] R. Servadei, E. Valdinoci; Fractional Laplacian equations with critical Sobolev exponent, Rev.

Mat. Complut. 28 (2015), 655-676.

[26] L. Silvestre; Regularity of the obstacle problem for a fractional power of the Laplace operator,
Comm. Pure Appl. Math., 60 (2006), 67-112.

[27] K. Teng, K. Wang, R. Wang; A sign-changing solution for nonlinear problems involving the
fractional Laplacian, Electron. J. Differential. Eq. 109 (2015), 1-12.

[28] Z. Wang, H. S. Zhou; Radial sign-changing solution for fractional Schrödinger equation,

Discrete Contin. Dyn. Syst., 36 (2016), 499-508.

Huxiao Luo
School of Mathematics and Statistics, Central South University, Changsha, Hunan

410083, China

E-mail address: luohuxiao1989@163.com


	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	References

