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MULTIPLICITY OF SOLUTIONS TO FOURTH-ORDER
SUPERLINEAR ELLIPTIC PROBLEMS UNDER NAVIER

CONDITIONS

EDCARLOS D. DA SILVA, THIAGO RODRIGUES CAVALCANTE

Communicated by Jesus Ildefonso Diaz

Abstract. We establish the existence and multiplicity of solutions for a class

of fourth-order superlinear elliptic problems under Navier conditions on the
boundary. Here we do not use the Ambrosetti-Rabinowitz condition; in-

stead we assume that the nonlinear term is a nonlinear function which is

nonquadratic at infinity.

1. Introduction

In this work we shall consider the fourth-order elliptic problem

α∆2u+ β∆u = f(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

(1.1)

where ∆2 = ∆ ◦ ∆ is the biharmonic operator, N ≥ 4,Ω ⊂ RN is a smooth
bounded domain, α > 0, β ∈ (−∞, αλ1). Problem (1.1) is called fourth-order
elliptic problem under Navier boundary conditions. Here and throughout this paper
λ1 denotes the first eigenvalue problem on (−∆, H1

0 (Ω)). The nonlinear term f is
a continuous function which is superlinear at infinity and at the origin. Latter on,
we shall consider the assumptions on the nonlinear term f .

Semilinear elliptic problems involving operators of fourth order have been con-
sidered since the pioneer paper Lazer and Mckenna [23]. In that work Lazer and
Mackenna modeled nonlinear oscillations for suspensions bridges. It is worthwhile
to mention that problem (1.1) models static deflection of an elastic plate in a
fluid, see [21, 22, 23, 24, 25]. The same problems can be used to describe the
static form change of beam or the motion of rigid body. Equations of this type
have been extensively studied during the last years. Here we refer the reader to
[3, 6, 9, 11, 15, 16, 26, 28, 32, 33, 35, 37] and references therein. In these papers ex-
istence and multiplicity of solutions have been considered using several assumptions
on the nonlinear term f . Most of them considered the case f(x, t) = b[(t+ 1)+− 1]
or f satisfying the well known Ambrosetti-Rabinowitz superlinear condition at in-
finity.
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The main goal in this work is to consider fourth-order elliptic problems without
the Ambrosetti-Rabinowitz condition introduced in [1]. The main difficulty arises
from the fact that Palais-Smale sequences are not necessary bounded under our
assumptions. To overcome this difficulty we apply the nonquadraticity condition
introduced by Costa-Magalhẽs [8] proving that any Cerami sequences are necessary
bounded, see Section 2 ahead. It is important to emphasize that compactness
results such as Cerami condition is a powerful tool in order to apply variational
methods.

Notice that fourth-order elliptic problems are modeled in the working space
H = H1

0 (Ω) ∩H2(Ω). This space is an Hilbert space endowed with the norm

‖u‖ =
(∫

Ω

(
α|∆u|2 − β|∇u|2

)
dx
)1/2

, u ∈ H,

and the inner product

〈u, v〉 =
∫

Ω

(α∆u∆v − β∇u∇v) dx, u, v ∈ H.

The weak solutions for problem (1.1) are precisely the critical points for the func-
tional of C1 class I : H → R given by

I(u) =
1
2

∫
Ω

(
α|∆u|2 − β|∇u|2

)
dx−

∫
Ω

F (x, u) dx, (1.2)

where the primitive for f is denoted by F (x, t) =
∫ t

0
f(x, s)ds, x ∈ Ω, t ∈ R. More

specifically, given u ∈ H we have that I ′(u) belongs to H′ and

I ′(u)v = 〈u, v〉 −
∫

Ω

f(x, u)vdx for any u, v ∈ H.

Here I ′(u)v is standard for the duality product between H and H′. Furthermore,
u ∈ H is a critical point for I if and only if u is a weak solution to the elliptic
problem (1.1).

In this work we denote (λi) the sequence of eigenvalues on (−∆, H1
0 (Ω)). Con-

sider the eigenvalue problem

α∆2u+ β∆u = µu in Ω,
u = ∆u = 0 on ∂Ω.

(1.3)

It is easy to verify that µ ∈ R is an eigenvalue for problem (1.3) if only if

µi = λi (λiα− β) , i ∈ N.
Furthermore, the eigenfunctions for the problem (1.3) are the eigenfunctions for
the problem (−∆, H1

0 (Ω)).
Throughout this work we assume that f ∈ C0(Ω̄×R,R). Furthermore, we shall

consider the following hypotheses
(H1) There exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, t)| ≤ a1(1 + |t|p−1), for any (x, t) ∈ Ω× R
where 2∗ = 2N/(N − 4).

(H2) lim|t|→∞
f(x,t)
t = +∞ uniformly in Ω;

(H3) There exists f0 ∈ [0, µ1) such that

lim
|t|→0

f(x, t)
t

= f0 uniformly in Ω,
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where µ1 = λ1(αλ1 − β) > 0.
It is worthwhile to mention that hypothesis (H3) implies that

f(x, 0) = 0, ∀x ∈ Ω.

As a consequence u ≡ 0 is a trivial solution to the elliptic problem (1.1). Hence,
applying (H1)–(H3), the main objective in the present work is to verify the existence
of nontrivial solutions.

It is important to mention that 2∗ = 2N/(N−4) is the critical Sobolev exponent
for fourth order elliptic equations for any N ≥ 4. More precisely, we have that H
is continuous embedding into Ls(Ω) for any s ∈ [1, 2∗] where N ≥ 5. For the case
N = 4 we have that H is not included in L∞(Ω) and for this case we consider
p ∈ (2, 2∗) in the following form 2 < p < ∞. Notice also that the embedding
H ⊂ Ls(Ω) is compact for any s ∈ [1, 2∗) where we put N ≥ 4.

Under hypotheses (H1)–(H3) problem (1.1) is superlinear at infinity and at the
origin. In [26, 28] the authors considered fourth order elliptic problems where the
nonlinear term is a function that satisfies the well known Ambrosetti-Rabinowitz
condition at infinity. Namely, the Ambrosetti-Rabinowitz condition, in short (AR)
condition, says that: There are θ > 2 and R > 0 such that

0 < θF (x, t) ≤ tf(x, t), |t| ≥ R, x ∈ Ω.

Using a standard procedure recall that (AR) condition implies

F (x, t) ≥ c1|t|θ − c2, t ∈ R, x ∈ Ω (1.4)

holds for some c1, c2 > 0. However, there are superlinear functions f that (1.4) is
not satisfied. For example the function f(t) = t ln(1 + |t|) which does not satisfy
the estimate (1.4) proving that (AR) condition does not work anymore. At the
same time, the function f satisfies the nonquadraticity condition at infinity given
by hypotheses (NQ) ahead.

The main feature in this work is to find existence and multiplicity of solutions for
fourth order elliptic problems given by problem (1.1) where the nonlinear term is
nonquadratic at the infinity. As was mentioned before in this work is not required
that f satisfy the (AR) condition. For further results on elliptic problems without
the (AR) condition we infer the reader to [5, 10, 18, 19, 20, 27, 29, 30, 31, 34] and
references therein.

At this moment we shall consider the nonquadraticity condition at infinity in-
troduced by Costa and Magalhães [8] stated in the form

(NQ) setting H(x, t) := f(x, t)t− 2F (x, t), we have that

lim
|t|→∞

H(x, t) = +∞, uniformly for x ∈ Ω.

Now we shall consider the Mountain Pass Theorem, under the Cerami condition,
writing our main first result in the form:

Theorem 1.1. Suppose that f satisfies (H1)–(H3) and (NQ). Then problem (1.1)
admits at least one nontrivial solution.

Remark 1.2. Notice that Theorem 1.1 holds for Dirichlet boundary conditions.
More specifically, we consider the elliptic problem

α∆2u+ β∆u = f(x, u) in Ω,
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u = 0,
∂u

∂η
= 0 on ∂Ω,

where ∂u
∂η denotes the normal derivative on the boundary. For this problem the

energy functional I : H2
0 (Ω)→ R is given by

I(u) =
1
2

∫
Ω

(
α|∇u|2 − β|∇u|2

)
dx−

∫
Ω

F (x, u)dx, u ∈ H2
0 (Ω).

Here the first eigenvalue µ1 > 0 can be characterized by

µ1 = inf
{∫

Ω

(
α|∇u|2 − β|∇u|2

)
dx, ‖u‖2 = 1, u ∈ H2

0 (Ω)
}
.

For more details on this subject we refer the reader to [12, 13].

Remark 1.3. Here we assume that N = 1, 2, 3 and p ∈ (1,∞) where the function
f is subcritical. Using assumptions (H1)–(H3) the energy functional I admits also
the mountain pass geometry. Besides that, using hypothesis (NQ), we also mention
that I verifies the Cerami condition. Hence the Theorem 1.1 remains true in this
setting.

Now, using a truncation technique for fourth order elliptic problems, taking
into account the Strong Maximum Principle for elliptic equations we can write our
second result in the following form.

Theorem 1.4. Suppose that f satisfies (H1)–(H3) and (NQ). Then problem (1.1)
admits at least two nontrivial solutions u,w ∈ H satisfying u > 0 and w < 0 in Ω.

Now, using some symmetric conditions and the Symmetric Mountain Pass The-
orem, our third result can be stated in the following form

Theorem 1.5. Suppose that f satisfies (H1)–(H3) and (NQ). Assume also that
t→ f(x, t) is an odd function for any x ∈ Ω fixed. Then the problem (1.1) admits
infinitely many nontrivial solutions.

Fourth-order elliptic problems involving biharmonic operator have been widely
studied during the previous years, see [3, 6, 11, 26, 28]. In most of them was
employed variational methods such as the Mountain Pass Theorem where α = 1
and β = 0 and f0 ≡ 0. For example in [26] the authors considered problem (1.1)
under those conditions and the nonlinear f appears as simple power or it satisfies
the (AR) condition. In [28] was considered problem (1.1) with α = 1, β < λ1 and f
superlinear at infinity. Furthermore, in [28] the authors considered the hypothesis

lim inf
|t|→∞

tf(x, t)− 2F (x, t)
|t|σ

≥ a, t ∈ R, x ∈ Ω (1.5)

holding uniformly in x ∈ Ω for some σ > N
4 (p−1) where a > 0 is a suitable constant.

Here we mention also that hypotheses in the spirt of (1.5) was introduced by Costa-
Magalhães in [8]. In other works the authors have considered the assumption

t→ f(t)
t

is an increasing function for each t > 0. (1.6)

The assumption (1.6) is crucial in order to ensure that any Palais-Smale sequence
is bounded, see [7, 27]. For further results on this subject we refer the reader to
[4, 19, 36]. As an example for our setting we consider the following functions

(a) f1(t) = t ln(1 + |t|) + sin t, t ∈ R where µ1 > 1,
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(b) f2(t) = t ln(1 + |t|) + at sin t, t ∈ R where a ∈ (0, 1/2).
Here we mention that f1, f2 do not satisfy neither the (AR) condition nor as-
sumption (1.6). Indeed, these functions do not satisfy the estimate given in (1.4).
Furthermore, due the periodic term we observe that

d

dt

[f1(t)
t

]
and

d

dt

[f2(t)
t

]
are sign changing functions. The main point in this work is to consider the extremal
case putting σ = 0 in assertion (1.5). Moreover, we consider the case where as-
sumption (1.6) is not verified. Hence our results extend and complement the early
results above-mentioned.

To ensure multiplicity of solutions for the elliptic problem (1.1) we have a dif-
ficulty because u+ does not belong to H in general. This problem is inherent to
elliptic operators of higher order such as problem (1.1). To overcome this difficulty
we shall use a truncation technique together with strong maximum principle prov-
ing that problem (1.1) admits at least a weak solutions with constant sign. Here
the main point is to consider an auxiliary elliptic problem and an elliptic system in
order to use Stampacchia’s result. On the other hand, assuming that f is an odd
function, the functional I is even which allow us to apply the Symmetric Mountain
Pass Theorem under the Cerami condition given by Ambrosetti-Rabinowitz. The
main strategy here is to prove that I is anti-coercive in an appropriate sense, see
Section 3 ahead. Hence our results extend and complement early results above-
mentioned proving existence and multiplicity of solutions which are defined in sign.

The paper is organized as follows: In Section 2 we give the variational framework
to the elliptic problem (1.1) proving the compactness condition, i.e, the Cerami
condition. Section 3 is devoted to the proof of our main results. In Appendix we
prove that any critical point u ∈ H for the functional I satisfies ∆u = 0 on ∂Ω.

Throughout this work C,C1, C2, . . . denote positive constants. The norm in
Lp(Ω) is denoted by ‖ · ‖p for each p ∈ [1,∞]. For any function u ∈ Lp(Ω) we write
u = u+ + u− where u+ = max(u, 0) and u− = min(u, 0), p ∈ [1,∞]. The norm in
H is denoted by ‖ · ‖.

2. Variational framework

In this section we shall prove some properties related to the elliptic problem (1.1)
given a variational framework for our problem.

Let H be a Banach space endowed with the norm ‖‖. Consider I : H → R a
functional of C1 class. A sequence (un) ∈ H is said to be a Palais-Smale sequence at
level c ∈ R, in short (PS)c, when I(un)→ c and ‖I ′(un)‖H′ → 0 as n→∞. Recall
that I satisfies the Palais-Smale condition at the level c, in short (PS)c condition,
when any (PS)c sequence admits a convergent subsequence. We say simply that I
verifies the Palais-Smale condition when (PS)c condition holds true for any c ∈ R.
Similarly, a sequence (un) ∈ H is said to be a Cerami sequence at the level c ∈ R,
in short (Ce)c sequence, whenever I(un) → c and (1 + ‖un‖)‖I ′(un)‖H′ → 0 as
n → ∞. The functional I satisfies the Cerami condition at the level c ∈ R, in
short (Ce)c condition, whenever any Cerami sequence at the level c possesses a
convergent subsequence. When I satisfies the Cerami condition at any level c ∈ R
we say purely that I satisfies the Cerami condition, in short (Ce) condition. Here
we refer the reader to [4, 7, 36].

Now we recall the classical mountain pass theorem given in [1].
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Theorem 2.1. Let H be a Banach space and I : H → R a functional of C1 class.
Suppose that I admits the following mountain pass geometry

(i) There exist r > 0, ρ > 0 such that I(u) ≥ ρ > 0, for any u ∈ H with
‖u‖ = r.

(ii) There exists e ∈ H with ‖e‖ > r such that I(e) ≤ 0.
Suppose also that I satisfies the (PS)c condition or (Ce)c condition where we define

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (2.1)

where Γ := {γ ∈ C0([0, 1],H) : γ(0) = 0, γ(1) = e}. Then c is a critical value which
satisfies c ≥ ρ.

Now we shall prove the Cerami condition using the nonquadraticity condition at
infinity. The main difficulty here is to ensure that any Cerami sequence is bounded.

Proposition 2.2. Suppose that f satisfies (H1)–(H3) and (NQ). Then the func-
tional I satisfies the Cerami condition at any level c ∈ R.

Proof. Let (un) ⊂ H be a sequence in such way that

I(un)→ c, ‖I ′(un)‖H′(1 + ‖un‖)→ 0,

where c ∈ R. Since f has subcritical growth it suffices to prove that (un) is bounded
sequence.

The proof follows arguing by contradiction. Suppose that, up to a subsequence,
‖un‖ → +∞ as n → +∞. Setting vn := un/‖un‖ we obtain ‖vn‖ = 1 and there
exits v ∈ H in such way that vn ⇀ v in H. In this case, along a subsequence, we
obtain

vn ⇀ v weakly in H,
vn → v strongly in Lq(Ω),

vn(x)→ v(x), a. e. in Ω,

|vn(x)| ≤ hq(x), h ∈ Lq(RN ),

(2.2)

holds for any 2 ≤ q < 2∗.
At this stage we claim that v 6= 0. This fact can be proved arguing by contra-

diction. In fact, assuming that v ≡ 0, it follows from (H1) and (H3) that

|F (x, u)| ≤ C|u|2 + C|u|p, ∀(x, u) ∈ Ω× R. (2.3)

holds for some C > 0. Fix m > 0 a constant. Taking into account (2.3) we have∫
Ω

|F (x,
√

4mvn)| dx ≤ C
∫

Ω

v2
n dx+ C

∫
Ω

|vn|p dx

holds for some C = C(Ω, f,m, p) > 0. Using the strong convergence in (2.2) and
the compact embedding we know that∫

Ω

F (x,
√

4mvn)→ 0

as n→ +∞ for any fixed m > 0.
By the generality of constant m, without any loss of generality, we suppose that√

4m < ‖un‖. Let tn ∈ [0, 1] be in such way that

I(tnun) = max
t∈[0,1]

I(tun). (2.4)
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Using the definition of tn in (2.4), considering t =
√

4m < ‖un‖ we deduce that

I(tnun) ≥ I
(√4m
‖un‖

un

)
= 2m−

∫
Ω

F (x,
√

4mvn) dx ≥ m > 0,
(2.5)

for any n ≥ n0, where n0 ∈ N depends only on m. It is important to emphasize
that if tn = 0 holds for any n ∈ N we obtain 0 = I(tnun) ≥ m > 0 which is a
contradiction. Furthermore, assuming that tn = 1 holds for any n ∈ N we also
obtain m ≤ I(tnun) = I(un)→ c which does not make sense for any m > c. Hence,
up to a subsequence, we can assume that tn ∈ (0, 1). This assertion together with
(2.4) imply that I ′(tnun)(tnun) = 0 for any n ∈ N.

Now we shall divide the proof in two cases:
Case 1: Along a subsequence we suppose that tn < (2/‖un‖). In this case we use
hypotheses (H1)–(H3) and the Sobolev embedding to get c1, c2 > 0, satisfying the
estimates∣∣∣ ∫

Ω

H(x, tnun )dx
∣∣∣ ≤ c1(tn‖un‖)2 + c2(tn‖un‖)p ≤ 4c1 + c22p <∞.

Using the fact that tn ∈ (0, 1) it follows from the identity I ′(tnun)(tnun) = 0 that

0 = t2n‖un‖2 −
∫

Ω

f(x, tnun)(tnun) dx = 2I(tnun)−
∫

Ω

H(x, tnun) dx.

As a consequence we obtain

I(tnun) =
1
2

∫
Ω

H(x, tnun) dx ≤ c3

where c3 > 0. This give us an absurd with (2.5) due the fact that m > 0 in that
expression is arbitrary. Hence Case 1 is not possible. It remains to focus in the
following case
Case 2: Along a subsequence we have tn ≥ (2/‖un‖). In this case we consider a
new sequence sn := 1

‖un‖ < tn. Analyzing the energy functional I we obtain the
identity

I(tnun)
t2n‖un‖2

− I(snun)
s2
n‖un‖2

=
∫

Ω

F (x, tnun)
s2
n‖un‖2

dx−
∫

Ω

F (x, snun)
t2n‖un‖2

dx

= − 1
‖un‖2

∫
Ω

(F (x, tnun)
t2n

− F (x, snun)
s2
n

)
dx

At this moment, using Calculus Fundamental Theorem, we infer that

I(tnun)
t2n‖un‖2

− I(snun)
s2
n‖un‖2

= −
∫

Ω

∫ tn

sn

d

dτ

(F (x, τun)
τ2‖un‖2

)
dτ dx

= −
∫

Ω

∫ tn

sn

H(x, τun)
τ3‖un‖2

dτ dx.

Now we shall define the function φ : R → R given by φ(t) = e−1/t2 , t 6= 0 and
φ(0) = 0. It follows from elementary calculus that φ ∈ C∞(R,R) and 0 ≤ φ(t) ≤ 1
for any t ∈ R. Furthermore, we observe that φ(j)(0) = 0 for any j ∈ N. Using the
condition (NQ) and the function φ given just above we infer that

H(x, t) ≥ Rφ(t), ∀|t| ≥M, x ∈ Ω (2.6)
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holds for any R > 0 where M = M(R) > 0.
On the other hand, by hypothesis (H1) and continuity of the function H, we

have that
H(x, t) ≥ −C|t|, ∀|t| ≤M, x ∈ Ω (2.7)

for some positive constant C = C(R) < ∞. Using estimates (2.6) and (2.7) we
ensure the global inequality

H(x, t) ≥ Rφ(t)− C|t|, ∀(x, t) ∈ Ω× R.

Therefore, we have
I(tnun)
t2n‖un‖2

− I(snun)
s2
n‖un‖2

≤ I1 + I2,

where I1 and I2 are defined by

I1 = − R

‖un‖2

∫
Ω

[ ∫ tn

sn

φ(τun)
τ3

dτ
]
dx, (2.8)

I2 =
C

‖un‖2

∫
Ω

[ ∫ tn

sn

|τun|
τ3

dτ
]
dx. (2.9)

Firstly, analyzing the integral (2.9) we easily see that

I2 = C

∫
Ω

( 1
sn
− 1
tn

) |un|
‖un‖2

dx.

At this moment using the fact that tn > 2
‖un‖ the integral I2 can be estimated as

follows

I2 ≤
C

2

∫
Ω

|vn| dx→ 0.

Now we shall analyze the integral in (2.8). According to mean value theorem for
integrals there exists cn ∈ (sn, tn) in such way that∫ tn

sn

φ(τun)
τ3

dτ = φ(cnun)
∫ tn

sn

1
τ3
dτ = −φ(cnun)(1/2t2n − 1/2s2

n).

As a consequence we get the identity

I1 =
R

‖un‖2
( 1
t2n
− 1
s2
n

)∫
Ω

φ(cnun) dx.

The above identity implies that

I1 ≤ −
3R
8

∫
Ω

φ(cnun) dx.

Now we define the set

Ωn = ∪M>0

{
x ∈ Ω : |(cnun)(x)| ≥ 1

M

}
.

The strategy here is to find a subsequence (unk
) ∈ H in such way that

|Ωnk
| ≥ δ0 > 0, ∀k ∈ N (2.10)

holds for some numbers δ0 > 0,M0 > 0 fixed. If this is true, then

I1 ≤ −
3R
8

∫
Ωnk

e−M
2
0 dx ≤ −3R

8
δ0e
−M2

0 < 0.
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Now we proceed with the proof of inequality (2.10). Suppose by contradiction that
for any subsequence (unk

) ∈ H and for each δ > 0 and M > 0 we have

0 < |Ωnk
| ≤ δ.

These inequalities show that |Ωnk
| = 0 for any M > 0. Consider the measurable

set Ω0 = ∪∞k=1Ωnk
. It is easy to verify that

|Ω0| =
∣∣ ∪∞k=1 Ωnk

∣∣ ≤ ∞∑
k=1

|Ωnk
| = 0. (2.11)

Note that we can rewrite the set Ω = Ω0 ∪̇(Ω \ Ω0). It is important to emphasize
that

I(tnk
unk

) =
1
2

∫
Ω

H(x, tnk
unk

) dx+ ok(1)

Using the previous identity and (2.11) we easily see that

I(tnk
unk

) =
1
2

(∫
Ω0

H(x, tnk
unk

) dx
∫

Ω\Ω0

H(x, tnk
unk

) dx
)

+ ok(1)

=
1
2

∫
Ω\Ω0

H(x, tnk
unk

) dx+ ok(1)
(2.12)

Analyzing the elements in the set Ω \ Ω0 and using the Morgan’s Law we get

Ω \ Ω0 =
{
x ∈ Ω : |(cnk

unk
)(x)| < 1

M
, ∀k ∈ N, ∀M > 0

}
.

Now we consider the set Ω1 = {x ∈ Ω; |(cnk
unk

)(x)| = 0 ∀k ∈ N}. Clearly, we
see that Ω1 ⊂ Ω \ Ω0. Additionally, given any x ∈ Ω \ Ω0, we observe that

|(cnk
unk

)(x)| < 1
M
, ∀k ∈ N

holds for any M > 0. As the inequality just above is verified for any M > 0 and
for any integer k we obtain that |(cnk

unk
)(x)| = 0 for all k ∈ N. As a consequence

x ∈ Ω1 and Ω \Ω0 = Ω1. Furthermore, using the fact that 0 < snk
≤ cnk

≤ tnk
, we

mention also that
unk

(x) = 0, x ∈ Ω \ Ω0, ∀k ∈ N.
Thus, we can be rewritten the set Ω \ Ω0 in the form

Ω \ Ω0 = {x ∈ Ω; |unk
(x)| = 0 ∀k ∈ N}.

From now on, using the estimate given in (2.12) and the above assertion, we
assume that

I(tnk
unk

) =
1
2

∫
Ω\Ω0

H(x, tnk
unk

) dx+ ok(1) = ok(1),

which implies the convergence

lim
k→+∞

I(tnk
unk

) = 0.

This is a contradiction with (2.5) for each m > 0. Therefore the assertion given in
(2.10) is true. In conclusion, we have been proved that v 6= 0, i.e, the set

Ω̂ = {x ∈ Ω : v(x) 6= 0}

has positive Lebesgue measure. Additionally, we know that |un| → ∞ a.e. in Ω̂.
Taking into account hypothesis (NQ) we observe that H(x, t) ≥ −C holds for any
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(x, t) ∈ Ω× R and for some C > 0. Under these conditions it follows from Fatou’s
Lemma that

c = lim inf
n→∞

{
I(un)− 1

2
I ′(un)un

}
=

1
2

lim inf
n→∞

∫
Ω

H(x, un)dx

≥ 1
2

∫
Ω

lim inf
n→∞

H(x, un)dx =∞.

Hence we have a contradiction proving that (un) ∈ H is now a bounded sequence.
This finishes the proof of Proposition 2.2. �

3. Proof of main results

Proof of Theorem 1.1. Initially, using hypotheses (H1)–(H3) and the fact that f ∈
C(Ω× R,R), we have estimate

|F (x, t)| ≤ (ε+ f0)
2

|t|2 + C|t|p, ∀(x, t) ∈ Ω× R, (3.1)

for any ε > 0 and for some C = C(ε) > 0. Now we mention the following variational
inequality

‖u‖22 ≤
1
µ1
‖u‖2, u ∈ H. (3.2)

Noticing the definition of I given in (1.2), it follows from (3.1), (3.2) and Sobolev
inequality that

I(u) ≥
(1

2
− (ε+ f0)

2µ1

)
‖u‖2 − C‖u‖p.

for some positive constant C > 0. Now we define

r =
(

ε0

4µ1C

)1/(p−2)

, ρ = r2

(
ε0

4µ1

)
where ε0 = µ1−f0

2 > 0. Under these conditions, for any ε ∈ (0, ε0), we infer that

I(u) ≥ ρ > 0, ∀u ∈ H, ‖u‖ = r.

This shows the first statement in the mountain pass geometry given in Theorem
2.1.

Now using condition (H2) and the continuity of F , given any R > µ1 there exists
CR <∞ in such way that

F (x, t) ≥ Rt2

2
− CR, ∀(x, t) ∈ Ω× R. (3.3)

Let ϕ1 > 0 be the eigenfunction associated to µ1 which satisfies
∫

Ω
ϕ2

1dx = 1.
Consider e = tϕ1 with t > 0. Using (3.3) we get the estimate

I(e) = I(tϕ1) ≤ t2

2
(µ1 −R) + CR|Ω|.

As a consequence there exists t0 > 0 large enough in such way that, considering
R > µ1, we obtain ‖e‖ = ‖t0ϕ1‖ > r and I(e) < 0. These facts shows that I
admits the mountain pass geometry proving the existence of a Cerami condition
(un) at the mountain pass level given by (2.1). According to Proposition 2.2 there
exists u ∈ H in such way that un → u in H. As a consequence u is a critical point
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for I and I(u) ≥ ρ > 0. Hence u is a weak solution to the elliptic problem (1.1).
Here was used the fact that u = 0 and ∆u = 0 on ∂Ω which we shall prove in the
Appendix. This completes the proof. �

Proof of theorem 1.4. In this section, via Strong Maximum Principle, we shall prove
that problem (1.1) admits at least two solutions which one solution is positive and
another one is negative. To do that we reduce the fourth-order problem (1.1) to a
second-order elliptic problem. Hence, using a truncation argument, we analyze the
positive part and negative part of the nonlinearity f obtaining a multiplicity result.

As a first step we shall consider v = −∆u in problem (1.1), i.e, we reduce problem
(1.1) into the elliptic system

−∆u = v in Ω,

−α∆v − βv = f(x, u) in Ω,
u = v = 0 on ∂Ω.

(3.4)

Here we emphasize that u, v ∈ H1
0 (Ω). Putting v− ∈ H1

0 (Ω) as test function in the
problem (3.4) we observe that∫

Ω

α∇v∇v− dx− β
∫

Ω

vv− dx =
∫

Ω

f(x, u) v− dx. (3.5)

It is worthwhile to mention that

∇v− =

{
∇v, if v < 0
0, if v ≥ 0,

Using the variational inequality for λ1 and the identity (3.5) we obtain(
α− β

λ1

)∫
Ω

|∇v−|2 dx ≤
∫

Ω

α|∇v−|2 dx− β
∫

Ω

|v−|2 dx =
∫

Ω

f(x, u) v− dx.

At this moment we shall consider the function f+, i.e, we define the truncation

f+(x, t) =

{
f(x, t), if t ≥ 0
0, if t < 0.

Now we define the functional I+ : H → R of C1 class given by

I+(u) =
α

2

∫
Ω

|∆u|2dx− β

2

∫
Ω

|∇u|2dx−
∫

Ω

F+(x, u) dx

where F+(x, t) =
∫ t

0
f+(x, s)ds for any x ∈ Ω, t ∈ R. Moreover, u ∈ H is a critical

point for I+ if and only if we have

α

∫
Ω

∆u∆φdx− β
∫

Ω

∇u∇φdx−
∫

Ω

f+(x, u)φdx = 0

for any φ ∈ H. Then we can find weak solution to the elliptic problem (1.1) finding
positive critical points to the functional I+. It is no hard to verify that I+ admits
the mountain pass geometry using the same ideas discussed in the proof of Theorem
1.1. Furthermore, the functional I+ satisfies the (Ce)c condition at any energy level
c ∈ R. This is ensured using the ideas discussed in the proof of Proposition 2.2.
As a consequence, using the Mountain Pass Theorem, there exists a critical point
u ∈ H for the functional I+ verifying I+(u) > 0.



12 E. D. D. SILVA, T. R. CAVALCANTE EJDE-2017/167

Now we shall consider the auxiliary elliptic problem
−∆u = v in Ω

−α∆v − βv = f+(x, u) in Ω
u = v = 0 on ∂Ω.

(3.6)

Using the same ideas discussed above and changing the function f by f+ we get
the estimate

0 ≤
(
α− β

λ1

)∫
Ω

|∇v−|2 dx ≤
∫

[v<0]

f+(x, u) v− dx. (3.7)

It follows from problem (3.6) that
−∆u = v < 0 in [v < 0]

u ≤ 0 on ∂[v < 0],
(3.8)

where we define [v < 0] = {x ∈ Ω : v(x) < 0}. This set is an open set due the fact
that v is in C0,α(Ω). This fact can be ensured using regularity arguments on elliptic
equations involving operators of fourth-order and the fact that f+ is a continuous
function. For further results on regularity for elliptic equations we infer the reader
to Agmon, Douglis and Niremberg [2] or Gupta and Kwong [17].

Now, using the strong maximum principle [14], we note that (3.8) implies u < 0
in [v < 0]. As a consequence, using the last assertion, we know that∫

Ω

f+(x, u) v− dx =
∫

[v≥0]

f+(x, u) v− dx+
∫

[v<0]

f+(x, u) v− dx

=
∫

[v<0]

f+(x, u) v− dx = 0

Therefore, estimate (3.7) and the variational inequality for λ1 imply

0 ≤
(
α− β

λ1

)∫
Ω

|∇v−|2 dx ≤ 0.

Hence v− ≡ 0 and v = v+ ≥ 0 in Ω. As a consequence,

−∆u = v ≥ 0 in Ω, u = 0 on ∂Ω.

Using one more time the strong maximum principle we easily seen that u > 0 in Ω,
i.e, we guarantee that problem (1.1) admits at least one positive solution.

Analogously, we define the function f− by

f−(x, t) =

{
f(x, t), if t ≤ 0
0, if t > 0.

Now we define the functional I− : H → R of C1 class given by

I−(u) =
α

2

∫
Ω

|∆u|2dx− β

2

∫
Ω

|∇u|2dx−
∫

Ω

F−(x, u) dx

where F−(x, t) =
∫ t

0
f−(x, s)ds for any x ∈ Ω, t ∈ R. Moreover, u ∈ H is a critical

point for I− if only if we have

α

∫
Ω

∆u∆φdx− β
∫

Ω

∇u∇φdx−
∫

Ω

f−(x, u)φdx = 0

for any φ ∈ H. Then we can find weak solution to the elliptic problem (1.1) finding
negative critical points to the functional I−. It is no hard to verify that I− admits
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the mountain pass geometry using the same ideas discussed in the proof of Theorem
1.1. Furthermore, the functional I− satisfies the (Ce)c condition at any energy level
c ∈ R. This is verified using the ideas discussed in the proof of Proposition 2.2.
As a consequence, using the Mountain Pass Theorem, there exists a critical point
w ∈ H for the functional I− satisfying I−(w) > 0. At the same time, using the
strong principle strong maximum twice we obtain a second solution w ∈ H to the
elliptic problem (1.1) satisfying w < 0 in Ω. Here was used the fact that f− is also
a continuous function. This completes the proof. �

To prove Theorem 1.5, we shall apply the following version of the symmetric
Mountain Pass Theorem.

Theorem 3.1. Let X be an infinite dimensional Banach space and I ∈ C1(X,R)
be even, satisfy (Ce)c for any c ∈ R, and I(0) = 0. If X = V ⊕W , where V is
finite dimensional, and I satisfies

(1) there exists r, ρ > 0 such that

I(u) ≥ r > 0, for any u ∈ ∂Bρ(0) ∩W ;

(2) for any finite dimensional subspace X ⊂ X there exists ξ = ξ(X) such that

I(u) ≤ 0 for any u ∈ X \Bξ(0),

then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.5. Firstly, we would like to apply Theorem 3.1 choosing X = H
and I = I. Hence, using hypotheses (f0)− (f2), we deduce the estimate

|F (x, t)| ≤ (ε+ f0)
2

|t|2 + C|t|p, ∀(x, t) ∈ Ω× R,

which holds for any ε > 0 and for some C = C(ε) > 0. This implies that I(u) ≥ ρ
for any u ∈ H satisfying ‖u‖ = r. Here we choose r, ρ > 0 small, see the proof of
Theorem 1.1, and therefore (1) of Theorem 3.1 holds.

Now consider any subspace E ⊂ H which is finite dimensional. Let Br(0) ⊂ H be
the open ball centered at the origin and radius r > 0. Here we is need to guarantee
that I(v) ≤ 0 for any v ∈ E\Br(0) where r > 0 is chosen large enough. To do that,
we use the estimate (3.3) and the fact that all the norms in space E are equivalent
obtaining constants C0 > 0 and CR > 0 in such way that

I(v) ≤ 1
2

(1− C0R) ‖u‖2 + CR|Ω|, v ∈ E

holds for any R > 0. Since R > 0 is arbitrary we conclude that I(v) → −∞
as ‖v‖ → ∞, v ∈ E, and therefore (1) of Theorem 3.1 holds. Furthermore, the
functional I satisfies the Cerami condition, see Proposition 2.2. Then applying the
symmetric mountain pass theorem we obtain a sequence of critical values cn > 0
such that cn → +∞ as n→∞. In particular, we obtain a sequence of critical points
un ∈ H for the functional I satisfying I(un)→ +∞ as n→∞. This completes the
proof. �

4. Appendix

The main objective in this section is to ensure that any critical point u ∈ H
for I satisfies u = 0 and ∆u = 0 on ∂Ω. In other words, we shall prove that any
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critical point of I give us a weak solution for the problem (1.1) satisfying the Navier
boundary conditions.

Let u ∈ H = H1
0 (Ω) ∩H2(Ω) be a critical point for I, i.e, we have that

α

∫
Ω

∆u∆φdx+ β

∫
Ω

φ∆u dx =
∫

Ω

f(x, u)φdx.

holds for any function φ ∈ H. From standard trace theorem we know that u = 0 on
∂Ω. It remains to show that ∆u = 0 on ∂Ω. To do that we consider v = −∆u and
h(x) = f(x, u). It is easy to verify that v ∈ L2(Ω) and h ∈ L2(Ω). Furthermore,
we have ∫

Ω

v[−α∆φ− βφ] dx =
∫

Ω

h(x)φdx, ∀φ ∈ H. (4.1)

Let w ∈ H1
0 (Ω) ∩H2(Ω) be the unique weak solution for the elliptic problem

−α∆w − βw = h(x) in Ω
w = 0 on ∂Ω.

(4.2)

To ensure the existence of solutions to the elliptic problem (4.2) for each h ∈ L2(Ω)
we apply standard minimization procedures. To get the uniqueness of solutions to
the elliptic problem (4.2) we consider any weak solutions w1 and w2 proving that

−α∆(w1 − w2)− β(w1 − w2) = 0 in Ω

(w1 − w2) = 0 on ∂Ω.

Choosing w = w1 − w2 and taking w as testing function we get∫
Ω

α|∇w|2 − βw2 dx = 0.

On the other hand, using the hypothesis µ1 > 0, we deduce that −∞ < β < αλ1.
In particular, putting β ≤ 0, it follows from the above estimate that∫

Ω

α|∇w|2 dx ≤ 0.

This implies that w ≡ 0. Now, taking 0 < β < αλ1, the variational inequality says

0 ≤
∫

Ω

(
α− β

λ1

)
|∇w|2 dx ≤ 0.

Hence the last estimate implies that w ≡ 0. To sum up, we have been shown that
w1 ≡ w2 in Ω proving that problem (4.2) admits exactly one weak solution for each
h ∈ L2(Ω).

At this moment, using the weak formulation for (4.2) we obtain∫
Ω

−αw∆φ− βwφdx =
∫

Ω

h(x)φdx (4.3)

holds for any φ ∈ H. Putting together the identities (4.1) and (4.3) we deduce that∫
Ω

(v − w)(α∆φ− βφ) dx = 0, ∀φ ∈ C∞0 (Ω).

At this stage, using Du Bois Raymond’s Lemma [14], we infer that v = w a.e. in
Ω. As a consequence v = w in L2(Ω) which says that v = −∆u = 0 on ∂Ω.
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[16] J. V. A. Gonçalves, E. D. Silva, M. L. Silva; On positive solutions for a fourth order asymp-
totically linear elliptic equation under Navier boundary conditions, J. Math. Anal. Appl.,
384, (2011), 387–399.

[17] C. P. Gupta, Y. C. Kwong; Biharmonic eigenvalue problems and Lp estimates Internat. J.

Math. Math. Sci. Vol. 13 N. 3, (1990), 469-480.
[18] L. Iturriaga, S. Lorca, P. Ubilla; A quasilinear problem the Ambrosetti-Rabinowitz condition,

Proc. R. Society Edinburgh, 140 (2010), 391-398.
[19] L. Jeanjean; On the existence of bounded Palais-Smale sequences and a application to

Landemann-Lazer type problem set RN , Proc. Roc. Soc. Edinburgh, 129 (1999), 797-809.

[20] Z. Liu, Z. Q. Wang; On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear
Studies, 4, (2004), 653-574.

[21] P. J. Mckenna, W. Walter; Nonlinear Oscillations in a Suspension Bridge Archive for rational

mechanics and Analysis, 98(2), (1987), 167-177.
[22] P. J. Mckenna, W. Walter; ravelling waves in a suspension bridge, SIAM J. Appl. Math., 50

(1990), 703-15.

[23] A. C. Lazer, P. J. McKenna; Large-amplitude periodic oscillations in suspension bridges:
some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.



16 E. D. D. SILVA, T. R. CAVALCANTE EJDE-2017/167

[24] P. J. McKenna, W. Walter; Traveling waves in a suspension bridge, SIAM J. Appl. Math. 50

(1990), 703-715.

[25] Y. Chen, P. J. McKenna; Traveling waves in a nonlinear suspension beam: theoretical results
and numerical observations, J. Differential Equations, 135 (1997), 325-355.

[26] A. M. Micheletti, A. Pistoia; Nontrivial solutions for some fourth order semilinear elliptic

problems, Nonlinear Analyses 34, (1998), 509–523.
[27] O. H. Miyagaki, M. A. S. Souto; Supelinear problems without Ambrosetti-Rabinowitz growth

condition , J. Diff. Equations, 245, (2008), 3628-3638.

[28] Y. Pu, X. P. Wu, C. L. Tang; Fourth-order Navier boundary value problem with combined
nonlinearities, J. Math. Annal., 398 (2013), 798-813.

[29] M. Schechter; Superlinear elliptic boundary value problems, Manuscripta Math., 86, (1995),

253-265.
[30] M. Schechter, W. Zou; Double linking theorem and multiple solutions, J. Funct. Anal., 205

(2003), 37-61.
[31] M. Schechter, W. Zou; Superlinear problems, Pacific J. Math., 214, (2004), 145-160.

[32] Y. Yang, J. H. Zhang; Existence of solutions for some fourth-order nonlinear elliptical equa-

tions, J. Math. Anal. Appl. 351, (2009), 128–137.
[33] Y. Ye, C. L. Tang; Existence and multiplicity of solutions for fourth-order elliptic equations

in RN, J. Math. Anal. Appl., 406 (2013), no. 1, 335–351.

[34] Z. Q. Wang; On a supelinear ellitic equation , Anal. Inst. H. Poincaré Anal. Nonlinéare, 8,
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