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SOME PROPERTIES OF MEROMORPHIC SOLUTIONS FOR
q-DIFFERENCE EQUATIONS

HONG YAN XU, SAN YANG LIU, XIU MIN ZHENG

Abstract. The main purpose of this article is to investigate some properties

on the meromorphic solutions of some types of q-difference equations, which
can be seen the q-difference analogues of Painevé equations. We obtain es-

timates of the exponent of convergence of poles of ∆qf(z) := f(qz) − f(z),

which extends some earlier results by Chen et al.

1. Introduction and statement of main results

Throughout this paper, the term “meromorphic” will mean meromorphic in the
complex plane C. Also, we shall assume that readers are familiar with the fun-
damental results and the standard notation of the Nevanlinna value distribution
theory of meromorphic functions such as m(r, f), N(r, f), T (r, f), etc. (see Hay-
man [13], Yang [25] and Yi and Yang [26]). We use σ(f), λ(f) and λ(1/f) to denote
the order, the exponent of convergence of zeros and the exponent of convergence of
poles of f(z) respectively, and we also use S(r, f) denotes any quantity satisfying
S(r, f) = o(T (r, f)) for all r on a set F of logarithmic density 1, the logarithmic
density of a set F is defined by

lim sup
r→∞

1
log r

∫
[1,r]∩F

1
t
dt.

Throughout this article, where the set F of logarithmic density will be not neces-
sarily the same at each occurrence.

A century ago, Painlevé and his colleagues [21] considered the class

w′′(z) = F (z;w;w′),

where F is rational in w and w′ and (locally) analytic in z. They singled out a list
of 50 equations, six of which could not be integrated in terms of known functions.
These equations are now known as the Painlevé equations. The first two of these
equations are PI and PII :

w′′ = 6w2 + z, w′′ = 2w2 + zw + α,

where α is a constant. However, after that, essentially nothing happened until
about 1980, and just after that differential Painlevé equations became an important
research subject.
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In the 1990s, the discrete Painlevé equations have become important research
problems (see [6, 8]). For example, the following equations

yn+1 + yn−1 =
an+ b

yn
+ c, yn+1 + yn−1 =

an+ b

yn
+

c

y2
n

,

are some known as the special discretization of discrete PI , and the equation

yn+1 + yn−1 =
(an+ b)yn + c

1− y2
n

,

is known as the special discretization of the discrete PII , where a, b, c are constants,
n ∈ N .

Recently, a number of papers (see [5, 14, 17]) focused on complex difference
equations and difference analogues of Nevanlinn’s theory. Around 2006s, Halburd
and Korhonen [10, 11, 12] used Nevanlinna value distribution theory to single out
the difference Painlevé I and II equations from the following form

w(z + 1) + w(z − 1) = R(z, w), (1.1)

where R(z, w) is rational in w and meromorphic in z. They obtained that if (1.1)
has an admissible meromorphic solution of finite order, then either w satisfies a
difference Riccati equation, or (1.1) can be transformed by a linear change in w to
some difference equations, which include difference Painlevé I equations

w(z + 1) + w(z − 1) =
az + b

w(z)
+ c, (1.2)

w(z + 1) + w(z − 1) =
(az + b)
w(z)

+
c

w(z)2
, (1.3)

and difference Painlevé II equation

w(z + 1) + w(z − 1) =
(az + b)w(z) + c

1− w(z)2
. (1.4)

Chen et al [3, 4, 22] studied some properties of finite order transcendental
meromorphic solutions of (1.2)–(1.4), and obtained a lot of interesting results.
In 2007, Barnett, Halburd, Korhonen and Morgan [1] firstly established an ana-
logue of the Logarithmic Derivative Lemma on q-difference operators. Closely re-
lated to difference expressions are q-difference expressions, where the usual shift
f(z + c) of a meromorphic function will be replaced by the q-difference f(qz),
q ∈ C\{0, 1}. By this way, there were lots of results about difference operators,
difference equations, q-difference operators, q-difference equations, and so on (see
[7, 9, 18, 19, 20, 24, 27, 28, 29]).

In 2015, Qi and Yang [23] investigated the equations

f(qz) + f(
z

q
) =

az + b

f(z)
+ c, (1.5)

f(qz) + f(
z

q
) =

(az + b)f(z) + c

1− f(z)2
, (1.6)

which can be seen q-difference analogues of (1.2) and (1.4), and obtained some
theorems as follows.

Theorem 1.1 ([23, Theorem 1.1]). Let f(z) be a transcendental meromorphic
solution with zero order of (1.5), and a, b, c be three constants such that a, b cannot
vanish simultaneously. Then
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(i) f(z) has infinitely many poles.
(ii) If a 6= 0 and any d ∈ C, then f(z)− d has infinitely many zeros.
(iii) If a = 0 and f(z) takes a finite value A finitely often, then A is a solution

of 2z2 − cz − b = 0.

Theorem 1.2 ([23, Theorem 1.3]). Let a, b, c be constants with ac 6= 0, and let
f(z) be a transcendental meromorphic solution with zero order of equation (1.6).
Then f(z) has infinitely many poles and f(z)− d has infinitely many zeros, where
d ∈ C.

In this article, we further investigated some properties of transcendental mero-
morphic solutions of the equations (1.5), (1.6) and

f(qz) + f(
z

q
) =

az + b

f(z)
+

c

f(z)2
, (1.7)

and obtained the following theorems, which extends the previous results given by
Qi and Yang [23].

Theorem 1.3. Let a, b, c be constants with |a| + |b| 6= 0. Suppose that f(z) is a
zero order transcendental meromorphic solution of (1.5). Then

(i) if a 6= 0, p(z) is a polynomial of degree k ≥ 0 and |q| 6= 1, then f(z)− p(z)
has infinitely many zeros and λ(f − p) = σ(f);

if a = 0, then Borel exceptional values of f(z) can only come from the
set E = {z|2z2 − cz − b = 0};

(ii) λ( 1
f ) = λ( 1

∆qf ) = σ(∆qf) = σ(f).

Theorem 1.4. Let a, b, c be constants with |a|+ |b|+ |c| 6= 0. Suppose that f(z) is
a zero order transcendental meromorphic solution of (1.6). Then

(i) if a 6= 0, p(z) is a polynomial of degree k ≥ 0 and |q| 6= 1, then f(z) −
p(z) has infinitely many zeros and λ(f − p) = σ(f); if a = 0, then Borel
exceptional values of f(z) can only come from the set E = {z|2z3 + (b −
2)z + c = 0}; if c 6= 0, then λ(f) = σ(f);

(ii) λ( 1
f ) = λ( 1

∆qf ) = σ(∆qf) = σ(f).

Theorem 1.5. Let a, b, c be constants with |a|+ |b|+ |c| 6= 0. Suppose that f(z) is
a zero order transcendental meromorphic solution of (1.7). Then

(i) if a = 0, then Borel exceptional values of f(z) can only come from the set
E = {z|2z3 − bz − c = 0};

(ii) λ( 1
f ) = λ( 1

∆qf ) = σ(∆qf) = σ(f).

2. Some Lemmas

The following result can be called an analogue of q-difference Clunie lemma,
recently proved by Barnett et al. [1, Theorem 2.1]. Here a q-difference polynomial
of f for q ∈ C\{0, 1} is a polynomial in f(z) and finitely many of its q-shifts
f(qz), . . . , f(qnz) with meromorphic coefficients in the sense that their Nevanlinna
characteristic functions are o(T (r, f)) on a set of logarithmic density 1.

Lemma 2.1 ([16, Theorem 2.5]). Let f be a transcendental meromorphic solution
of order zero of a q-difference equation of the form

Uq(z, f)Pq(z, f) = Qq(z, f),
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where Uq(z, f), Pq(z, f) and Qq(z, f) are q-difference polynomials such that the total
degree degUq(z, f) = n in f(z) and its q-shifts, whereas degQq(z, f) ≤ n. More-
over, we assume that Uq(z, f) contains just one term of maximal total degree in
f(z) and its q-shifts. Then

m(r, Pq(z, f)) = o(T (r, f)),

on a set of logarithmic density 1.

Lemma 2.2 ([1, Theorem 2.5]). Let f be a nonconstant zero-order meromorphic
solution of Pq(z, f) = 0, where Pq(z, f) is a q-difference polynomial in f(z). If
Pq(z, a) 6≡ 0 for slowly moving target a(z), then

m(r,
1

f − a
) = o(T (r, f)),

on a set of logarithmic density 1.

Lemma 2.3 ([27, Theorem 1.1 and 1.3]). Let f(z) be a nonconstant zero-order
meromorphic function and q ∈ C \ {0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f(z)), N(r, f(qz)) = (1 + o(1))N(r, f(z)),

on a set of lower logarithmic density 1.

Lemma 2.4 (Valiron-Mohon’ko [15]). Let f(z) be a meromorphic function. Then
for all irreducible rational functions in f ,

R(z, f(z)) =
∑m

i=0 ai(z)f(z)i∑n
j=0 bj(z)f(z)j

,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z))
satisfies that

T (r,R(z, f(z))) = dT (r, f) +O(Ψ(r)),

where d = max{m,n} and Ψ(r) = maxi,j{T (r, ai), T (r, bj)}.

3. Proof of Theorem 1.3

Suppose that f(z) is a zero order transcendental meromorphic solution of (1.5).
(i) a 6= 0. Let p(z) is a polynomial of degree k and p(z) = akz

k + . . . . Let
g(z) = f(z)− p(z). Substituting f(z) = g(z) + p(z) into equation (1.5), we have

g(qz) + p(qz) + g(
z

q
) + p(

z

q
) =

az + b

g(z) + p(z)
+ c.

It follows that

Pq(z, g) :=[g(qz) + p(qz) + g(
z

q
) + p(

z

q
)][g(z) + p(z)]

− (az + b)− c[g(z) + p(z)] = 0.
(3.1)

Then, we have

Pq(z, 0) = [p(qz) + p(
z

q
)]p(z)− (az + b)− cp(z). (3.2)

If p(z) ≡ 0, then Pq(z, 0) = −(az + b) 6≡ 0.
If k = 0 and a0 ≡ α ∈ C \ {0}, then Pq(z, 0) = 2α2 − (az + b)− cα 6≡ 0.
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If k ≥ 1 and ak 6= 0 is a constant. Then, we have from (3.2) that

Pq(z, 0) = [p(qz) + p(
z

q
)]p(z)− (az + b)− cp(z) = (qk +

1
qk

)a2
kz

2k + . . . . (3.3)

Since |q| 6= 1, we have qk + 1
qk 6= 0, then Pq(z, 0) 6≡ 0. Thus, we have by Lemma

2.2 that

m(r,
1
g

) = S(r, g).

Then, we obtain

N
(
r,

1
f(z)− p(z)

)
= N

(
r,

1
g(z)

)
= T (r, g) + S(r, g) = T (r, f) + S(r, f). (3.4)

Hence, it follows that λ(f − p) = σ(f).
If a = 0 and p(z) = β 6∈ E, then we have

Pq(z, 0) = 2β2 − cβ − b 6≡ 0.

Set g(z) = f(z)−β, by using the same argument as above, we can obtain λ(f−β) =
σ(f). Therefore, we can obtain that the Borel exceptional values of f(z) can only
come from the set E = {z|2z2 − cz − b = 0}.

(ii) From (1.5), we have

f(z)[f(qz) + f(
z

q
)] = az + b+ cf(z). (3.5)

It follows from Lemma 2.1 that

m
(
r, f(qz) + f(

z

q
)
)

= S(r, f). (3.6)

By applying Lemma 2.4 for (1.5), we have

T
(
r, f(qz) + f(

z

q
)
)

= T (r, f) + S(r, f). (3.7)

And by Lemma 2.3 we obtain

N
(
r, f(qz) + f(

z

q
)
)
≤ N(r, f(qz)) +N

(
r, f(

z

q
)
)

= 2(1 + o(1))N(r, f) (3.8)

on a set of lower logarithmic density 1. Thus, combining (3.6) and (3.7), we have

T (r, f) ≤ 2(1 + o(1))N(r, f) + S(r, f).

Hence, we have

σ(f(z)) ≤ λ
( 1
f(z)

)
. (3.9)

Next, we prove that λ( 1
∆qf(z) ) ≥ λ( 1

f(z) ). Set z = qw, then we can rewrite (1.5)
as the form

f(q2w) + f(w) =
aqw + b

f(qw)
+ c. (3.10)

Then it follows that

f(qw)[f(q2w) + f(w)] = aqw + b+ cf(qw). (3.11)

Since ∆qf(w) = f(qw) − f(w), we have f(qw) = ∆qf(w) + f(w) and f(q2w) =
∆qf(qw) + ∆qf(w) + f(w). Substituting them into (3.11), we obtain

[∆qf(w) + f(w)][∆qf(qw) + ∆qf(w) + 2f(w)] = (aqw + b) + c[∆qf(w) + f(w)],
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i.e.,

−2f(w)2 =[∆qf(qw) + 3∆qf(w)− c]f(w)− (aqw + b)

+ [∆qf(qw) + ∆qf(w)− c]∆qf(w).
(3.12)

Since f(z) is a zero order transcendental meromorphic function and z = qw, by
Lemma 2.3, we obtain that f(w) is of zero order. Thus, by Lemma 2.3 again, we
have that ∆qf(w),∆qf(qw) are of zero order. Set ∆2

qf(w) := ∆q(∆qf(w)), so we
have ∆qf(qw) = ∆2

qf(w) + ∆qf(w). Since ∆qf(w) is of zero order, and by Lemma
2.3 we have

N(r,∆2
qf(w)) ≤ 2N(r,∆qf(w)) + S(r, f). (3.13)

It follows that

N(r,∆qf(qw)) ≤ 3N(r,∆qf(w)) + S(r, f). (3.14)

Thus, from (19) and (3.14) we have

2N(r, f(w)) =N
(
r, [∆qf(qw) + 3∆qf(w)− c]f(w)− (aqw + b)

+ [∆qf(qw) + ∆qf(w)− c]∆qf(w)
)

≤N(r, f(w)) + 9N(r,∆qf(w)) +O(log r) + S(r, f).

That is,

N(r, f(w)) ≤ 9N(r,∆qf(w)) + S(r, f). (3.15)

Then, it follows that

λ
( 1

∆qf(w)

)
≥ λ

( 1
f(w)

)
. (3.16)

Since f(w) is of zero order, by Lemma 2.3 and z = qw we have

λ
( 1

∆qf(w)

)
= λ

( 1
∆qf( z

q )

)
= λ

( 1
∆qf(z)

)
,

λ
( 1
f(w)

)
= λ

( 1
f( z

q )

)
= λ

( 1
f(z)

)
.

Hence,

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
. (3.17)

From this inequality and (3.9) we have

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
≥ σ(f(z)). (3.18)

So, we have T (r,∆qf(z)) ≤ 2T (r, f(z)) + S(r, f) by Lemma 2.3; that is, σ(f(z)) ≥
σ(∆qf(z)). Thus, combining this and (3.18), we have

λ
( 1
f(z)

)
= λ

( 1
∆qf(z)

)
= σ(∆qf(z)) = σ(f(z)).

The proof of Theorem 1.3 is complete.
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4. Proof of Theorem 1.4

Suppose that f(z) is a zero order transcendental meromorphic solution of (1.6).
We will consider the following two cases.

(i) a 6= 0. If p(z) is a polynomial of degree k and p(z) = akz
k + . . . . Let

g1(z) = f(z)− p(z). Substituting f(z) = g1(z) + p(z) into equation (1.6), we have

g1(qz) + p(qz) + g1(
z

q
) + p(

z

q
) =

(az + b)[g1(z) + p(z)] + c

1− [g1(z) + p(z)]2
.

It follows that

Pq(z, g1) :=[g1(qz) + p(qz) + g1(
z

q
) + p(

z

q
)][g1(z) + p(z)]2

+ (az + b)[g1(z) + p(z)] + c

− [g1(qz) + p(qz) + g1(
z

q
) + p(

z

q
)] = 0.

(4.1)

From this equality, we have

Pq(z, 0) = [p(qz) + p(
z

q
)]p(z)2 + (az + b)p(z) + c− p(qz)− p(z

q
). (4.2)

If k = 0 and a0 ≡ α ∈ C \ {0}, then Pq(z, 0) = 2α3 + α(az + b) + c− 2α 6≡ 0.
If k ≥ 1 and ak 6= 0 is a constant. Then, we have from (4.1) that

Pq(z, 0) = [p(qz) + p(
z

q
)]p(z)2 + (az + b)p(z) + c− p(z)− p(z

q
)

=
(
qk +

1
qk

)
a3

kz
3k + . . . .

Since |q| 6= 1, we have qk + 1
qk 6= 0, then Pq(z, 0) 6≡ 0. Thus, we have by Lemma

2.2 that
m(r,

1
g1

) = S(r, g1).

Then, we obtain

N
(
r,

1
f(z)− p(z)

)
= N

(
r,

1
g1(z)

)
= T (r, g1) + S(r, g1) = T (r, f) + S(r, f).

It follows hat λ(f − p) = σ(f).
If a = 0 and p(z) = β 6∈ E, then we have

Pq(z, 0) = 2β3 + (b− 2)β + c 6≡ 0.

Set g1(z) = f(z)−β, by using the same argument as above, we can obtain λ(f−β) =
σ(f). Therefore, we can obtain that the Borel exceptional values of f(z) can only
come from the set E = {z|2z3 + (b− 2)z + c = 0}.

If c 6= 0, then we have from (1.6) that

Pq(z, f) := f(z)2[f(qz) + f(
z

q
)] + (az + b)f(z) + c− f(qz)− f(

z

q
).

Hence, we obtain
Pq(z, 0) ≡ c 6≡ 0.

Using a similar method as above, we obtain λ(f) = σ(f).
(ii) From (1.6), we have

f(z)2[f(qz) + f(
z

q
)] = f(qz) + f(

z

q
)− (az + b)f(z)− c. (4.3)
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It follows from (3.5) that

m
(
r, f(qz) + f(

z

q
)
)

= S(r, f). (4.4)

By applying Lemma 2.4 for (1.6), we have

T
(
r, f(qz) + f(

z

q
)
)

= 2T (r, f) + S(r, f). (4.5)

By Lemma 2.3 we obtain

N
(
r, f(qz) + f(

z

q
)
)
≤ N(r, f(qz)) +N

(
r, f(

z

q
)
)

= 2(1 + o(1))N(r, f) (4.6)

on a set of lower logarithmic density 1. Thus, combining (31) and (32), we have

T (r, f) ≤ 2(1 + o(1))N(r, f) + S(r, f).

Hence,

σ(f(z)) ≤ λ
( 1
f(z)

)
. (4.7)

Next, we prove that λ
(

1
∆qf(z)

)
≥ λ

(
1

f(z)

)
. Set z = qw, then we can rewrite

(1.6) in the form

f(q2w) + f(w) =
(aqw + b)f(qw) + c

1− f(qw)2
. (4.8)

Then it follows that

f(qw)2[f(q2w) + f(w)] = f(q2w) + f(w)− (aqw + b)f(qw)− c. (4.9)

Since ∆qf(w) = f(qw) − f(w), we have f(qw) = ∆qf(w) + f(w) and f(q2w) =
∆qf(qw) + ∆qf(w) + f(w). Substituting these two equalities in (4.9), we obtain

[∆qf(w) + f(w)]2[∆qf(qw) + ∆qf(w) + 2f(w)]

= ∆qf(qw) + ∆qf(w) + 2f(w)− (aqw + b)[∆qf(w) + f(w)]− c,

Thus, we obtain

− 2f(w)3 = A(w)f(w) +B(w)∆qf(w) + C(w), (4.10)

where
A(w) =[∆qf(qw) + 5∆qf(w)]f(w) + 4(∆qf(w))2

+ 2∆qf(w)∆qf(qw) + aqw + b− 2,

B(w) = ∆qf(qw)∆qf(w) + (∆qf(w))2 + (aqw + b)− 1,

C(w) = c−∆qf(qw).

Thus, by Lemma 2.3 and from (3.14) we have

3N(r, f(w)) =N(r,A(w)f(w) +B(w)∆qf(w) + C(w))

≤2N(r, f(w)) + 19N(r,∆qf(w)) +O(log r) + S(r, f).

That is,
N(r, f(w)) ≤ 19N(r,∆qf(w)) + S(r, f). (4.11)

Then, it follows from (37) that

λ
( 1

∆qf(w)

)
≥ λ

( 1
f(w)

)
. (4.12)
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Since f(w) is of zero order, by Lemma 2.3 and z = qw we have

λ
( 1

∆qf(w)

)
= λ

( 1
∆qf( z

q )

)
= λ

( 1
∆qf(z)

)
,

λ
( 1
f(w)

)
= λ

( 1
f( z

q )

)
= λ

( 1
f(z)

)
.

Hence, we obtain

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
. (4.13)

Thus, from this inequality and (4.7) we have

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
≥ σ(f(z)). (4.14)

Then we have T (r,∆qf(z)) ≤ 2T (r, f(z))+S(r, f) by Lemma 2.3; that is, σ(f(z)) ≥
σ(∆qf(z)). Thus, combining this and (4.14), we have

λ
( 1
f(z)

)
= λ

( 1
∆qf(z)

)
= σ(∆qf(z)) = σ(f(z)).

The proof of Theorem 1.4 is complete.

5. Proof of Theorem 1.5

For the convenience of the reader, we use the notation form the proof of Theorem
1.3(i). Suppose that f(z) is a zero order transcendental meromorphic solution of
(1.7). We will consider the following two cases.

(i) Let a = 0 and p(z) = β 6∈ E. Using the same methods as in the proof of
Theorem 1.3(i), we have

Pq(z, 0) = 2β3 − bβ − c 6≡ 0.

Thus, λ(f − β) = σ(f). Hence, the Borel exceptional values of f(z) can only come
from the set E = {z|2z3 − bz − c = 0}.

(ii) From (1.7), we have

f(z)2[f(qz) + f(
z

q
)] = (az + b)f(z) + c. (5.1)

It follows from Lemma 2.1 that

m
(
r, f(qz) + f(

z

q
)
)

= S(r, f). (5.2)

By Lemma 2.3 we obtain

N
(
r, f(qz) + f(

z

q
)
)
≤ N(r, f(qz)) +N

(
r, f(

z

q
)
)

= 2(1 + o(1))N(r, f) (5.3)

on a set of lower logarithmic density 1.
If c 6= 0, by applying Lemma 2.4 for (1.7), we have

T
(
r, f(qz) + f(

z

q
)
)

= 2T (r, f) + S(r, f). (5.4)

Thus, it follows from (5.2)–(5.4) that

T (r, f) ≤ (1 + o(1))N(r, f) + S(r, f). (5.5)
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If c = 0, by applying Lemma 2.4 for (1.7) and since |a|+ |b|+ |c| = |a|+ |b| 6= 0,
we have

T
(
r, f(qz) + f(

z

q
)
)

= T (r, f) + S(r, f). (5.6)

Thus, it follows from (5.2), (5.3) and (5.6) that

T (r, f) ≤ 2(1 + o(1))N(r, f) + S(r, f). (5.7)

From (5.5) and (5.7) we have

σ(f(z)) ≤ λ
( 1
f(z)

)
. (5.8)

Next, we prove that λ
(

1
∆qf(z)

)
≥ λ

(
1

f(z)

)
. Set z = qw, by using the same

argument as in Theorem 1.4(ii), we have

− 2f(w)3 = A(w)f(w) +B(w)∆qf(w) + C(w), (5.9)

where

A(w) = [∆qf(qw) + 5∆qf(w)]f(w) + 4(∆qf(w))2 + 2∆qf(w)∆qf(qw)− aqw − b,
B(w) = [∆qf(qw) + ∆qf(w)]∆qf(w)− aqw − b,

C(w) = −c.

Thus, by Lemma 2.3 and from (3.14) we have

3N(r, f(w)) =N(r,A(w)f(w) +B(w)∆qf(w) + C(w))

≤2N(r, f(w)) + 15N(r,∆qf(w)) +O(log r) + S(r, f).

That is,
N(r, f(w)) ≤ 15N(r,∆qf(w)) + S(r, f). (5.10)

Then, it follows that

λ
( 1

∆qf(w)

)
≥ λ

( 1
f(w)

)
. (5.11)

Since f(w) is of zero order, by Lemma 2.3 and z = qw we have

λ
( 1

∆qf(w)

)
= λ

( 1
∆qf( z

q )

)
= λ

( 1
∆qf(z)

)
,

λ
( 1
f(w)

)
= λ

( 1
f( z

q )

)
= λ

( 1
f(z)

)
.

Hence, we obtain

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
. (5.12)

Thus, by (5.8) we have

λ
( 1

∆qf(z)

)
≥ λ

( 1
f(z)

)
≥ σ(f(z)). (5.13)

So, we have T (r,∆qf(z)) ≤ 2T (r, f(z)) + S(r, f) by Lemma 2.3; that is, σ(f(z)) ≥
σ(∆qf(z)). Thus, combining this and (5.13), we have

λ
( 1
f(z)

)
= λ

( 1
∆qf(z)

)
= σ(∆qf(z)) = σ(f(z)).

The proof of Theorem 1.5 is complete.
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tions, J. Math. Anal. Appl., 364 (2010), 556-566.

[5] Y. M. Chiang, S. J. Feng; On the Nevanlinna characteristic of f(z + η) and difference
equations in the complex plane, Ramanujan J., 16 (2008), 105-129.

[6] A. S. Fokas; From continuous to discrete Painlevé equations, J. Math. Anal. Appl., 180
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equations, Advances in Difference Equation, 2015 (2015), no. 123, pp. 1-15.



12 H. Y. XU, S. Y. LIU, X. M. ZHENG EJDE-2017/175

[23] X. G. Qi, L. Z. Yang; Properties of meromorphic solutions of q-difference equations, Elec-

tronic Journal of Differential Equations, 2015 (2015), No. 59, pp. 1-9.

[24] J. Wang, K. Xia, F. Long; The poles of meromorphic solutions of Fermat type differential-
difference equations, J Jiangxi Norm. Univ. Nat. Sci., 40 (5) (2016), 497-499.

[25] L. Yang; Value distribution theory, Springer-Verlag. Berlin, 1993.

[26] H. X. Yi, C. C. Yang; Uniqueness theory of meromorphic functions, Kluwer Academic Pub-
lishers, Dordrecht, 2003; Chinese original: Science Press, Beijing, 1995.

[27] J. L. Zhang, R. Korhonen; On the Nevanlinna characteristic of f(qz) and its applications,

J. Math. Anal. Appl., 369 (2010), 537-544.
[28] X. M. Zheng and Z. X. Chen; Some properties of meromorphic solutions of q-difference

equations, J. Math. Anal. Appl., 361 (2010), 472-480.

[29] X. M. Zheng, Z. X. Chen; On properties of q-difference equations, Acta Mathematica Scientia,
32B (2) (2012), 724-734.

Hong Yan Xu (corresponding author)

School of mathematics and statistics, Xidian University, Xi’an, Shaanxi 710126, China.
Department of Informatics and Engineering, Jingdezhen Ceramic Institute (Xiang Hu

Xiao Qu), Jingdezhen, Jiangxi 333403, China

E-mail address: xhyhhh@126.com

San Yang Liu

School of mathematics and statistics, Xidian University, Xi’an, Shaanxi 710126, China
E-mail address: liusanyang@126.com

Xiu Min Zheng

Department of Mathematics, Jiangxi Normal University, Nanchan, Jiangxi 330022, China
E-mail address: zhengxiumin2008@sina.com


	1. Introduction and statement of main results
	2. Some Lemmas
	3. Proof of Theorem 1.3
	4. Proof of Theorem 1.4
	5. Proof of Theorem 1.5
	Acknowledgments

	References

