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SOLVABILITY OF A NONLOCAL PROBLEM FOR A
HYPERBOLIC EQUATION WITH INTEGRAL CONDITIONS

ANAR T. ASSANOVA

Communicated by Ludmila S. Pulkina

Abstract. We study a nonlocal problem with integral conditions for a hyper-

bolic equation two independent variables. By introducing additional functional
parameters, we investigated the solvability and construction of approximate

solutions. The original problem is reduced to an equivalent problem consisting

of the Goursat problems for a hyperbolic equation with parameters and the
boundary value problem with integral condition for the ordinary differential

equations with respect to the parameters. Based on the algorithms for finding

solutions to the equivalent problem, we propose algorithms for finding the ap-
proximate solutions, and prove their convergence. Coefficient criteria for the

unique solvability of nonlocal problem with integral conditions for hyperbolic

equation with mixed derivative are also established.

1. Introduction

On the domain Ω = [0, T ]×[0, ω], we consider the nonlocal problem for hyperbolic
equation with integral conditions

∂2u

∂t∂x
= A(t, x)

∂u

∂x
+B(t, x)

∂u

∂t
+ C(t, x)u+ f(t, x), (1.1)∫ a

0

K(t, ξ)u(t, ξ)dξ = ψ(t), t ∈ [0, T ], (1.2)∫ b

0

M(τ, x)u(τ, x)dτ = ϕ(x), x ∈ [0, ω], (1.3)

where u(t, x) is unknown function, the functions A(t, x), B(t, x), C(t, x), and f(t, x)
are continuous on Ω, the functions K(t, x) and ψ(t) are continuously differentiable
by t on Ω and [0, T ], respectively, the functions M(t, x) and ϕ(x) are continuously
differentiable by x on Ω and [0, ω], respectively, 0 < a ≤ ω, 0 < b ≤ T . The
compatibility condition is given below.

Let C(Ω,R) be a space of functions u : Ω → R continuous on Ω with norm
‖u‖0 = max(t,x)∈Ω |u(t, x)|.
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A function u(t, x) ∈ C(Ω,R), having the partial derivatives ∂u(t,x)
∂x ∈ C(Ω,R),

∂u(t,x)
∂t ∈ C(Ω,R), and ∂2u(t,x)

∂t∂x ∈ C(Ω,R) is called a classical solution to problem
(1.1)–(1.3), if it satisfies equation (1.1) and integral conditions (1.2), (1.3).

Mathematical modelling of various physical processes often leads to the nonlocal
problems for hyperbolic equations. Problems with integral conditions arise while
researching the processes of heat distribution, plasma physics, clean technology of
silicon ores, moisture transfer in capillary-porous media, etc. [8, 9, 10, 11, 12, 13,
15, 16, 17, 18, 24, 25, 26, 27]. Some classes of nonlocal boundary value problems
with integral conditions for hyperbolic equations are studied in [6, 8-28]. Solvability
conditions for the considered problems are obtained in the different terms. Problem
(1.1)–(1.3) for K(t, x) = M(t, x) and K(t, x) = M(t, x) = 1 are studied in [10, 11,
19, 20, 21, 22, 23]. Under the assumptions of continuous differentiability of the
equation coefficients, the conditions for the unique solvability of that problem have
been obtained. For K(t, x) = K(x), M(t, x) = M(t), the problem (1.1)–(1.3)
for the system of hyperbolic equations is studied in [28] by contractive mapping
principle.

For K(t, x) = M(t, x), problem (1.1)–(1.3) for the system of hyperbolic equations
is studied in [7]. The unique solvability conditions for this problem are established
in the terms of initial data. Nonlocal problems with general integral conditions for
hyperbolic equations belong to the field of little studied problems of mathematical
physics. This formulation of problem is considered for the first time.

The aim of this work is to construct algorithms for finding a solution to problem
(1.1)–(1.3) and establish conditions for the existence and uniqueness of classical
solution to problem (1.1)–(1.3).

In Section 2, a scheme of method used [4, 5, 6] is provided. By introduction of
new unknown functions being a linear combination of solutions values on charac-
teristics, the problem (1.1)–(1.3) is reduced to an equivalent problem consisting of
the Goursat problem for hyperbolic equations with functional parameters and the
boundary value problems with integral conditions for ordinary differential equations
with respect to the parameters entered. Algorithm for finding the approximate so-
lution to the investigated problem is constructed. The algorithm consists of two
parts: in the first part, we solve two boundary value problems with integral condi-
tion for ordinary differential equations, and in the second part, we solve the Goursat
problem for hyperbolic equation with parameters. Boundary value problems with
integral condition for ordinary differential equations are intensively studied in re-
cent years, and they find numerous applications in the applied problems [1, 2, 3]. In
Section 3, the conditions for the existence of unique solution to the boundary value
problems with integral condition for ordinary differential equations are presented.
In Section 4, the convergence of algorithm is proved, and the conditions for the
unique solvability of problem (1.1)–(1.3) are given in the terms of initial data.

2. Method’s scheme and algorithm

Notation: µ(t) = u(t, 0) − 1
2u(0, 0), λ(x) = u(0, x) − 1

2u(0, 0), ũ(t, x), where
ũ(t, x) is a new unknown function. We make a following replacement of desired
function u(t, x) in problem (1.1)–(1.3): u(t, x) = ũ(t, x) + µ(t) + λ(x) and transit
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to the problem

∂2ũ

∂t∂x
= A(t, x)

∂ũ

∂x
+B(t, x)

∂ũ

∂t
+ C(t, x)ũ+A(t, x)λ̇(x)

+B(t, x)µ̇(t) + C(t, x)λ(x) + C(t, x)µ(t) + f(t, x),
(2.1)

ũ(t, 0) = 0, t ∈ [0, T ], (2.2)

ũ(0, x) = 0, x ∈ [0, ω], (2.3)∫ a

0

K(t, ξ)dξµ(t) +
∫ a

0

K(t, ξ)ũ(t, ξ)dξ +
∫ a

0

K(t, ξ)λ(ξ)dξ = ψ(t),

t ∈ [0, T ],
(2.4)

∫ b

0

M(τ, x)dτλ(x) +
∫ b

0

M(τ, x)ũ(τ, x)dτ +
∫ b

0

M(τ, x)µ(τ)dτ = ϕ(x),

x ∈ [0, ω].
(2.5)

A triplet of functions (ũ(t, x), µ(t), λ(x)), satisfying the hyperbolic equation (2.1),
the conditions on characteristics (2.2), (2.3), and the functional relations (2.4) and
(2.5) at µ(0) = λ(0), will be called a solution to problem (2.1)–(2.5) if the function
ũ(t, x) ∈ C(Ω, R) has the partial derivatives

∂ũ(t, x)
∂x

∈ C(Ω, R),
∂ũ(t, x)
∂t

∈ C(Ω, R),
∂2ũ(t, x)
∂t∂x

∈ C(Ω, R),

the functions µ(t) and λ(x) are continuously differentiable on [0, T ] and [0, ω], re-
spectively.

Relation µ(0) = λ(0) is a compatibility condition of data.
Problem (2.1)–(2.5) is equivalent to problem (1.1)–(1.3). If the function u∗(t, x)

is a solution to problem (1.1)–(1.3), then the triplet of functions (ũ∗(t, x), µ∗(t),
λ∗(x)), where ũ∗(t, x) = u∗(t, x) − µ∗(t) − λ∗(x), µ∗(t) = u∗(t, 0) − 1

2u
∗(0, 0),

λ∗(x) = u∗(0, x) − 1
2u
∗(0, 0), is a solution to problem (2.1)–(2.5). The converse

is also true. If the triplet of functions (ũ∗∗(t, x), µ∗∗(t), λ∗∗(x)) is a solution to
problem (2.1)–(2.5), then the function u∗∗(t, x) defined by the equality

u∗∗(t, x) = ũ∗∗(t, x) + µ∗∗(t) + λ∗∗(x),

where u∗∗(t, 0) − 1
2u
∗∗(0, 0) = µ∗∗(t), u∗∗(0, x) − 1

2u
∗∗(0, 0) = λ∗∗(x) is a solution

to problem (1.1)–(1.3).
At fixed µ(t), λ(x), problem (2.1)–(2.3) is the Goursat problem with respect to

the function ũ(t, x) on the domain Ω. Relations (2.4) and (2.5) allow us to determine
the unknown parameters µ(t), λ(x), where the functions µ(t), λ(x) satisfy condition
µ(0) = λ(0).

By conditions (2.2), (2.3), relations (2.4) at t = 0 and (2.5) at x = 0 yield∫ a

0

K(0, ξ)dξµ(0) +
∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (2.6)∫ b

0

M(τ, 0)dτλ(0) +
∫ b

0

M(τ, 0)µ(τ)dτ = ϕ(0). (2.7)

Taking into account µ(0) = λ(0), we obtain∫ a

0

K(0, ξ)dξλ(0) +
∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (2.8)
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0

M(τ, 0)dτµ(0) +
∫ b

0

M(τ, 0)µ(τ)dτ = ϕ(0). (2.9)

Let us define the following condition.

Condition (i). Assume

B1(t) =
∫ a

0

K(t, ξ)dξ 6= 0 for all t ∈ [0, T ],

B2(x) =
∫ b

0

M(τ, x) dτ 6= 0 for all x ∈ [0, ω].

From relation (2.4) we determine the parameter

µ(t) = − 1
B1(t)

{∫ a

0

K(t, ξ)ũ(t, ξ)dξ +
∫ a

0

K(t, ξ)λ(ξ)dξ − ψ(t)
}
, (2.10)

for t ∈ [0, T ]. Similarly, from relation (2.5) we determine parameter

λ(x) = − 1
B2(x)

{∫ b

0

M(τ, x)ũ(τ, x)dτ +
∫ b

0

M(τ, x)µ(τ)dτ − ϕ(x)
}
, (2.11)

for x ∈ [0, ω]. Assumptions on the data of problem (1.1)–(1.3) allow us to differen-
tiate (2.10) and (2.11) by t and x, respectively. Then we obtain

µ̇(t) =
Ḃ1(t)
B2

1(t)

∫ a

0

K(t, ξ)ũ(t, ξ)dξ − 1
B1(t)

{∫ a

0

∂K(t, ξ)
∂t

ũ(t, ξ)dξ

+
∫ a

0

K(t, ξ)
∂ũ(t, ξ)
∂t

dξ
}

+
Ḃ1(t)
B2

1(t)

∫ a

0

K(t, ξ)λ(ξ)dξ

− 1
B1(t)

∫ a

0

∂K(t, ξ)
∂t

λ(ξ)dξ − Ḃ1(t)
B2

1(t)
ψ(t) +

1
B1(t)

ψ̇(t), t ∈ [0, T ],

(2.12)

λ̇(x) =
Ḃ2(x)
B2

2(x)

∫ b

0

M(τ, x)ũ(τ, x)dτ − 1
B2(x)

{∫ b

0

∂M(τ, x)
∂x

ũ(τ, x)dτ

+
∫ b

0

M(τ, x)
∂ũ(τ, x)
∂x

dτ
}

+
Ḃ2(x)
B2

2(x)

∫ b

0

M(τ, x)µ(τ)dτ

− 1
B2(x)

∫ b

0

∂M(τ, x)
∂x

µ(τ)dτ − Ḃ2(x)
B2

2(x)
ϕ(x) +

1
B2(x)

ϕ̇(x),

(2.13)

for x ∈ [0, ω]. We introduce the new unknown functions

ṽ(t, x) =
∂ũ(t, x)
∂x

, w̃(t, x) =
∂ũ(t, x)
∂t

,

and the following notation

G1(t, ũ, w̃) =
Ḃ1(t)
B2

1(t)

∫ a

0

K(t, ξ)ũ(t, ξ)dξ

− 1
B1(t)

{∫ a

0

∂K(t, ξ)
∂t

ũ(t, ξ)dξ +
∫ a

0

K(t, ξ)w̃(t, ξ)dξ
}
,

L1(t, λ) =
Ḃ1(t)
B2

1(t)

∫ a

0

K(t, ξ)λ(ξ)dξ − 1
B1(t)

∫ a

0

∂K(t, ξ)
∂t

λ(ξ)dξ,



EJDE-2017/170 SOLVABILITY OF A NONLOCAL PROBLEM 5

G2(x, ũ, ṽ) =
Ḃ2(x)
B2

2(x)

∫ b

0

M(τ, x)ũ(τ, x)dτ

− 1
B2(x)

{∫ b

0

∂M(τ, x)
∂x

ũ(τ, x)dτ +
∫ b

0

M(τ, x)ṽ(τ, x)dτ
}
.

Then equations (2.12) and (2.13) can be written in the form

µ̇(t) = G1(t, ũ, w̃) + L1(t, λ) +
1

B1(t)
ψ̇(t)− Ḃ1(t)

B2
1(t)

ψ(t), t ∈ [0, T ], (2.14)

λ̇(x) = G2(x, ũ, ṽ) + L2(x, µ) +
1

B2(x)
ϕ̇(x)− Ḃ2(x)

B2
2(x)

ϕ(x), x ∈ [0, ω]. (2.15)

Thus, we have a closed system of equations (2.1)–(2.3), (2.14) (2.9), (2.15) (2.8) for
determining the unknown functions ṽ(t, x), w̃(t, x), ũ(t, x), λ̇(x), λ(x), µ̇(t), µ(t).

Relation (2.14) in conjunction with (2.9) present a boundary value problem with
integral condition for a differential equation with respect to µ(t), and the relation
(2.15) in conjunction with (2.8) present a boundary value problem with integral
condition for a differential equation with respect to λ(x).

Boundary value problem with integral condition (2.14), (2.9) is equivalent to
relation (2.4), and boundary value problem with integral condition (2.15), (2.8) is
equivalent to relation (2.5) at µ(0) = λ(0).

If µ̇(t), λ̇(x), µ(t), λ(x) are known, then we find the functions ṽ(t, x), w̃(t, x),
ũ(t, x) from (2.1)–(2.3). Conversely, if we know the functions ṽ(t, x), w̃(t, x), ũ(t, x),
then we can find µ̇(t), µ(t), λ̇(x), λ(x) from boundary value problems (2.14), (2.9)
and (2.15), (2.8). The unknowns are both ṽ(t, x), w̃(t, x), ũ(t, x), and µ̇(t), µ(t),
λ̇(x), λ(x). Therefore, to find solution of problem (2.1)–(2.5), we use an itera-
tive method: determine the triplet (ũ∗(t, x), µ∗(t), λ∗(x)) as a limit of sequence
(ũ(m)(t, x), µ(m)(t)), λ(m)(x)), m = 0, 1, 2, . . . , according to the following algorithm:

Step 0. (1) Assuming ũ(t, x) = 0, w̃(t, x) = 0, λ(x) = 0, in the right-hand
side of equation (2.14), we find initial approximations µ̇(0)(t), µ(0)(t), t ∈ [0, T ]
from the boundary value problem with integral condition (2.14), (2.9). Assuming
ũ(t, x) = 0, ṽ(t, x) = 0, µ(t) = 0 in the right-hand side of equation (2.15), we find
initial approximations λ̇(0)(x), λ(0)(x), x ∈ [0, ω] from the boundary value problem
with integral condition (2.15), (2.8).

(2) Find ṽ(0)(t, x), w̃(0)(t, x), ũ(0)(t, x), (t, x) ∈ Ω from the Goursat problem
(2.1)–(2.3) for λ̇(x) = λ̇(0)(x), µ̇(t) = µ̇(0)(t), λ(x) = λ(0)(x), µ(t) = µ(0)(t).
Step 1. (1) Assuming ũ(t, x) = ũ(0)(t, x), w̃(t, x) = w̃(0)(t, x), λ(x) = λ(0)(x) in
the right-hand side of equation (2.14), we find µ̇(1)(t), µ(1)(t), t ∈ [0, T ] from the
boundary value problem with integral condition (2.14), (2.9). Assuming ũ(t, x) =
ũ(0)(t, x), ṽ(t, x) = ṽ(0)(t, x), µ(t) = µ(0)(t) in the right-hand side of equation
(2.15), we find λ̇(1)(x), λ(1)(x), x ∈ [0, ω] from the boundary value problem with
integral condition (2.15), (2.8).

(2) Find ṽ(1)(t, x), w̃(1)(t, x), ũ(1)(t, x), (t, x) ∈ Ω from the Goursat problem
(2.1)–(2.3) for λ̇(x) = λ̇(1)(x), µ̇(t) = µ̇(1)(t), λ(x) = λ(1)(x), µ(t) = µ(1)(t).
And so on.
Step m. (1) Assuming ũ(t, x) = ũ(m−1)(t, x), w̃(t, x) = w̃(m−1)(t, x), λ(x) =
λ(m−1)(x) in the right-hand side of equation (2.14), we find µ̇(m)(t), µ(m)(t), t ∈
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[0, T ] from the boundary value problem with integral condition (2.14), (2.9). As-
suming ũ(t, x) = ũ(m−1)(t, x), ṽ(t, x) = ṽ(m−1)(t, x), µ(t) = µ(m−1)(t) in the right-
hand side of equation (2.15), we find λ̇(m)(x), λ(m)(x), x ∈ [0, ω] from the boundary
value problem with integral condition (2.15), (2.8).

(2) Find ṽ(m)(t, x), w̃(m)(t, x), ũ(m)(t, x), (t, x) ∈ Ω, from the Goursat problem
(2.1)–(2.3) for λ̇(x) = λ̇(m)(x), µ̇(t) = µ̇(m)(t), λ(x) = λ(m)(x), µ(t) = µ(m)(t),
m = 1, 2, . . . .

The constructed algorithm consists of two parts: we solve the boundary value
problems with integral condition for the ordinary differential equations (2.14), (2.9)
and (2.15), (2.8) in the first part, and we solve the Goursat problem for hyperbolic
equations with functional parameters in the second part.

3. Boundary value problems with integral condition for the
differential equations

Consider the boundary value problem with integral condition for the ordinary
differential equations

µ̇(t) = ġ1(t), t ∈ [0, T ], (3.1)∫ b

0

M(τ, 0)dτµ(0) +
∫ b

0

M(τ, 0)µ(τ)dτ = ϕ(0), (3.2)

where the function g1(t) is continuously differentiable on [0, T ], the function M(t, x)
is continuous on Ω, ϕ(0) is a constant, 0 < b ≤ T .

The function µ(t) ∈ C([0, T ],R) having the derivative µ̇(t) ∈ C([0, T ],R), is
called a solution to problem (3.1), (3.2), if it satisfies ordinary differential equation
(3.1) and boundary condition (3.2).

We also consider the boundary value problem with integral condition for the
ordinary differential equation of the type

λ̇(x) = ġ2(x), x ∈ [0, ω], (3.3)∫ a

0

K(0, ξ)dξλ(0) +
∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (3.4)

where the function g2(x) is continuously differentiable on [0, ω], the function K(t, x)
is continuous on Ω, ψ(0) is a constant, 0 < a ≤ ω.

The function λ(x) ∈ C([0, ω],R) having the derivative λ̇(x) ∈ C([0, ω],R), is
called a solution to problem (3.3), (3.4), if it satisfies ordinary differential equation
(3.3) and boundary condition (3.4).

General solution to equation (3.1) has the form

µ(t) = g1(t) + C1, t ∈ [0, T ],

where C1 is a constant.
Since Condition (i) holds, the constant C1 is uniquely determined by (3.2):

C1 =
1

2B2(0)
ϕ(0)− 1

2B2(0)

∫ b

0

M(τ, 0)
{
g1(τ) + g1(0)

}
dτ.

Then the unique solution to problem (3.1), (3.2) has the form

µ(t) = g1(t) +
1

2B2(0)
ϕ(0)− 1

2B2(0)

∫ b

0

M(τ, 0)
{
g1(τ) + g1(0)

}
dτ, (3.5)
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for t ∈ [0, T ]. Analogously, the general solution to equation (3.3) has the form

λ(x) = g2(x) + C2, x ∈ [0, ω],

where C2 is a constant.
Since Condition (i) holds, the constant C2 is uniquely determined by (3.4):

C2 =
1

2B1(0)
ψ(0)− 1

2B1(0)

∫ a

0

K(0, ξ)
{
g2(ξ) + g2(0)

}
dξ.

Then unique solution to problem (3.3), (3.4) has the form

λ(x) = g2(x) +
1

2B1(0)
ψ(0)− 1

2B1(0)

∫ a

0

K(0, ξ)
{
g2(ξ) + g2(0)

}
dξ, (3.6)

for x ∈ [0, ω]. Below we give conditions for the unique solvability of boundary value
problems with integral condition (3.1), (3.2) and (3.3), (3.4).

Theorem 3.1. Suppose Condition (i) is holds. Then problem (3.1), (3.2) has a
unique solution µ∗(t) ∈ C([0, T ],R) representable in the form (3.5), and

max
t∈[0,T ]

|µ∗(t)| ≤ K1 max
(

max
t∈[0,T ]

|g1(t)|, |ϕ(0)|
)
, (3.7)

where
K1 = 1 +

1
2|B2(0)|

[
1 + 2b max

t∈[0,b]
|M(t, 0)|

]
.

Theorem 3.2. Suppose Condition (i) holds. Then problem (3.3), (3.4) has a
unique solution λ∗(x) ∈ C([0, ω],R) representable in the form (3.6), and

max
x∈[0,ω]

|λ∗(x)| ≤ K2 max
(

max
x∈[0,ω]

|g2(x)|, |ψ(0)|
)
, (3.8)

where
K2 = 1 +

1
2|B1(0)|

[
1 + 2a max

x∈[0,a]
|K(0, x)|

]
.

4. Algorithm’s convergence and main result

In Section 2, an algorithm for finding a solution to problem (2.1)–(2.5), which
is equivalent to problem (1.1)–(1.3), is constructed. To formulate the main result,
we let us give few assumptions and notation. Let Condition (i) hold, and introduce
the notation:

α = max
(t,x)∈Ω

|A(t, x)|, β = max
(t,x)∈Ω

|B(t, x)|, γ = max
(t,x)∈Ω

|C(t, x)|,

H = α+ β + γ, κ1 = max
(t,x)∈Ω

|K(t, x)|, κ2 = max
(t,x)∈Ω

∣∣∣∂K(t, x)
∂t

∣∣∣,
σ1 = max

(t,x)∈Ω
|M(t, x)|, σ2 = max

(t,x)∈Ω

∣∣∣∂M(t, x)
∂x

∣∣∣,
β1 = max

t∈[0,T ]
|[B1(t)]−1|, β2 = max

x∈[0,ω]
|[B2(x)]−1|,

δ1 = max
t∈[0,T ]

|Ḃ1(t)|, δ2 = max
x∈[0,ω]

|Ḃ2(x)|,

l11(a) = aβ1κ1

{
1 + max(T, ω)HeH(T+ω)

}
,

l21(b) = bβ2σ1

{
1 + max(T, ω)HeH(T+ω)

}
,
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l12(a) = aβ1

{
δ1β1κ1 + κ2 + (δ1β1κ1 + κ1 + κ2) max(T, ω)HeH(T+ω)

}
,

l22(b) = bβ2

{
δ2β2σ1 + σ2 + (δ2β2σ1 + σ1 + σ2) max(T, ω)HeH(T+ω)

}
.

In Section 3, the conditions for unique solvability of boundary value problems
with integral condition (3.1), (3.2) and (3.3), (3.4) are established. At fixed ṽ(t, x),
w̃(t, x), ũ(t, x) on each step of the algorithm we solve the boundary value problems
with integral condition (2.12), (2.9) and (2.13), (2.8). Besides, in problem (2.12),
(2.9), we consider λ(x) is also known. Same for µ(t) in problem (2.13), (2.8). At
fixed λ̇(x), µ̇(t), λ(x), µ(t), we solved the Goursat problem (2.1)–(2.3).

The following statement gives the conditions for the convergence of proposed
algorithm and the existence of unique solution to problem (2.1)–(2.5).

Theorem 4.1. Let:

(1) the functions A(t, x), B(t, x), C(t, x), and f(t, x) be continuous on Ω;
(2) the functions K(t, x) and ψ(t) be continuously differentiable by t on Ω and

[0, T ], respectively; the functions M(t, x) and ϕ(x) be continuously differ-
entiable by x on Ω and [0, ω], respectively;

(3) Condition (i) hold;
(4) the inequality

q = max
(
K1l11(a) +K2l21(b), l12(a), l22(b)

)
< 1

be fulfilled.

Then problem (2.1)–(2.5) has a unique solution.

Proof. Let conditions (1)–(3) be fulfilled. We use step 0 of algorithm and consider
the boundary value problem with integral condition

µ̇(t) =
1

B1(t)
ψ̇(t)− Ḃ1(t)

B2
1(t)

ψ(t), t ∈ [0, T ], (4.1)∫ b

0

M(τ, 0)dτµ(0) +
∫ b

0

M(τ, 0)µ(τ)dτ = ϕ(0). (4.2)

λ̇(x) =
1

B2(x)
ϕ̇(x)− Ḃ2(x)

B2
2(x)

ϕ(x), x ∈ [0, ω], (4.3)∫ a

0

K(0, ξ)dξλ(0) +
∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0). (4.4)

Condition (3) and the conditions of Theorems 3.1 and 3.2 yield the unique solvabil-
ity of problems (4.1), (4.2) and (4.3), (4.4). We find initial approximations µ(0)(t)
and λ(0)(x) from the boundary value problems (4.1), (4.2) and (4.3), (4.4). Then,
similar to the estimates (3.7) and (3.8), for the functions µ(0)(t), λ(0)(x) and their
derivatives µ̇(0)(t), λ̇(0)(x) the estimates hold:

max
t∈[0,T ]

|µ(0)(t)| ≤ K1 max
(
β1 max

t∈[0,T ]
|ψ(t)|, |ϕ(0)|

)
, (4.5)

max
t∈[0,T ]

|µ̇(0)(t)| ≤ β1 max
t∈[0,T ]

|ψ̇(t)|+ δ1β
2
1 max

t∈[0,T ]
|ψ(t)|. (4.6)

max
x∈[0,ω]

|λ(0)(x)| ≤ K2 max
(
β2 max

x∈[0,ω]
|ϕ(x)|, |ψ(0)|

)
, (4.7)
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max
x∈[0,ω]

|λ̇(0)(x)| ≤ β2 max
x∈[0,ω]

|ϕ̇(x)|+ δ2β
2
2 max

x∈[0,ω]
|ϕ(x)|. (4.8)

Solving the Goursat problem (2.1)–(2.3) for the found values of parameters, we find
ṽ(0)(t, x), w̃(0)(t, x), ũ(0)(t, x) for all (t, x) ∈ Ω.

The following inequalities are valid:

|ṽ(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

|w̃(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

|ũ(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

where

f̃(t, x) = A(t, x)λ̇(0)(x) +B(t, x)µ̇(0)(t) + C(t, x)
[
λ(0)(x) + µ(0)(t)

]
+ f(t, x).

Then, we determine the functions µ(m)(t), λ(m)(x), µ̇(m)(t), λ̇(m)(x), ṽ(m)(t, x),
w̃(m)(t, x), ũ(m)(t, x) from the mth step of the algorithm, and we obtain µ(m+1)(t),
λ(m+1)(x), µ̇(m+1)(t), λ̇(m+1)(x), ṽ(m+1)(t, x), w̃(m+1)(t, x), ũ(m+1)(t, x), from step
(m+ 1), m = 1, 2, . . . .

Evaluating the corresponding differences of successive approximations, we obtain

max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|

≤ K1β1 max
t∈[0,T ]

[ ∫ a

0

|K(t, ξ)(ũ(m)(t, ξ)− ũ(m−1)(t, ξ))|dξ

+
∫ a

0

|K(t, ξ)(λ(m)(ξ)− λ(m−1)(ξ))|dξ
]
,

(4.9)

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|

≤ K2β2 max
x∈[0,ω]

[ ∫ b

0

|M(τ, x)(ũ(m)(τ, x)− ũ(m−1)(τ, x))|dτ

+
∫ b

0

|M(τ, x)(µ(m)(τ)− µ(m−1)(τ))|dτ
]
,

(4.10)

max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|

≤ max
t∈[0,T ]

[
|L1(t, λ(m) − λ(m−1))|+ |G1(t, ũ(m) − ũ(m−1), w̃(m) − w̃(m−1))|

]
,

(4.11)

max
x∈[0,ω]

|λ̇(m+1)(x)− λ̇(m)(x)|

≤ max
x∈[0,ω]

[
|L2(x, µ(m) − µ(m−1))|+ |G2(x, ũ(m) − ũ(m−1), ṽ(m) − ṽ(m−1))|

]
,

(4.12)
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|ṽ(m+1)(t, x)− ṽ(m)(t, x)|

≤ max(T, ω)eH(T+ω)
{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|

+ β max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|+ γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|

+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
,

(4.13)

|w̃(m+1)(t, x)− w̃(m)(t, x)|

≤ max(T, ω)eH(T+ω)
{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|

+ β max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|+ γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|

+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
,

(4.14)

|ũ(m+1)(t, x)− ũ(m)(t, x)|

≤ max(T, ω)eH(T+ω)
{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|

+ β max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|+ γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|

+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
.

(4.15)

Suppose that

∆m+1 = max
(

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|,

max
x∈[0,ω]

|λ̇(m+1)(x)− λ̇(m)(x)|, max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|
)
.

Then, from relations (4.9)–(4.12), taking into account the notation introduced
and estimations (4.13)–(4.15), we obtain the main inequality

∆m+1 ≤ q∆m. (4.16)

Condition (4) of the theorem leads to the convergence of sequence ∆m → 0 as
m → ∞, i.e., ∆∗ = 0. This gives the uniform convergence of sequences λ(m)(x),
λ̇(m)(x), µ(m)(t), µ̇(m)(t), to λ∗(x), λ̇∗(x), µ∗(t), µ̇∗(t),respectively, as m → ∞.
Functions λ∗(x) and µ∗(t) are continuous and continuously differentiable on [0, ω]
and [0, T ], respectively. Based on estimates (4.13)–(4.15), we establish the uniform
convergence of sequences ṽ(m)(t, x), w̃(m)(t, x), ũ(m)(t, x) to the functions ṽ∗(t, x),
w̃∗(t, x), ũ∗(t, x), respectively, with respect to (t, x) ∈ Ω. Obviously, the functions
ũ∗(t, x), ṽ∗(t, x), and w̃∗(t, x) are continuous on Ω. Solving the problems on the
(m + 1)th step of the algorithm and passing to the limit as m → ∞, we obtain
that the functions ũ∗(t, x), λ∗(x), µ∗(t) together with their derivatives satisfy the
Goursat problem (2.1)–(2.3) and boundary value problems with integral condition
(2.14), (2.9) and (2.15), (2.8).

We carry out the inverse transition from problem (2.14), (2.9) to relation (2.4),
and pass from problem (2.15), (2.8) to relation (2.5). Then the triplet of functions
(ũ∗(t, x), λ∗(x), µ∗(t)) is solution to problem (2.1)–(2.5).
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Next we prove the uniqueness of solution to (2.1)–(2.5). Let the triplet of func-
tions (ũ∗(t, x), λ∗(x), µ∗(t)) and another triplet of functions (ũ∗∗(t, x), λ∗∗(x), µ∗∗(t))
be two solutions to the problem. We introduce the notation

∆̃ = max
(

max
x∈[0,ω]

|λ∗(x)− λ∗∗(x)|+ max
t∈[0,T ]

|µ∗(t)− µ∗∗(t)|,

max
x∈[0,ω]

|λ̇∗(x)− λ̇∗∗(x)|, max
t∈[0,T ]

|µ̇∗(t)− µ̇∗∗(t)|,
)
.

After calculation, analogous to (4.9)–(4.15), we obtain

∆̃ ≤ q∆̃. (4.17)

By condition (4) of the theorem, we have q < 1. Then inequality (4.17) takes place
only for ∆̃ ≡ 0. This gives us λ∗(x) = λ∗∗(x), µ∗(t) = µ∗∗(t) and ũ∗(t, x) = ũ∗∗(t, x).
Therefore, the solution to problem (2.1)–(2.5) is unique. �

The next assertion follows from the equivalence of problem (1.1)–(1.3) and prob-
lem (2.1)–(2.5).

Theorem 4.2. Let conditions (1)–(4) of Theorem 4.1 be fulfilled. Then problem
(1.1)–(1.3) has a unique classical solution.

Proof. Conditions (1)–(4) of Theorem 4.1 imply the existence of a unique solution
to (2.1)–(2.5), the triplet of functions (ũ∗(t, x), λ∗(x), µ∗(t)). According to the
algorithm presented above, for each m = 0, 1, 2, . . . , this triplet is determined as a
limit of sequence triplets (ũ(m)(t, x), µ(m)(t)), λ(m)(x)) as m→∞.

Then solution to problem (1.1)–(1.3), the function u∗(t, x), exists and is deter-
mined by the equality u∗(t, x) = ũ∗(t, x) + λ∗(x) + µ∗(t). �
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