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Abstract. In this article we study a class of fractional Laplace equations
which do not satisfy the Ambrosetti-Rabinowitz condition (AR-condition). We

establish the existence of three nontrivial solutions and of multiple sign chang-

ing solutions by using Morse theory.

1. Introduction

In this article, we consider the non-local fractional equation
(−∆)su = f(x, u), in Ω,

u = 0 in RN\Ω,
(1.1)

where s ∈ (0, 1) is a fixed parameter, Ω is a bounded domain in RN with smooth
boundary ∂Ω, N > 2s and (−∆)s is the fractional Laplace operator.

In recent years, a great attention has been focused on the study of fractional and
non-local operators of elliptic type, both for the pure mathematical research and
for real-world applications. Fractional and nonlocal operators appear in many fields
such as, optimization, finance, phase transitions, stratified materials, anomalous dif-
fusion, crystal dislocation, soft thin films, semipermeable membranes, flame prop-
agation, conservation laws, ultra-relativistic limits of quantum mechanics, quasi-
geostrophic flows, multiple scattering, minimal surfaces, materials science and water
waves. For an elementary introduction to this topic and for a-still not exhaustive-
list of related references see, e.g., [6].

In the literature there are many papers devoted to the study of non-local frac-
tional Laplacian with superlinear and subcritical or critical growth (see [1, 3, 14,
16, 22, 21] and the reference therein). We stress that, at least in some of these
references, a fractional operator different from the one considered here was taken
into account. We refer to [17] for a detailed discussion about similarities and differ-
ences between different fractional operators. In particular, Servadei and Valdinoci
[16] established the existence of nontrivial solution for (1.1) by the mountain pass
theorem due to Ambrosetti and Rabinowitz [12]. Similarly, Servadei and Valdinoci
[18] obtained general existence results of nontrivial solutions for (1.1) with the
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Ambrosetti- Rabinowitz condition (A-R condition) by using mountain pass the-
orem and linking theorem. Zhang and Ferrara [22] established the existence of
two nontrivial solutions for (1.1) without the Ambrosetti-Rabinowitz condition by
a variant version of the mountain pass theorem. Zhang et al. [2] obtained infin-
itely many solutions for (1.1) without Ambrosetti-Rabinowitz condition by using
the fountain theorem. Secchi [13] studied fractional Schrödinger equations without
Ambrosetti-Rabinowitz condition and proved the existence of radially symmetric
solutions. Ferrara et al. [7] obtained nontrivial solutions for (1.1) by computing
the critical groups and Morse theory. In [8], Iannizzotto et al. studied fractional
p-Laplacian equations with p-superlinear and obtained one nontrivial solution by
using Morse theory.

There are many interesting problems in the standard framework of the Laplacian
(or higher order Laplacian), widely studied in the literature. A natural question is
whether or not the existence results of multiple solutions obtained in the classical
context can be extended to the non-local framework of the fractional Laplacian
operators. Sun [20] showed the existence of three nontrivial solutions and infinitely
many sign-changing solutions for a superlinear p-Laplacian equation without AR-
condition.

Motivated by the publication above, we study the following non-local prob-
lem with homogeneous Dirichlet boundary conditions investigated by Servadei and
Valdinoci [19] and the related works [16, 15]:

−Lku = f(x, u), in Ω;

u = 0 in RN\Ω,
(1.2)

where Lk is the integro-differential operator defined by

Lku(x) =
∫

RN

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN , (1.3)

with the kernel K : RN\{0} → (0,+∞) satisfying
(A1) mK ∈ L1(RN ), where m(x) = min{|x|2, 1};
(A2) there exists θ > 0 such that K(x) ≥ θ|x|−(N+2s) for any x ∈ RN\{0};
(A3) K(x) = K(−x) for any x ∈ RN\{0}.

Throughout this paper, K is the singular kernel K(x) = |x|−(N+2s) which leads to
the fractional Laplace operator −(−∆)s, which, up to normalization factors, may
be defined as

− (−∆)su(x) =
∫

RN

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

dy, x ∈ RN . (1.4)

Obviously, the corresponding fractional equation in model (1.2) changes to prob-
lem (1.1).

Let F (x, t) =
∫ t

0
f(x, s)ds, and suppose that the non-linearity f satisfies the

following conditions:
(A4) f ∈ C(Ω̄ × R,R) with f(x, 0) = 0 and satisfies the improved subcritical

polynomial growth condition, i.e.

lim
t→∞

f(x, t)
|t|2∗−1

= 0 uniformly for x ∈ Ω̄,

where 2∗ = 2N/(N − 2s);
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(A5) lim|t|→0
f(x,t)
t = p(x), uniformly for x ∈ Ω, where p ∈ L∞(Ω) satisfies

p(x) ≤ λ1 for all x ∈ Ω and p(x) < λ1 on some Ω0 ⊂ Ω1 with |Ω0| > 0,
where Ω1 := {x ∈ Ω : φ1(x) 6= 0} and λ1 > 0 that has an associated
eigenfunction φ1 is the first eigenvalue of (−∆)s with homogeneous Dirichlet
boundary data;

(A6) f(x, t) is superlinear at infinity, i.e. lim|t|→+∞ f(x, t)/t = +∞ uniformly
for all x ∈ Ω;

(A7) There exist θ ≥ 1 and C∗ > 0 such that θF(x, t) ≥ F(x, st) − C∗ for
(x, t) ∈ Ω× R and s ∈ [0, 1], where F(x, t) = f(x, t)− 2F (x, t).

Theorem 1.1. Assume conditions (A4)-(A7) hold. Then problem (1.1) has at least
three nontrivial solutions.

Remark 1.2. Condition (A4) comes from [11] and it is weaker than the usual
subcritical growth condition, i.e. there is a constant q ∈ (2, 2∗) such that

lim
t→∞

f(x, t)
|t|q−1

= 0

uniformly for all x ∈ Ω. Comparing with standard Ambrosetti-Rabinowitz condi-
tion, that is, there exist µ > 2, M > 0 such that

(A7) 0 < µF (x, t) ≤ tf(x, t), for all t ∈ R, |t| ≥M and all x ∈ Ω.
Conditions (A6) and (A7) are very general. More detailed information for the
origin and changing of the generalized superlinear conditions (A5), (A6) can be
found in [10]. For conditions (A5)–(A7) and usual subcritical growth condition,
two nontrivial solutions can be obtained as in [22] , but the existence of the third
solution has some difficulty. However, using the method in [9], we can provide some
information for the critical group of the mountain pass solutions and find the third
nontrivial solution. Therefore, Theorem 1.1 improves the results in [16, 22, 18].

Our next task is to consider the existence of sign changing solutions of (1.1). We
now state the following assumptions:

(A4’) f ∈ C1(Ω̄× R,R) with f(x, 0) = 0 and satisfies the growth condition:

|f ′(x, t)| ≤ c(1 + |t|q−2) ∀t ∈ R, x ∈ Ω,

for some c > 0 and q ∈ (2, 2∗).

Theorem 1.3. Assume condition (A4’) holds. Moreover, suppose that the number
of positive and negative solutions of (1.1) is finite.

(i) If (A5)–(A7) hold, then (1.1) has at least a sign changing solution.
(ii) If (A5)–(A7) hold and the function f(x, t) is odd in t, then (1.1) has a

sequence of pairs of sign changing solutions {uk,−uk} such that

lim
k→∞

‖uk‖∞ =∞.

Here, we have extend [20, Theorem 1.3] to the fractional Laplacian problem
(1.1), which is a new result.

This article is organized as follows. In section 2, we present some necessary
preliminary knowledge about working space. In section 3, we prove some lemmas
in order to prove our main results. In section 4, we give the proofs for our main
results.
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2. Preliminaries

In this section, we give some preliminary results which will be used in the sequel.
We briefly recall the related definition and notes for functional space X0 introduced
in [19].

The functional space X denotes the linear space of Lebesgue measurable func-
tions from RN to R such that the restriction to Ω of any function g in X belongs to
L2((Ω) and the map (x, y) 7→ (g(x)− g(y))

√
K(x− y) is in L2((RN × RN )\(CΩ×

CΩ), dx dy) (here CΩ = RN\Ω). Also, we define a linear subspace of X,

X0 := {g ∈ X : g = 0 a.e. in RN\Ω}.

Note that X and X0 are non-empty, since C2
0 (Ω) ⊆ X0 by [19]. Moreover, the space

X is endowed with the norm

‖g‖X = ‖g‖L2(Ω) +
(∫

Q

|g(x)− g(y)|2K(x− y) dx dy
)1/2

, (2.1)

where Q = (RN × RN )\O and O = (CΩ) × (CΩ) ⊂ RN × RN . We equip X0 with
the norm

‖g‖X0 =
(∫

Q

|g(x)− g(y)|2K(x− y) dx dy
)1/2

, (2.2)

which is equivalent to the usual norm defined in (2.1) (see [16]). It is easy to check
that (X0, ‖ · ‖X0) is a Hilbert space with scalar product

〈u, v〉X0 =
∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy. (2.3)

Denote byHs(Ω) the usual fractional Sobolev space with respect to the Gagliardo
norm

‖g‖Hs(Ω) = ‖g‖L2(Ω) +
(∫

Ω×Ω

|g(x)− g(y)|2

|x− y|N+2s
dx dy

)1/2

. (2.4)

Now, we give basic facts to be used later.

Lemma 2.1 ([16]). The embedding j : X0 ↪→ Lv(Ω) is continuous for any v ∈
[1, 2∗], while it is compact whenever v ∈ [1, 2∗).

3. Some lemmas

First, we observe that problem (1.1) has a variational structure. Indeed it is the
Euler-Lagrange equation of the functional J : X0 → R defined as follows:

J (u) =
1
2

∫
RN×RN

|u(x)− u(y)|2K(x− y) dx dy −
∫

Ω

F (x, u(x))dx.

It is well known that the functional J is Frechét differentiable in X0 and for any
ϕ ∈ X0,

〈J ′(u), ϕ〉 =
∫

RN×RN

(u(x)−u(y))(ϕ(x)−ϕ(y))K(x−y) dx dy−
∫

Ω

f(x, u(x))ϕ(x)dx.

Thus, critical points of J are solutions of problem (1.1).
Let

f+(x, t) =

{
f(x, t), t > 0,
0, t ≤ 0;
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J±(u) =
1
2

∫
RN×RN

|u(x)− u(y)|2K(x− y) dx dy −
∫

Ω

F±(x, u(x))dx,

where F±(x, t) =
∫ t

0
f±(x, s)ds. Now, we prove the following compactness condition

for J and J±.

Definition 3.1. The functional J is said to satisfy Cerami condition at level c ∈ R
((C)c condition for short) if every sequence {un} ⊂ E with

J (un)→ c, (‖un‖+ 1)J ′(un)→ 0 as n→∞,
possesses a convergent subsequence. J satisfies the (C) condition if J satisfies (C)c
condition at every c ∈ R.

Lemma 3.2. Under conditions (A4), (A6), (A7), the functionals J and J± satis-
fies the (C) condition.

Proof. We only give the proof for J+, the cases of J and J− are similar. Let
{un} ⊂ X0 be a sequence such that

|J ′+(un)| → c, (1 + ‖un‖X0)‖J ′+(un)‖X∗0 → 0, as n→∞. (3.1)

The proof of this lemma, we divide two steps:
Step 1. We first prove that {un} is bounded in X0. Let u+

n = max{un, 0},
u−n = min{un, 0}. From (3.1), we obtain

|〈J ′+(un), ϕ〉| ≤ εn‖ϕ‖X0 for any ϕ ∈ X0, (3.2)

where εn → 0 as n → ∞, then the boundedness of u−n can be directly obtained.
For the case of u+

n , by contradiction, we assume that ‖u+
n ‖X0 →∞ as n→∞. Let

vn = ‖u+
n ‖−1

X0
u+
n , then ‖vn‖X0 = 1. By lemma 2.1, up to a subsequence, we have

vn ⇀ v in X0, (3.3)

vn → v in Lq(RN ), (3.4)

vn → v a.e. x ∈ RN . (3.5)

Case 1. Suppose that v 6= 0, then the Lebesgue measure of Ω0 = {x ∈ Ω : v(x) 6=
0} is positive. Using (3.1), we obtain

〈J ′+(un), u+
n 〉 = o(1),

which implies that∫
Ω

f+(x, u+
n )u+

n

‖u+
n ‖2X0

dx =
∫

Ω

f+(x, u+
n )u+

n

|u+
n |2

|vn|2dx = 1 + o(1). (3.6)

By (A6), there is a constant M > 0 such that

f+(x, u+
n )u+

n > 0, as |un| > M,

then we have ∫
Ω\Ω0

f+(x, u+
n )u+

n

(u+
n )2

|vn|2dx ≥ −C. (3.7)

On the other hand, for x ∈ Ω0, u+
n → ∞ as n → ∞. Then by the Fatou’s lemma

and (A6) we have ∫
Ω0

f+(x, u+
n )u+

n

(u+
n )2

|vn|2dx→∞, as n→∞.
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Combining this with (3.7) gives∫
Ω

f+(x, u+
n )u+

n

(u+
n )2

|vn|2dx→∞, as n→∞. (3.8)

This contradicts (3.6). Then this case is impossible.
Case 2. Assume that v = 0, let {tn} ⊂ R such that

J+(tnu+
n ) = max

t∈[0,1]
J+(tu+

n ).

For any m > 0, we assume that wn = 2
√
mvn. Then wn → 0 in Lq(RN ). So from

conditions (A4) and (A5), for every ε > 0, we can find a constant C(ε) > 0 such
that

F (x,wn) ≤ C(ε)(wn)2 + ε(wn)2∗ , (3.9)

which implies

lim
n→∞

∫
Ω

F+(x,wn)dx = 0. (3.10)

Since 2
√
m‖u+

n ‖−1
X0
∈ (0, 1) for n large enough, by (3.10) we obtain

J+(tnu+
n ) ≥ J+(wn) = 2m−

∫
Ω

F+(x,wn)dx ≥ m,

which implies
J+(tnu+

n )→∞, as n→∞. (3.11)

FromJ+(0) = 0 and J+(u+
n )→ c we have tn ∈ (0, 1), then

〈J ′+(tnu+
n ), tnu+

n 〉 = tn
d

dt

∣∣
t=tn
J+(tun) = 0.

Then, from (A7) it follows that

1
θ
J+(tnu+

n ) =
1
θ

(
J+(tnu+

n )− 1
2
〈J ′+(tnu+

n ), tnu+
n 〉
)

=
1
2θ

∫
Ω

F(x, tnu+
n )dx

≤ 1
2

∫
Ω

F(x, u+
n )dx+

1
2θ
|Ω|C∗

= J+(u+
n )− 1

2
〈J ′+(u+

n ), u+
n 〉+ c→ C.

This contradicts that J+(tnu+
n )→∞. Hence {un} is bounded; that is, there exists

a positive constant M such that

‖un‖X0 ≤M, for all n ∈ N.

Step 2. We prove {un} has a convergent subsequence. In fact, we can suppose
that

un ⇀ u in X0,

un → u in Lq(Ω), ∀1 ≤ q < 2∗,

un(x)→ u(x) a.e. x ∈ Ω.
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Now, since Ω is a bounded set, for every ε > 0, we can find a constant C(ε) > 0
such that

f+(x, s) ≤ C(ε) + ε|s|2
∗−1, ∀(x, s) ∈ Ω× R,

then ∣∣ ∫
Ω

f+(x, un)(un − u)dx
∣∣

≤ C(ε)
∫

Ω

|un − u|dx+ ε

∫
Ω

|un − u‖un|2
∗−1dx

≤ C(ε)
∫

Ω

|un − u|dx+ ε
(∫

Ω

(
|un|2

∗−1
) 2∗

2∗−1 dx
) 2∗−1

2∗
(∫

Ω

|un − u|2
∗
)1/2∗

≤ C(ε)
∫

Ω

|un − u|dx+ εC(Ω).

Similarly, since un ⇀ u in X0, it follows that
∫

Ω
|un − u|dx → 0. Since ε > 0 is

arbitrary, we can conclude that∫
Ω

(f+(x, un)− f+(x, u))(un − u)dx→ 0 as n→∞. (3.12)

By (3.12), we have

〈J ′+(un)− J ′+(u), (un − u)〉 → 0 as n→∞. (3.13)

From (3.12) and (3.13), we obtain ‖un‖X0 → ‖u‖X0 , as n→∞. Thus we have

‖un − u‖X0 → 0, as n→∞,

which means that J+ satisfies condition (C). �

Before stating our next lemma, we recall some concepts and results of Morse
theory. For the details, we refer to [4]. Let X be a real Banach space and J ∈
C1(X,R). K = {u ∈ X|J ′(u) = 0} is the critical set of J . Let u ∈ K be an
isolated critical point of J with J (u) = c ∈ R, and U be an isolated neighborhood
of u, i.e. K ∩ U = {u}. The group

C∗(J , u) = H∗(J c ∩ U,J c ∩ U\{u}), ∗ = 0, 1, 2, . . . ,

is called the ∗-th critical group of J at u, where J c = {u ∈ X|J (u) ≤ c}.
H∗(·, ·) is the singular relative homology group of J at infinity is defined by

C∗(J ,∞) = H∗(X,J a), ∗ = 0, 1, 2, . . . .

We denote

P (u, t) =
∑
i

rankCi(J , u)ti, P (∞, t) =
∑
i

rankCi(J ,∞)ti.

Let α < β be the regular values of J and set

P (α, β, t) =
∑
i

rankCi(J ,∞)ti.

If K = {u1, u2, . . . , uk}, then there is a polynomial Q(t) with nonnegative integer
as its coefficients such that∑

j

P (uj , t) = P (∞, t) + (1 + t)Q(t), (3.14)
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α<J (uj)<β

P (uj , t) = P (α, β, t) + (1 + t)Q(t). (3.15)

Lemma 3.3. Assume that conditions (A4), (A6), (A7) hold. Then we have

C∗(J ,∞) = C∗(J±,∞) = {0}, ∗ = 0, 1, 2, . . . .

Proof. We only give the proof of J+; the others are similar. Let S = {u ∈ X0 :
‖u‖X0 = 1, u+ 6= 0} and B∞ = {u ∈ X0 : ‖u‖X0 ≤ 1}. By (A6), for any M > 0
there exists c > 0, such that F (x, t) ≥ Mt2 − c, for (x, t) ∈ Ω × R, which implies
J+(tu)→ −∞, as t→ +∞, for any u ∈ S. Using (A7), we have

f+(x, t)t− 2F+(x, t) ≥ −C∗
θ
, for (x, t) ∈ Ω× R. (3.16)

Choose

a < min
{

inf
u∈B∞

J+(u), −C∗
pθ
|Ω|
}
.

Then for any u ∈ S, there exists t > 1 such that J+(tu) ≤ a, that is

J+(tu) =
t2

2
−
∫

Ω

F+(x, tu)dx ≤ a,

which (3.16) implies

d

dt
J+(tu) = t−

∫
Ω

f+(x, tu)u ≤ 1
t

(
2a+

C∗
θ
|Ω|
)
< 0 .

Therefore, by the implicit function theorem, there exists a unique T ∈ C(S,R) such
that

J+(T (u)u) = a, for u ∈ S.
Let S1 = {u ∈ E : ‖u‖X0 ≥ 1, u+ 6= 0}. We construct a strong deformation retract
τ : [0, 1] × S1 → S1 which satisfies τ(s, u) = (1 − s)u + sT

(
u
‖u‖
)
u
‖u‖ if J+(u) ≥ a

and τ(s, u) = u if J+(u) < a. Hence, It follows from the construction of τ that J a+
is a strong deformation retract of S1, which is homotopy equivalent to the set S.
By the homotopy invariance of homology group, we have

C∗(J+,∞) = H∗(X0,J a+) ∼= H∗(X0, S) ∼= H∗(X0, X0 \ {0}) = 0.

�

4. Proofs of main results

Proof of Theorem 1.1. By Lemma 3.2, we know that J and J± satisfy the (C)
condition. By conditions (A4) and (A5), we can easily prove that 0 is a local
minimum of J and J±. So, we have

C∗(J, 0) = C∗(J±, 0) = δ∗,0G. (4.1)

Using the mountain pass theorem in [12] and maximum principle in [8], we obtain
J+ (J−) has a critical point u+ > 0 (u− < 0), and u± are also the nontrivial
critical points of the functional J . Without loss of generality, we assume that u±
are isolated and the only nontrivial critical points of the functional J . Now we
claim that

C∗(J±, u±) = δ∗,1G. (4.2)
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Indeed, using the methods of [9], we let J+(u+) = c > 0. It follows from the
homology exact sequence of the triple J A+ ⊂ J

c
2

+ ⊂ X0, we have

· · · → H∗(X0,J A+ )→ H∗(X0,J
c
2

+ )→ H∗−1(J
c
2

+ ,J A+ )→ H∗−1(X0,J A+ )→ . . . ,
(4.3)

where A < 0 is a constant. Since 0 is the only critical point of J+ in the set J
c
2

+ ,
by (4.1), we obtain

H∗(J
c
2

+ ,J A+ ) = C∗(J+, 0) = δ∗,0G. (4.4)
Similarly, since u+ is the only critical point of J+ in the set {u ∈ X0|J+(u) ≥ c

2},
we have

H∗(X0,J
c
2

+ ) = C∗(J+, u1), ∗ = 0, 1, 2, . . . . (4.5)
From Lemma 3.3, we have

H∗(X0,J A+ ) = C∗(J+,∞) = 0, ∗ = 0, 1, 2, . . . . (4.6)

From (4.3) to (4.6), we deduce that

C∗(J+, u1) = C∗−1(J+, 0) = δ∗,1G.

The case for u− is similar.
By the claim and [9, Lemma 2.4], we have

C∗(J, u±) = δ∗,1G.

The Morse equality (3.14) with t = −1 implies that

(−1)0 + (−1)1 + (−1)1 = 0,

which is a contradiction. Then (1.1) has at least three nontrivial solutions. �

Proof of Theorem 1.3. Our proof is similar to proof in [5], which studies equations
with condition (A7).

(i) By contradiction, we assume that there is no sign changing solution of prob-
lem (1.1). Let {u+

i }s1 and {u−j }m1 be the sets of positive and negative solutions,
respectively. Let

χ±(u±) =
∞∑
k=0

(−1)k rankCk(J±, u±),

χ(u±) =
∞∑
k=0

(−1)k rankCk(J , u±).

Using the results in [5], we know that χ±(u±) and χ(u±) are well defined, and by
the results of in [9], we obtain

χ±(u±) = χ(u±). (4.7)

Lemma 3.3 implies that

C∗(J ,∞) = C∗(J±,∞) = 0, ∗ = 0, 1, 2, . . . .

This together with the Morse equality (3.14) for J+, J−, J gives

χ+(0) +
s∑
1

χ+(u+
i ) = 0, (4.8)

χ−(0) +
m∑
1

χ−(u−j ) = 0, (4.9)
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χ(0) +
s∑
1

χ(u+
i ) +

m∑
1

χ(u−j ) = 0. (4.10)

Similar to the proof of [5, Theorem 5.1], we also have

χ+(0) = χ−(0) = 1. (4.11)

From (4.7) to (4.11), we obtain

1 = χ(0) = χ+(0) + χ−(0) = 2χ+(0) = 2. (4.12)

This is a contradiction. Then problem (1.1) has at least a sign changing solution.
(ii) By [8, Corollary 3.2], condition (A4’) and simple integration, we know that

the L∞(Ω) boundedness of solutions of problem (1.1) is equivalent to the X0 bound-
edness. Then by contradiction we can assume that there exists a positive constant R
such that all solutions of (1.1) are located in the ball BR = {u ∈ X0 : ‖u‖X0 < R}.
Therefore, there are constants β < inf J (K) < α such that all critical points of J
are in the set J α and

C∗(J ,∞) = H∗(X0,J β) = H∗(J α,J β) = 0, ∗ = 0, 1, 2, . . . . (4.13)

From (3.15) and (4.13), we have the Moser equality

0 = χ(0) +
∑

u6=0,u∈K

χ(u). (4.14)

Since the nonzero solutions of (1.1) appear in pairs {u,−u}, χ(u) = χ(−u), the
right hand side of (4.14) is odd. This is a contradiction. Therefore, there exists an
unbounded sequence of pairs of sign changing solutions {uk,−uk} of (1.1). �
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