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WELL-POSEDNESS AND EXPONENTIAL DECAY OF
SOLUTIONS FOR A TRANSMISSION PROBLEM WITH

DISTRIBUTED DELAY

GONGWEI LIU

Abstract. In this article, we consider a transmission problem in a bounded

domain with a distributed delay in the first equation. Using a semigroup the-

orem, we prove the existence and uniqueness of global solution under suitable
assumptions on the weight of damping and the weight of distributed delay.

Also we establish the exponential stability of the solution by introducing a

suitable Lyapunov functional.

1. Introduction

In this article, we study the transmission problem with a distributed delay,

utt(x, t)− auxx(x, t) + µ1ut(x, t) +
∫ τ2

τ1

µ2(s)ut(t− s)ds = 0, x ∈ Ω, t > 0,

vtt(x, t)− bvxx(x, t) = 0, x ∈ (L1, L2), t ≥ 0,
(1.1)

under the boundary and the transmission conditions
u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2,

aux(Li, t) = bvx(Li, t), i = 1, 2
(1.2)

and the initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2),

ut(x,−t) = f0(x,−t), x ∈ Ω, t ∈ (0, τ2)
(1.3)

where 0 < L1 < L2 < L3, Ω = (0, L1) ∪ (L2, L3), a, b, µ1 are positive constants,
and the initial data (u0, u1, v0, v1, f0) belongs to suitable space. Moreover, µ2 :
[τ1, τ2]→ R is a bounded function, where τ1 and τ2 are two real number satisfying
0 ≤ τ1 < τ2.

It is known that transmission problems happen frequently in applications where
the domain is occupied by two or several materials, whose elastic properties are
different, joined together over the whole of a surface. From the mathematical point
of view, a transmission problem for wave propagation consists on a hyperbolic
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equation for which the corresponding elliptic operator has discontinuous coefficients,
see [2, 6].

In absence of delay (µ2(s) = 0), the system (1.1)-(1.3) has been investigated in
[2] by Bastaos and Raposo; for Ω = [0, L1], they showed that the well-posedness
and exponential stability of the total energy. Rivera and Oquendo [17] studied
the transmission problem of viscoelastic waves and established that the dissipation
produced by the viscoelastic part is strong enough to produce the exponential
stability, no matter small its size is. Interested readers are referred to [12, 13, 14, 16],
for more results concerning other types of transmission problems.

Introducing the delay term makes the problem different from those considered in
the literatures. Delay effect arises in many applications depending not only on the
present state but also on some past occurrences. It may turn a well-behaved system
into a wild one. The presence of delay may be a source of instability. For example,
it was shown in [5, 4, 8, 20, 21, 26] that an arbitrarily small delay may destabilize
a system that is uniformly asymptotically stable in the absence of delay unless
additional control terms have been used. Here we mention the some interesting
results on the relation between the delay term and source term [11, 10, 7, 23].

Nicaise and Pignotti [21] considered the wave equation with liner frictional damp-
ing and internal distributed delay

utt −∆u+ µ1ut + a(x)
∫ τ2

τ1

µ2(s)ut(t− s)ds = 0

in Ω× (0,∞), with initial and mixed Dirichlet-Neumann boundary conditions and
a is a suitable function. They obtained exponential decay of the solution under the
assumption that

‖a‖∞
∫ τ2

τ1

µ2(s)ds < µ1.

The authors also obtained the same result when the distributed delay acted on
the part of the boundary. Mustafa and Kafini [19] considered a thermoelastic
system with internal distributed delay, they obtained exponential stability under
suitable condition; for the boundary distributed delay, similar result was obtained
by [18]. Here we also mention the work on Timoshenko system with second sound
and internal distributed delay in [1] by Apalara, and wave equation with strong
distributed delay [15] by Messsaoudi et al.

The effect of the delay term ut(x, t − τ) in the transmission system has been
investigated by Benseghir [3]. Recently, the well-posedness and the decay of solution
for a transmission problem in a bounded domain with a viscoelastic term and a delay
term ut(x, t− τ) have been studied in [9, 25].

In this work we consider the transmission system (1.1)-(1.3), and prove the well-
posedness and the exponential stability. Our work extends the stability results in
[2, 3] to the transmission system with distributed delay.

The plan of this paper is as follows. In section 2, we present some notations
and assumptions needed for our work, and then establish the well-posedness of our
problem by virtue of the semigroup methods. In section 3, we state and prove the
stability result by introducing a suitable Lyapunov function.
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2. Well-posedness of the problem

Throughout this paper, c and ci are used to denote the generic positive constant.
From now on, we shall omit x and t in all functions of x and t if there is no ambiguity.

As in [21], we introduce the new variable

z(x, ρ, t, s) = ut(x, t− ρs), x ∈ Ω, ρ ∈ (0, 1), t > 0, s ∈ (τ1, τ2).

Then the above variable z satisfies

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0, s ∈ (τ1, τ2). (2.1)

Consequently, system (1.1) is equivalent to

utt(x, t)− auxx(x, t) + µ1ut(x, t) +
∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds = 0,

x ∈ Ω, t > 0,

vtt(x, t)− bvxx(x, t) = 0, x ∈ (L1, L2), t ≥ 0,

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0, s ∈ (τ1, τ2).

(2.2)

Defining U = (u, v, ϕ, ψ, z)T , we formally get that U satisfies

U ′ = AU,
U(0) = U0 = (u0, v0, u1, v1, f0),

(2.3)

where the operator A is defined as

A


u
v
ϕ
ψ
z

 =


ϕ
ψ

auxx − µ1ϕ−
∫ τ2
τ1
µ2(s)z(x, 1, t, s)ds

bvxx
− 1
szρ(x, ρ, t, s)

 .

Introducing the space

X∗ =
{

(u, v) = H1(Ω) ∩H1(L1, L2) : u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), aux(Li, t) = bvx(Li, t), i = 1, 2
}
,

we define the energy space as

H = X∗ × L2(Ω)× L2(L1, L2)× L2
(
Ω× (0, 1)× (τ1, τ2)

)
equipped with the inner product

〈U, Ũ〉H =
∫

Ω

(ϕϕ̃+ auxũx)dx+
∫ L2

L1

(ψψ̃ + bvxṽx)dx

+
∫

Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z(x, ρ, s)z̃(x, ρ, s) ds dρ dx.

The domain of A is

D(A) =
{

(u, v, ϕ, ψ, z)T ∈ H : (u, v) ∈ (H2(Ω)×H2(L1, L2)) ∩X∗,
ϕ ∈ H1(Ω), ψ ∈ H1(L1, L2), z(x, 0, s) = ϕ,

z, zρ ∈ L2
(
Ω× (0, 1)× (τ1, τ2)

)}
.

Clearly, D(A) is dense in H.
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Concerning the weight of the distributed delay, we assume that∫ τ2

τ1

|µ2(s)|ds ≤ µ1. (2.4)

The well-posedness of the system (2.2), (1.2)and (1.3) is ensured by the following
theorem.

Theorem 2.1. Under the assumption (2.4), for any U0 ∈ H, there exists a unique
weak solution U ∈ C(R+,H) of problem (2.3). Moreover, if U0 ∈ D(A), then
U ∈ C(R+, D(A)) ∩ C(R+,H).

Proof. We use the semigroup approach and the Hille-Yosida theorem to prove the
well-posedness of the problem. First, we prove that the operator A is dissipative.
Indeed, for U = (u, v, ϕ, ψ, z) ∈ D(A), where ϕ(Li) = ψ(Li), i = 1, 2, we have

〈AU,U〉H

=
∫

Ω

(
auxx − µ1ϕ−

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds
)
ϕdx+ a

∫
Ω

uxϕxdx

+
∫ L2

L1

bvxxψ dx+
∫ L2

L1

bvxψx dx+
∫

Ω

∫ τ2

τ1

∫ 1

0

|µ2(s)|zzρdρ ds dx.

(2.5)

For the last term of the right hand side of (2.5), we have

∫
Ω

∫ τ2

τ1

∫ 1

0

|µ2(s)|zzρdρ ds dx

=
1
2

∫
Ω

∫ τ2

τ1

∫ 1

0

|µ2(s)| d
dρ
|z(x, ρ, t, s)|2dρ ds dx

+
1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, s)dsx− 1
2

∫ τ2

τ1

|µ2(s)|ds
∫

Ω

z2(x, 0, s)dx.

(2.6)

Integrating by parts in (2.5), and noticing the fact z(x, 0, t, s) = ϕ(x, t), from (2.6),
we have

〈AU,U〉H = [auxϕ]∂Ω + [bvxψ]L2
L1
−
(
µ1 −

1
2

∫ τ2

τ1

|µ2(s)|ds
)∫

Ω

ϕ2dx

+
1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, s) ds dx−
∫

Ω

∫ τ2

τ1

µ2(s)z(x, 1, s)ϕds dx.

Using Young’s inequality, and the equality ϕ(Li) = ψ(Li), i = 1, 2, from (1.2) and
(2.6) we have

〈AU,U〉H ≤ −(µ1 −
∫ τ2

τ1

|µ2(s)|)
∫

Ω

ϕ2dx− 1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, s) ds dx

+
1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, s) ds dx

≤ −
(
µ1 −

∫ τ2

τ1

|µ2(s)|
)∫

Ω

ϕ2dx ≤ 0,

by (2.4). Hence, the operator A is dissipative.



EJDE-2017/174 TRANSMISSION PROBLEM WITH DISTRIBUTED DELAY 5

Next, we prove the operator A is maximal. It is sufficient to show that the
operator λI−A is surjective for a fixed λ > 0. Indeed, given F = (f1, f2, f3, f4, f5) ∈
H, we prove that there exists U = (u, v, ϕ, ψ, z) ∈ D(A) satisfying

(λI −A)U = F , (2.7)

that is
λu− ϕ = f1,

λv − ψ = f2,

λϕ− auxx + µ1ϕ+
∫ τ2

τ1

|µ2(s)|z(x, 1, t, s)ds = f3,

λψ − bvxx = f4,

λsz + zρ = sf5.

(2.8)

Suppose we have obtained (u, v) with the suitable regularity, then

ϕ = λu− f1,

ψ = λv − f2,
(2.9)

so we have ϕ ∈ H1(Ω) and ψ ∈ H1(L1, L2). Moreover, using the approach as in
Nicaise and Pignotti [20], we obtain that the last equation in (2.8) with z(x, 0, s)
has a unique solution

z(x, ρ, s) = ϕ(x)e−λρs + seλρs
∫ ρ

0

eλσsf5(x, σ, s)dσ.

It follows from (2.9) that

z(x, ρ, s) = λue−λρs − f1e
−λρs + seλρs

∫ ρ

0

eλσsf5(x, σ, s)dσ, (2.10)

in particular, z(x, 1, s) = λue−λs + z0(x, s) with z0 ∈ L2(Ω× (τ1, τ2)) defined by

z0(x, s) = −f1e
−λs + seλs

∫ 1

0

eλσsf5(x, σ, s)dσ.

By (2.8) and (2.9), the functions (u, v) satisfy the equations

k̃u− auxx = f̃ ,

λ2v − bvxx = f2 + λf4,
(2.11)

where

k̃ = λ2 + λµ1 +
∫ τ2

τ1

λ|µ2(s)|e−λsds > 0,

f̃ = f3 + (λ+ λµ1)f1 −
∫ τ2

τ1

|µ2(s)|z0(x, s)ds ∈ L2(Ω),

which can be reformulated as∫
Ω

(k̃u− auxx)w1dx =
∫

Ω

f̃w1dx,∫ L2

L1

(λ2v − bvxx)w2dx =
∫ L2

L1

(f2 + λf4)w2dx,

(2.12)

for any (w1, w2) ∈ X∗.
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Integrating by parts in (2.12), we obtain that the variational formulation corre-
sponding to (2.11) takes the form

Φ
(
(u, v), (w1, w2)

)
= l(w1, w2), (2.13)

where the bilinear form Φ : (X∗, X∗) → R and the linear form l : X∗ → R are
defined by

Φ
(
(u, v), (w1, w2)

)
=
∫

Ω

k̃uw1dx+
∫

Ω

auxw1x − [auxw1]Ω +
∫ L2

L1

λ2vw2dx

+
∫ L2

L1

vxw2xdx− [bvxw2]L2
L1
,

and

l(w1, w2) =
∫

Ω

f̃w1dx+
∫ L2

L1

(f2 + λf4)w2dx.

By the properties of the space X∗, it is easy to see that Φ is continuous and coercive,
and l is continuous. Applying the Lax-Milgram theorem, we deduce that problem
l (2.13) admits a unique solution (u, v) ∈ X∗ for all (w1, w2) ∈ X∗. It follows from
(2.11) that (u, v) ∈

(
(H2(Ω) × H2(L1, L2))

)
∩ X∗. Thus, the operator λI − A is

surjective for any λ > 0. Hence the Hille-Yosida theorem guarantees the existence
of a unique solution to the problem (2.7). This completes the proof. �

3. Exponential stability

In this section, we state and prove the stability result for the energy of the system
(1.1)-(1.3). For the regular solution of the system (1.1)-(1.3), we define the energy
as (see [3])

E1(t) =
1
2

∫
Ω

u2
t (x, t)dx+

a

2

∫
Ω

u2
x(x, t)dx, (3.1)

E2(t) =
1
2

∫ L2

L1

v2
t (x, t)dx+

b

2

∫ L2

L1

v2
x(x, t)dx. (3.2)

And the total energy is defined as

E(t) = E1(t) + E2(t) +
1
2

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, t, s) ds dρ dx. (3.3)

For the energy decay result, we assume a restriction on the weight of the distrib-
ute delay and the damping as ∫ τ2

τ1

|µ2(s)|ds < µ1. (3.4)

The stability result reads as follows.

Theorem 3.1. Let (u, v, z) be the solution of the system (2.2), (1.2) and (1.3).
Assume (3.4) and

a

b
<
L1 + L3 − L2

2(L2 − L1)
, L3 > 3(L2 − L1). (3.5)

Then there exist two positive constants K and κ, such that

E(t) ≤ Ke−κt, ∀t ≥ 0. (3.6)

The proof will be established through the following Lemmas.
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Lemma 3.2. Let assumption (3.4) holds. Then the energy functional defined by
(3.3), satisfies the estimate

E′(t) ≤ −
(
µ1 −

∫ τ2

τ1

|µ2(s)|ds
)∫

Ω

u2
t (x, t)dx ≤ 0. (3.7)

Proof. By differentiating (3.1), using the first equation in (2.2), and integrating by
parts, we obtain

E′1(t) = [auxut]Ω − µ1

∫
Ω

u2
t (x, t)dx−

∫
Ω

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ut(x, t) ds dx.

Similarly,
E′2(t) = [bvxvt]L2

L1
.

Noticing that z(x, 0, t, s) = ut(x, t), from (2.2), we obtain

1
2
d

dt

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, t, s) ds dρ dx

= −1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx+
1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|u2
t (x, t) ds dx.

Meanwhile, using Young’s inequality, we have

−
∫

Ω

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ut(x, t) ds dx

≤ 1
2

∫ τ2

τ1

|µ2(s)|ds
∫

Ω

u2
t (x, t)dx+

1
2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx.

Combining the above equalities and using (3.4), we show that (3.7) holds, where
we also use the fact [auxut]∂Ω = [bvxvt]L2

L1
from (1.2). �

As in [15], we define the functional

I(t) =
∫

Ω

∫ 1

0

∫ τ2

τ1

se−ρs|µ2(s)|z2(x, ρ, t, s) ds dρ dx,

then we have the following estimate.

Lemma 3.3. The functional I(t) satisfies the estimate

I ′(t) ≤ −e−τ2
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx

+
(∫ τ2

τ1

|µ2(s)|ds
)∫

Ω

u2
t (x, t)dx

− e−τ2
∫

Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, t, s) ds dρ dx.

(3.8)

Proof. By differentiating I(t) and using the third equation in (2.2), we obtain

I ′(t) = −
∫

Ω

∫ τ2

τ1

∫ 1

0

e−ρs|µ2(s)| d
dρ
z2(x, ρ, t, s)dρ ds dx

= −
∫

Ω

∫ τ2

τ1

|µ2(s)|
∫ 1

0

d

dρ
(e−ρsz2(x, ρ, t, s))dρ ds dx

−
∫

Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|e−ρsz2(x, ρ, t, s) ds dρ dx.
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Hence

I ′(t) = −
∫

Ω

∫ τ2

τ1

e−s|µ2(s)|z2(x, 1, t, s) ds dx+
(∫ τ2

τ1

|µ2(s)|ds
)∫

Ω

u2
t (x, t)dx

−
∫

Ω

∫ τ2

τ1

s|µ2(s)|
∫ 1

0

e−ρsz2(x, rho, t, s) dρ ds dx.

Recalling e−s ≤ e−ρs ≤ 1, for all ρ ∈ [0, 1], and −e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2],
we obtain (3.8). �

Now we define the functional

D(t) =
∫

Ω

uutdx+
µ1

2

∫
Ω

u2dx+
∫ L2

L1

vvtdx.

Then we have the following estimate.

Lemma 3.4. The functional D(t) satisfies

D′(t) ≤ −(a− ε0C
2
0 )
∫

Ω

u2
xdx− b

∫ L2

L1

v2
xdx+

∫
Ω

u2
tdx+

∫ L2

L1

v2
t dx

+
1

4ε0

∫ τ2

τ1

|µ2(s)|ds
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx.
(3.9)

Proof. Taking the derivative of D(t) with respect to t, using (2.2), we obtain

D′(t) =
∫

Ω

u2
tdx+

∫ L2

L1

v2
t dx− a

∫
Ω

u2
xdx−

∫ L2

L1

v2
xdx

−
∫

Ω

∫ τ2

τ1

µ2(s)z(x, 1, t, s)u(x, t) ds dx+ [auxu]∂Ω + [bvxv]L2
L1
.

(3.10)

It follows from the boundary condition (1.2) that

[auxu]∂Ω + [bvxv]L2
L1

= 0.

Using the boundary condition (1.2), we obtain

u2(x, t) =
( ∫ x

0

ux(x, t)dx
)2 ≤ L1

∫ L1

0

u2
x(x, t)dx, x ∈ [0, L1],

u2(x, t) ≤ (L3 − L2)
∫ L3

L2

u2
x(x, t)dx, x ∈ [L2, L3],

which imply the following Poincaré’s inequality∫
Ω

u2(x, t)dx ≤ C2
0

∫
Ω

u2
x(x, t)dx, x ∈ Ω, (3.11)

where C0 = max{L1, L3−L2} is the Poincaré’s constant. Using Young’s inequality
and (3.11), we have

−
∫

Ω

∫ τ2

τ1

µ2(s)z(x, 1, t, s)u(x, t) ds dx

≤ ε0C
2
0

∫
Ω

u2
x(x, t)dx+

1
4ε0

∫ τ2

τ1

|µ2(s)|ds
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx,

for any ε0 > 0. Inserting the above estimates in (3.10), then (3.9) is fulfilled. �
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Inspired by [13], we introduce the functional

q(x) =


x− L1

2 , x ∈ [0, L1],
x− L2+L3

2 , x ∈ [L2, L3],
L1
2 + L2−L3−L1

2(L2−L1) (x− L1), x ∈ [L1, L2].
(3.12)

We define the two functionals

F1(t) = −
∫

Ω

q(x)uxut dx, F2(t) = −
∫ L2

L1

q(x)vxvt dx.

Then, we have the following estimates.

Lemma 3.5. For any ε1 > 0, the functionals F(t) and F2(t) satisfy

F ′1(t) ≤ C(ε1)
∫

Ω

u2
tdx+ (

a

2
+ ε1)

∫
Ω

u2
xdx

+ C(ε1)
∫ τ2

τ1

|µ2(s)|ds
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx

− a

4
[(L3 − L2)u2

x(L2, t) + L1u
2
x(L1, t)]−

1
4

[L1u
2
t (L1, t) + (L3 − L2)u2

t (L2, t)],

(3.13)

and

F ′2(t) = −L1 + L3 − L2

4(L2 − L1)
( ∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
+
L1

4
v2
t (L1, t)

+
L3 − L2

4
v2
t (L2, t) +

b

4
[(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)].

(3.14)

Proof. Taking the derivative of F1(t) with respect to t and using (2.2), we have

F ′1(t) = −
∫

Ω

q(x)uxutt −
∫

Ω

q(x)uxtut dx

= −
∫

Ω

q(x)ux
(
auxx − µ1ut −

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds
)
dx

−
∫

Ω

q(x)uxtut dx.

(3.15)

Integrating by parts, we have∫
Ω

q(x)uxtutdx = −1
2

∫
Ω

q′(x)u2
tdx+

1
2

[q(x)u2
t ]∂Ω,∫

Ω

q(x)auxuxxdx = −1
2

∫
Ω

aq′(x)u2
xdx+

1
2

[aq(x)u2
x]∂Ω.
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Inserting the above two equalities into (3.15), and noticing (3.12) and Young’s
inequality, we obtain

F ′1(t) =
1
2

∫
Ω

u2
tdx+

1
2

∫
Ω

u2
xdx−

1
2

[aq(x)u2
x]∂Ω

− 1
2

[q(x)u2
t ]∂Ω +

∫
Ω

q(x)ux
(
µ1ut +

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds
)
dx

≤ C(ε1)
∫

Ω

u2
tdx+ (

a

2
+ ε1)

∫
Ω

u2
xdx−

1
2

[aq(x)u2
x]∂Ω −

1
2

[q(x)u2
t ]∂Ω

+ C(ε1)
∫ τ2

τ1

|µ2(s)|ds
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx,

(3.16)

for any ε1 > 0. On the other hand, by the boundary conditions (1.2), we have

1
2

[q(x)u2
t ]∂Ω =

1
4

[L1u
2
t (L1, t) + (L3 − L2)u2

t (L2, t)] ≥ 0,

1
2

[aq(x)u2
x]∂Ω =

a

4
[(L3 − L2)u2

x(L2, t) + L1u
2
x(L1, t)].

Inserting the above two equalities into (3.16), then (3.16) gives (3.13).
By the same method, taking the derivative of F2(t) with respect to t, we have

F ′2(t) = −
∫ L2

L1

q(x)vxtvtdx−
∫ L2

L1

q(x)vxvttdx

=
1
2

∫ L2

L1

q′(x)v2
t dx−

1
2

[q(x)v2
t ]L2
L1

+
1
2

∫ L2

L1

bq′(x)v2
xdx−

1
2

[bq(x)v2
x]L2
L1

= −L1 + L3 − L2

4(L2 − L1)
( ∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
+
L1

4
v2
t (L1, t)

+
L3 − L2

4
v2
t (L2, t) +

b

4
[(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)].

Hence, the proof is complete. �

Proof of Theorem 3.1. We define the Lyapunov functional

L(t) = N1E(t) +N2I(t) + γ1F1(t) + γ2F2(t) + γ3D(t), (3.17)

where N1, N2, γ1, γ2, γ3 are positive constants that will be chosen later.
It follows from the boundary conditions (1.2) that

a2u2
x(Li, t) = bv2

x(Li, t), i = 1, 2. (3.18)
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Taking the derivative of (3.17) with respective to t, using the above lemmas and
(3.18), we have

L′(t)

≤ −
{
N1(µ1 −

∫ τ2

τ1

|µ2(s)|ds)−N2

∫ τ2

τ1

|µ2(s)|ds− γ1C(ε1)− γ3

}∫
Ω

u2
tdx

−
{
N2e

−τ2 − γ1C(ε1)
∫ τ2

τ1

|µ2(s)|ds− γ3

∫ τ2
τ1
|µ2(s)|ds
4ε0

}
×
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, t, s) ds dx

−
{

(a− ε0C
2
0 )γ3 − (

a

2
+ ε1)γ1

}∫
Ω

u2
xdx

−
{L1 + L3 − L2

4(L2 − L1)
γ2 + γ3

}∫ L2

L1

bv2
xdx

−
{L1 + L3 − L2

4(L2 − L1)
γ2 − γ3

}∫ L2

L1

v2
t dx

−N2e
−τ2

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, t, s) ds dρ dx

−
{
γ1 − γ2

}(L1

4
u2
t (L1, t) +

L3 − L2

4
u2
t (L2, t)

)
−
{
γ1 −

a

b
γ2

}(a
4

[L1u
2
x(L1, t) + (L3 − L2)u2

x(L2, t)]
)
.

(3.19)

At this point we will choose all the constants, carefully, such that all the coefficients
in (3.19) will be negative. In fact, it follows from the assumption (3.5) that we can
always choose γ1, γ2 and γ3 such that

L1 + L3 − L2

4(L2 − L1)
γ2 − γ3 > 0, γ1 >

a

b
γ2, γ1 > γ2, γ3 >

γ1

2
.

Once the above constants γ1, γ2, γ3 are fixed, we may choose ε0 and ε1 sufficiently
small such that

γ3ε0C
2
0 + γ1ε1 < a(γ3 −

γ1

2
).

Then we can take N2 sufficiently large such that

N2e
−τ2 − γ1C(ε1)

∫ τ2

τ1

|µ2(s)|ds− γ3

∫ τ2
τ1
|µ2(s)|ds
4ε0

> 0.

Finally, noticing the assumption (3.4), we can always choose N1 sufficiently large
such that the first coefficient in (3.19) is negative.

Thus, we obtain that there exists a positive constant α such that (3.19) yields

L′(t) ≤ −α
(∫

Ω

u2
tdx+

∫
Ω

au2
xxdx+

∫ L2

L1

v2
t dx

+
∫ L2

L1

bv2
xxdx+

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, t, s) ds dρ dx
)
,
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recalling (3.3), which implies

L′(t) ≤ −α
2
E(t), ∀ ≥ 0. (3.20)

On the hand, it is not hard to see that L(t) ∼ E(t), i.e. there exist two positive
constants β1 and β2 such that

β1E(t) ≤ L(t) ≤ β2E(t), t ≥ 0. (3.21)

Combining (3.20) and (3.21), we obtain that

L′(t) ≤ −κL(t), t ≥ 0

for the positive constant κ = α/β2. Integration over (0, t) gives

L(t) ≤ L(0)e−κt, t ≥ 0,

recall (3.21) again, then (3.6) holds. Hence, the proof is complete. �
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